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Abstract: In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a 

water zone.  Development of expert systems such as BBNs for analyzing real-time data is not only important for pipe 

break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of 

machine learning techniques to facilitate real-time distribution system monitoring and management.  Our model is learned 

from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network.  

BBN models are learned using a constraint-based method, a score-based method, and a hybrid method.  Model evaluation 

is based on log-likelihood scoring.  Sensitivity analysis using mutual information criterion is also reported.  While our 

results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may 

be difficult to select among model alternatives.  This model uncertainty may mean that more research is needed for 

understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter 

might be important for asset management planning. 
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1.  INTRODUCTION 

While U.S. drinking water distribution system integrity may be compromised through a number of mechanisms, 

pipe breaks and their associated repair and renewal activities are among the most important causes of drinking water 

distribution system contamination [1], [2].  However, developing statistical models to predict pipe breaks is a difficult 

activity.  For example, Yamijala et al [3] compare the predictive accuracy of several statistical regression models that 

have previously been used in the literature for estimating the probability or number of pipe breaks and/or leaks on 

individual pipe segments. Their results indicate that more research is required to improve pipe break modeling predictive 

accuracy. 

The present study extends this modelling work by studying the use of Bayesian Belief Networks (BBNs) to model 

pipe breaks in drinking water distribution systems.  BBNs are a flexible and powerful technique for structuring knowledge 

bases into joint probability distributions factored according to their causal relationships.  These factored, causal structures 

are directed acyclic graphs that facilitate diagnostic and predictive evidence synthesis [4].  BBNs support patterns of 

natural human reasoning [5], and may provide a robust mathematical platform for development of real-time drinking 

water distribution system monitoring and management decision-making. 

2.  PURPOSE AND OBJECTIVES 

The objective of this paper is to explore the usefulness and practicality of modelling drinking water distribution 

system pipe breaks with Bayesian Belief Networks [BBNs].  The focus of this paper will be a summary of BBN structure 

learning in the context of drinking water distribution system pipe break modelling, the cross-validation of BBN structures 

learned in this case study, and discussion of future research related to the application of BBN models in drinking water 

systems. 

3.  EVOLUTION OF STATISTICAL MODELS OF DRINKING WATER PIPE BREAKS 

Modeling of drinking water distribution system pipe breaks has been an active area of research, especially during 

the last 10-15 years.  Modeling efforts might be classified as either physically-based or statistically-based approaches [6].  

The former approach provides insights into distribution system pipe breaks by developing mathematical models based on 

the fundamental physics governing pipe breaks.  While these models are fundamentally compelling, they rely on data that 

is impractical or impossible to collect in the field.  The latter approach provides insights into distribution system pipe 
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breaks by developing statistical models.  Statistical models have become widely used in practice because they can often be 

intuitively interpreted, and span a range of complexity to accommodate a variety of utility data and resource availabilities. 

Most statistical models focus on either individual pipes or aggregate pipe groupings.  This seems to indicate a 

practical trade-off of strategic flexibility and model generalizability.  Most investigators focusing on evaluating pipe 

replacement strategies for asset management [7-11] develop statistical models for individual pipe breaks, while 

investigators focusing on understanding the broader infrastructural impacts on drinking water infrastructure maintenance 

develop statistical models for aggregate pipe groupings [3], [12-14]. 

It is worthwhile to review a few of the reported model approaches. The intention of this brief exposition is not 

comprehensiveness, but to illustrate the progression of the role of model uncertainty in pipe break modeling.  The basic 

model applied across a variety of studies is the Weibull-Exponential model.  A version of this model was developed by 

Mailhot, Poulin and Villenueve [7] for inclusion into an optimization model for evaluating water pipe replacement 

strategies.  In their investigation, Mailhot et al. propose a two-stage stochastic model where a time-dependent breakage 

risk stage is merged with a constant exponential risk function.  Their main contribution is a derivation of the probability 

distribution for breaks and time between breaks.  They found that the probability density function for the average number 

of breaks per year is: 

 
N t( ) =

λm+1

α
exp αt[ ] exp α[ ]−1( ) ≈ λm+1 exp αt[ ]  

where: α is the slope of the linear relationship between hazard values and break orders; λj is the parameter of the 

exponential distribution used to describe time between the (j-1)th break and the jth break; and m is the mth break.  The 

average number of pipe breaks during the interval [t, t+dt] conditional on the occurrence of k breaks before time t’ where 

(t’ > t) is: 

N t k;t '( ) = λk+1

l
exp α t − t '( )⎡⎣ ⎤⎦ ⋅dt  

where l is the length of the pipe segment.  The focus of their investigation, however, was not prediction of future pipe 

breaks.  Rather, the goal was to characterize the uncertainty in pipe breakage rates for inclusion into asset management 

models.  Their modeling approach is typical of those used in simulation studies used to evaluate pipe replacement and 

renewal asset management strategies. 
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Most statistical models developed and tested on field data employ generalized linear models (GLMs) [15].  For 

example, in their individual water main renewal planner (I-WARP), Kleiner and Rajani [9] developed a GLM based on 

the non-homogeneous Poisson process.  They have included dynamic (e.g. time-dependent) and static (e.g., pipe-

dependent) variables while also implementing the zero-inflated Poisson process (ZIP) approach.  Their ZIP GLM has the 

following form: 

Pr ki,t⎡⎣ ⎤⎦ =
Gi,t + 1−Gi,t( )exp −λi,t⎡⎣ ⎤⎦  for ki,t = 0

1−Gi,t( ) λ
ki ,t
i,t

ki,t !
exp −λi,t⎡⎣ ⎤⎦  for ki,t > 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

i = 1,2,...,N  is the number of pipes
t = 1,2,...,T  is the number of years of breakage data available

 

where: ki,t is the number of breaks at year t for pipe i; Gi,t is the parameter of the Bernoulli process indicating nonzero 

breaks (e.g., ki,t=0 with probability Gi,t); and λ is the breakage rate.  Gi,t is usually incorporated into the ZIP through its 

own logit link function: 

Gi,t =
exp f λi,t( )⎡⎣ ⎤⎦
1+ exp f λi,t( )⎡⎣ ⎤⎦

 

Additionally, λi,t takes a general linear form: 

λi,t = exp α 0 +θ ⋅τ gi,t( ) +αzi + βpt + γ qi,t⎡⎣ ⎤⎦  

where: a0 is the intercept; θ is the time-function coefficient; τ(gi,t) is the function used to incorporate pipe age; zi is a 

vector of pipe-dependent covariates; pt is a vector of time-dependent covariates; and qi,t is a vector of covariates dependent 

on both pipe and time.  In their model, the most important risk factors were pipe length, known previous pipe failures, rain 

deficit, and pump failures.  While pipe age and freezing index were also included, their influences were modest when 

compared with those of the variables above.  Kleiner and Rajani conclude that I-WARP is good at estimating the total 

number of breaks, but not the number of breaks per pipe.  However, they suggest I-WARP is useful for prioritizing 

renewal activities since pipes can be ranked based on the number of predicted pipe breaks. 
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Similarly, Clark et al. [10] fit a Cox proportional hazards model (Cox-PH) incorporating a shared frailty term.  

This shared frailty term was represented by a gamma random variate that represented unexplained frailty factors that may 

cause pipe breaks.  Clark et al. classified the pipe segment data into two categories, metallic and non-metallic pipes, and 

fit the Cox-PH shared frailty model to both classes.  The metallic (steel, cast-iron, ductile-iron) shared frailty model found 

to predict breaks/year/pipe section is: 

h t,material,diameter( ) = exp 7.53⋅DIP + diameter −0.309 + 0.152 ⋅DIP( )⎡⎣ ⎤⎦ ⋅h0,DIP t( ) ⋅WPipeID
DIP  

where: diameter is the pipe diameter (in.); material is ductile iron (DIP), or cast-iron/steel (CIP); DIP is the ductile-iron 

indicator variable (DIP=1 if DIP, DIP=0 if CIP); t is the years from installation; WDIP
PipeID is the gamma random variate 

(mean = 1, variance = 11.43) shared frailty term; and the hazard baseline function for breaks/year/pipe section is 

h0,DIP t( ) = 5.100 ⋅10−8( )t 3.82 .  The non-metallic (PVC) shared frailty model found is: 

h t,material = PVC,diameter( ) = exp −0.202 ⋅diameter[ ]⋅h0,PVC t( ) ⋅WPipeID
PVC  

where: WPVC
PipeID is the gamma random variate (mean = 1, variance = 0.94) shared frailty term; 

h0,PVC t( ) = 2.098 ⋅10−8( )t 3.62 .  Clark et al. conclude that the most important variables are pipe diameter and pipe 

material.  Additionally, their results indicate much more uncertainty in the hazard predictions for the metallic pipe 

segments compared with the non-metallic segments.  They suggest that breakage rates in metallic pipes may be more 

influenced by unknown random factors than non-metallic pipes. 

Berardi et al. [11] utilize evolutionary polynomial regression (EPR) to model pipe breaks based on pipe age, pipe 

diameter, pipe segment length, and population (locations/properties) serviced.  They obtain a model for annual pipe break 

rate and present a decision support model incorporating previous break history.  The first step is to use (EPR) to predict 

the number of break events recorded in a 14 year monitoring survey: 

BRclass = 0.084904 ⋅
Aclass ⋅Lclass

Dclass
1.5  



   

6 of 27 

where: BR=number of pipe break events in monitoring period; A is the equivalent pipe age within the selected pipe class, 

Aclass =
pipe_ length ⋅ pipe_age

class
∑

pipe_ length
class
∑ ; L is the sum of the pipe lengths in the class; and D is the equivalent pipe diameter 

within the selected pipe class, Dclass =
pipe_ length ⋅ pipe_diameter( )

class
∑

pipe_ length
class
∑ .  This model can be incorporated into a 

model of the break rate (breaks/year), given an observation period T: 

λi
EPR = BRclass

T
⋅ Li
Lclass

 

where: λi is the break rate for pipe i; Li is the length of pipe segment i; and L is the sum of the pipe lengths within the 

selected class.  To incorporate this model into decision support, Berardi et al. have obtained the following relationship for 

incorporating previous break history: 

λi t( ) =

a1

T
⋅
Lpi A0,class + t( )

Dclass
1.5  if Brpi = 0

ai
T
⋅
Lpi A0,class + t( )

Dclass
1.5  if Brpi > 0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

where: a1 is the corresponding EPR model coefficient (here, 0.084904); ai is given by ai = Brpi ⋅
Dclass
1.5

A0,class
⋅ 1
Lpi

; Brpi is the 

number of previously recorded breaks on segment I; A0,I is the equivalent age of the pipe class at the end of the monitoring 

period T; and t is the time since the end of the monitoring period.  This model can then be used to predict the number of 

individual pipe breaks in a given planning horizon, h, by integrating the decision support equation over the time horizon.  

Although the model presented here is elegant in its simplicity and predictive power, one advantage of using EPR is the 

opportunity to compare a relatively large family of models, even when the dataset includes a small number of covariates.  

This diversity in potential model choices indicates model uncertainty might require expert judgment in the interpretation 

of pipe break models. 
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With exception of Yamijala et al. [3] and Berardi et al. [11], a survey of statistical models for drinking water distribution 

system pipe breaks reveals that the predominant statistical approaches are either the Cox proportional hazards model [16] 

the Weibull-Exponential process, or the non-homogeneous Poisson process to predict time to first break and time between 

breaks.  In addition, with the exception of Yamijala et al [3] and Vanrengenthem [17], these models did not include 

broader environmental and infrastructural information that might help explain pipe breakage rates.  These models might 

be classified as “statistical-physical” in the sense that the risk factors considered directly correspond to the laboratory-

based physical models.  Consequently, the most important explanatory variables identified in statistical analyses have 

been pipe age, pipe material, failure history, and pipe length.  Although most models do not include broader 

environmental information and data on proximate infrastructure services and systems, the prevailing approaches in the 

literature have shown useful for a focus on deploying existing information in financial asset management, renewal, and 

replacement plans. 

On the other hand, some investigators have sought approaches which might comparatively be described as 

“hypothesis-generating” in the sense that the most often discussed risk factors may not adequately explain the variability 

in pipe breakage rates for decision making.  These hypothesis-generating studies might be further described as having two 

orientations: predictive management and diagnostic management.  The predictive management studies suggest pipe 

breakage rate models should be augmented with additional environmental and infrastructural data to improve the 

efficiency of the resultant asset management plans.  Consequently, their statistical goal remains parametric prediction of 

aggregate pipe breaks while including these additional data [3], [17].  The diagnostic management studies demonstrate 

clustering approaches that might be used to further investigate causes of infrastructure failure.  The goal is not necessarily 

to predict pipe breaks in the sense of the prevailing studies, but to identify clusters of susceptible pipes that may be 

targeted for further surveillance, investigation, or hypothesis generation [12], [13]. 

This paper builds upon this knowledge base by exhibiting features of both hypothesis-based approaches using 

BBNs to construct a graphical representation of the relationships among auxiliary variables and pipe characteristics.  This 

knowledge discovery technique has the potential to combine predictive management and diagnostic management.  The 

graphical structure of the BBN may facilitate predictive management by allowing distribution system operators and 

managers to use auxiliary variables to prioritize surveillance in areas indicated by the BBN model, while the inference 

capabilities of the BBN model permit prediction of pipe breaks using a variety of combinations of data type and quality. 
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4.  METHODS 

4.1.  Overview of Bayesian Belief Network Modeling 

Bayesian Belief Networks (BBNs) [4], [18], [19] have become a popular and effective method for making 

inferences about relationships between several variables through a causal and probabilistic structure.  Because information 

flows through BBNs according to a causal structure, BBNs are often referred to as “expert” systems (e.g., [20]).  BBNs 

are joint probability distributions between multiple variables expressed as directed acyclic graphs consisting of a set of 

nodes, a set of edges, and conditional probability tables.  In the BBN framework, there are two types of nodes: parent 

nodes and child nodes.  BBNs are attractive for probabilistic reasoning for their decomposability: the probabilities of 

events represented by child nodes are conditioned only on the events represented by their parent nodes. 

Bayesian Belief Networks may be especially well suited for risk assessment and environmental applications.  

BBNs are quite flexible, due to their non-parametric nature, and can deal with relationships between variables that may be 

otherwise difficult to identify.  Furthermore, the probabilistic language of the BBN is extended by causal language 

through the directed arcs of the network.  The direction of causality may be encoded through expert knowledge, or it may 

be learned using algorithms available in various software implementations. 

The causal reasoning facilitated by BBNs is an important advantage in the potential use of this tool as the basis 

for a real-time dynamic risk prediction framework, as opposed to rule-based or other data mining approaches.  Not only 

does the BBN allow for direct representation of the “world” the model will be used in, but it also permits diagnostic and 

predictive (e.g., bidirectional) inference in the event that only subsets of variables of interest may be observed [4].  This 

feature of BBNs is a principal distinguishing feature, setting it apart as a unique candidate for practical application in 

drinking water distribution system management.  Although a full set of variables may be initially needed to construct the 

network and learn its structure and parameters, operational use of the network may be applied in situations where the full 

set of variables may not be observed.  Sparse sampling of important variables in time and space, difficulty in 

measurement, and irregular patterns in relevant data are important features of real-time drinking water network data that 

may be amenable to modeling through BBNs. 

In this project, we use freely available software (e.g., The R Project for Statistical Computing [21], The ‘bnlearn’ 

Package for R [22]) to learn the structure and parameters of a BBN that might be used to predict the number of pipe 
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breaks in a water zone.  This learning will be based on raw data collected from a mid-eastern US utility, and it will use the 

constraint-based and score-based methods to learn the BBN structure. To learn the BBN parameters, the EM algorithm is 

applied to the cross-validated rsmax2 structure in Netica. 

The BBN modelling described is a critical step towards real-time distribution system management.  Development 

of an expert system for analyzing real-time data is not only important for pipe break prediction, but is also a first step in 

preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate 

real-time distribution system monitoring and management. 

4.2.  Structure Learning in BBNs 

Structure learning is a difficult task in BBN modeling due to its computational complexity (NP-hard) and memory 

intensiveness [23].  The structure in a BBN model has historically been studied using constraint-based algorithms which 

first construct the Markov blankets corresponding to each variable, then identifying the independence mappings (I-maps) 

that correspond to the factorization of the joint probability distribution [24-26].  The I-maps and Markov blankets at this 

point are typically undirected: the undirected networks are called Markov random fields or Markov networks.  These I-

maps and Markov blankets are used to direct the links in the network, creating a directed, or partially directed, acyclic 

graph (DAG or PDAG).  The resultant DAG is what is known as the Bayesian Network. 

Compared to the Markov network, BBNs are more restricted in the probabilistic relationships they can represent.  

While all directed relationships shown in a BBN could be encoded in a Markov network, BBNs cannot contain the cycles 

and certain types of cliques that may usefully be studied using Markov networks.  BBNs have remained a bit more 

popular in practice than Markov networks, however, because of their semantic ability to represent locally-based causal 

reasoning similar to the type of reasoning humans find natural.  In fact, the DAG uniquely represents causal relationships 

in the knowledge base, and facilitates diagnostic and predictive reasoning [5]. 

Several constraint-based learning algorithms have found application in recent development of BBN structure 

learning methods: the grow-shrink algorithm (GS) [27], the incremental association Markov blanket (IAMB), the 

interleaved incremental association Markov blanket (inter.IAMB), and the fast incremental association Markov blanket 

(fast.IAMB) [28], [29].  Score-based learning algorithms include the optimization-based hill-climbing (HC) and tabu 

(tabu) search methods which assume the underlying network follows an approximately multivariate normal (continuous) 
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or multinomial (discrete) distribution in the joint variable space and evaluate the networks using the Bayesian information 

criterion (BIC) and the Akaike information criterion (AIC).  Implementations of these methods may be found in various 

BBN software packages.  Koller and Friedman [30] and Scutari [31] provide helpful summaries of these computational 

methods. 

In this paper, we employ the rsmax2 combined constraint-score-based approach to structure discovery [22], [31].  

This algorithm allows the user to specify both the algorithm used to construct the equivalence class of perfect maps and 

the score used to identify the joint probability distribution that best fits the data.  This integrated approach to discovery 

helps avoid overfitting by maximum likelihood score-based methods by using the equivalence classes identified through 

the constraint-based algorithms to restrict the score search space [30]. 

4.3 Parameter Learning in BBNs 

While theoretically elegant, learning the structure and parameters simultaneously of a Bayesian Belief Network is 

considerably more computationally difficult than learning its structure or parameters alone.  In addition, the number of 

parameters required increases greatly as the complexity of the network increases.  In even the simplest cases where every 

variable is binary in the possible states it may take, the number of parameters to be learned increases exponentially as the 

number of variables in the knowledge domain increases.  Even so, for complex knowledge bases, the possibility of 

learning BBNs from data represents an attractive possibility to augment existing expert elicitation-based approaches.  

BBN parameters may be learned using maximum likelihood (MLE) or Monte Carlo based methods.  For BBN-specific 

implementations of these methods, the reader is again referred to Scutari [31].  In this paper, we use the EM algorithm 

implemented in Netica [32]. 

5.  CASE STUDY 

5.1. Data Set and Summary Statistics 

We have collected pipe break and location data for Baltimore County, MD, USA, during 2010-2011.  Our dataset 

includes 3686 records, augmented with GIS data from the United States Geological Survey (USGS) and the United States 

Census Bureau.  A list of the variables included in our dataset appears in Table 1.  In concurrent research we are 

investigating the use of other data mining and statistical learning techniques, including multivariate adaptive regression 
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splines (MARS), generalized additive models (GAMs), and random forests to predict drinking water distribution system 

pipe breaks in this case study [33]. 

The pipe break data included in our case study was recorded by the street address nearest the location of the 

break, but their pipe locations had not been geocoded as of the time of submission of this paper.  Consequently, our 

analysis is based on pipe break aggregation at the census tract level.  As discussed above, most pipe break models are 

developed at the level of pipe segments including such characteristics as pipe age, pipe diameter, and pipe material and 

find that these are statistically significant risk factors with respect to pipe break predictive accuracy. However, data on 

these risk factors were not available for the Baltimore County system, even at an aggregated level. We instead collected 

publicly available proxies for some of this information. For example, we included the average house age at the census 

tract level, hypothesizing that census tracts with older houses would tend to have older distribution system pipes. 

Similarly, we included population density as a proxy for intensity of water use. 

Soil characteristics were shown to be important for estimating pipe break risk by Yamijala et al. [3]. We used the 

United States Department of Agriculture National Resource Conservation Service’s (NRCS) Soil Data Mart to capture 

soil characteristics.  We first calculated the percentage of each census tract composed of each of the different NRCS-

classified soil types. The 204 original soil types were reduced to 13 in the final model by grouping similar soil types and 

summing their respective percentages for each tract. The 13 final covariates are: silt loam (SL), urban land complex 

(ULC), gravelly loam (GL), channery loam (CL), loam and mucky loam (ML), gravelly sandy loam (GSL), quarry, gravel 

pits, and rock outcrop (ROC), sandy loam and loamy sand (SLS), complex (C), tidally flooded area (TF), udorthents 

(udorthents), other non-classified soils (other), and water (W). 

We also explore the possibility of correlations in population characteristics (e.g., age and ethnic and racial 

composition of the census tracts) with pipe age. The population data used is from the United States Census Bureau and 

includes racial and housing occupancy statistics.  The variables we consider are: population per square mile (pop), 

population 18 or older (plus18), percent white (white), percent black or African-American (BLA), percent American 

Indian and Alaska Native (AAN), percent Asian (Asian), percent Native Hawaiian and other Pacific Islander percent 

(HIP), percent reporting as two or more races percent (Multi), percent Hispanic or Latino of any race (HL), and percent 

other.  The variables used for housing characteristics were housing units per area (HUPA), occupied houses per area 
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(OPA), percent of total houses occupied (OP), vacant houses per area (VPA), percent of total houses vacant (VP), and 

average house age. 

Because weather has been shown to strongly influence pipe break risk, particularly winter weather in areas 

experiencing freeze-thaw conditions, we include a number of weather characteristics calculated on a monthly basis. These 

were the average daily minimum and maximum temperatures, average daily precipitation, the percentage of days with low 

temperatures above 32F, the number of days with low temperatures below 32F, and the number of days for which the the 

high temperature was above 32F and the low temperature was below 32F. 

5.2. Results 

5.2.1. BBN Learned Structure 

The model structures presented in this paper were obtained through constraint-based methods, and hybrid 

constraint-based/score-based combinations, but not score-based methods alone.  While we do calculate the likelihood 

score for a score-based model for comparison purposes in the results section, score-based methods tend to overfit the 

training data [30], so in some cases it may be preferred to use constraint-based models. Although constraint-based models 

may be sensitive to false negative independence tests, they can serve as the starting point for the score-based algorithms in 

order to avoid overfitting. 

The simplest of the constraint-based methods is the grow-shrink algorithm.  The structure learned by this 

algorithm is shown in Figure 1.  In the grow-shrink (GS) BBN, “breaks” mediates between two causal basins.  One causal 

basin contains the variables dealing with temperature and precipitation, while the other causal basin includes general 

infrastructure characteristics, soil types, and other physical variables.  Most of the demographic data are not connected to 

the overall BBN, and these nodes have been omitted from the Figure.  This model structure suggests that the temperature 

and physical relationships studied in the literature to date may be part of the equivalence class in the knowledge structure 

explaining pipe breaks, but these results suggest that many more variables in the context could have a meaningful 

influence on the prediction or explanation of pipe breaks. 

The other method illustrated is the hybrid score-based/constraint-based approach.  The combination of constraint-

based and score-based methods may potentially improve the fit and interpretation of the BBN.  The BBN structure learned 

using the rsmax2 algorithm by combining the grow-shrink constraint based algorithm with the tabu search score based 
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method is shown in Figure 2.  The structures indicate some differences between the structure learned using the grow-

shrink algorithm and the structure learned using the rsmax2 algorithm.  In fact, the primary relationships obtained in the 

grow-shrink BBN between “Breaks” and the knowledge base are not preserved.  While breaks is no longer related to the 

population in each census tract area nor the minimum temperature in the rsmax2 BBN structure, it seems there is a 

relationship between the housing units per area and vacant housing units per area that was not characterized in the same 

way by the grow-shrink algorithm. 

5.2.2. BBN Model Evaluation 

Our BBN models have been evaluated using their negative log-likelihood score.  The models have not undergone 

cross-validation for this article because we are not demonstrating BBN predictive accuracy in this paper.  In Table 2, we 

report the log-likelihood scores computed during evaluation of the network structures obtained using different the grow-

shrink and rsmax2 hybrid tabu-grow-shrink methods.  These results show that, while the rsmax2 BBN structure represents 

more dependence relationships, these additional relationships may be difficult to quantify as more data is required, thus 

resulting in a lower likelihood score. 

5.2.3 Variable Importance 

An analysis of the sensitivity of pipe break predictions to the findings at other nodes in the network reveals an 

important challenge remaining in developing BBNs for pipe break modelling and infrastructure rehabilitation planning. In 

Table 3, we report the sensitivity of findings at “Breaks” in the discrete case to findings at other nodes for the grow-shrink 

algorithm.  This table corresponds to the networks and joint probability distributions shown graphically in Figures 3 and 

4.  In Table 4, the sensitivity of findings at “Breaks” is reported for the rsmax2 algorithm.  To perform the sensitivity 

analysis in Netica, the data have been discretized via the following approach.  First, the data are standardized.  In fact, 

because the learning algorithms seem quite sensitive to scaling, our learned BBN models have been obtained by 

implementing the learning algorithms on the standardized data.  Second, for nodes with large proportions of “ZERO” 

observations, a discrete state “ZERO” was created.  Next, the non-zero data were discretized by quartile, and discrete 

states for the four quartiles were created.  Tables 3 and 4 shows that except observing “Breaks” itself, modest gains in the 

resolution of uncertainty at “Breaks” may be obtained by resolving uncertainty in other variables.  The most important 

variables in the sensitivity analysis for the GS algorithm were the population serviced, average age of structures in the 

census tract, the average monthly minimum temperature, and several soil type categories (ML, ULC, silt_loam).  In the 
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rsmax2 algorithm, the variables that have the largest influence on pipe breaks were housing units per area, occupied 

houses per area, vacant houses per area, average maximum and minimum temperature, average age of structures in the 

census tract, daily precipitation, and the remaining temperature variables.  These results agree somewhat with prior pipe 

break models as several of these variables has been discussed in other statistical modelling investigations of pipe breaks.  

For example, average age of structures might be thought of as a proxy variable for pipe age; population served was 

included in the EPR investigation of Berardi et al. [11]; and average monthly minimum temperature was included in 

Yamijala et al. [3]. 

On the other hand, the modest information gains reflected in Table 3 illustrates the difficulty in learning BBNs 

network from our pipe breaks data.  The nature of the dataset may pose several challenges to any statistical learning 

algorithm.  First, our pipe breaks dataset is zero-inflated not only in the variable of interest, monthly pipe breaks within 

census tracts, but also in other variables within the knowledge base.  This characteristic may make dependence 

relationships among variables difficult to ascertain.  Second, because the pipe breaks dataset is zero-inflated, 

discretization of the dataset for the purpose of fitting a discrete BBN may bias the results.  While there has been some 

discussion of the role of discretization techniques for fitting discrete BBNs, these techniques are mathematically 

sophisticated and not widely employed in BBN software.  For example, one approach that may merit discussion in future 

work is the use of minimal description length (MDL) in the BBN structure learning algorithm [34].  While using the MDL 

could improve the performance of the BBN approach described in this paper with respect to the sensitivity of findings at 

“Breaks” to findings at other nodes, it is unclear how the quality of subsequent insights might be improved.  Third, while 

most pipe breaks modelling studies were performed on datasets with access to individual pipe locations with detailed 

pipe-level characteristics and breakage histories, we do not have access to such detailed data.  Consequently, our results 

may be affected by confounding attributable to unaccounted risk factors indicated in prior research, including breakage 

history and pipe materials.  This idea might be drawn from the BBN results we have presented: only four variables have 

any influence on the findings at the “Breaks” node when discretizing the nonzero data by quartiles, and each of these 

variables has been identified as an important risk factor (or proxy for an important risk factor) in previous research.  If our 

dataset was augmented with detailed pipe level characteristics, it is possible that the knowledge map represented by the 

BBN could indicate more causal paths inducing a higher sensitivity in the findings at the “Breaks” node.  Finally, our 

results indicate agreement with findings in the literature suggesting considerable model uncertainty in the study of 
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drinking water distribution system pipe breaks.  While the strongest example of the possibility that a family of models 

could obtain similar predictions is given by Berardi et al. [11], the inclusion of a “shared frailty” term in the Clark et al. 

[10] model also suggests that statistical learning algorithms that examine a family of comparable models may be useful.  

Although the results presented above suggest that our dataset has relationships between breaks and other variables that are 

not well-fit when conditioning only on the basis of the independence relationships in the data, alternative nonparametric 

modelling approaches may be appropriate for improving the accuracy of pipe break predictions. 

6. DISCUSSION 

The BBN approach seems to have some value for knowledge discovery in the overall knowledge base.  The BBN 

approach has the capability to produce a graphical map of the relationships among variables and risk factors in the 

knowledge base.  In addition, the BBN approach has the capacity to facilitate diagnostic (e.g., reasoning based on 

observations of Breaks’ children) and predictive (e.g., reasoning based on observations of Breaks’ parents) belief 

updating.  Such capability is nontrivial, especially since such reasoning can proceed with imperfect or incomplete data, 

conditional on the knowledge map having been constructed. 

Despite these potential advantages, our results indicate that BBNs currently do not seem to be the best tool for 

predicting pipe breaks in this dataset.  The research reported here shows that there remain some important obstacles and 

challenges to be addressed before BBNs might be used to learn both structure and parameters of a knowledge base from 

data.  On the basis of the results of this case study, there may be two specific obstacles worthy of attention: most learning 

algorithms assume multivariate normality or multinomiality when learning continuous BBNs; and, learning algorithms 

may be sensitive to the discretization of raw data for learning discrete BBNs. 

In this study, both continuous and discrete BBN models were attempted.  In the continuous case, as with many 

statistical learning approaches, the BBN model was sensitive to scaling.  In addition, the multivariate normal or 

multinomial assumption places too much rigidity on structure learning, since the constraint-based approaches 

implemented in bnlearn require computation of correlation coefficients. This assumption may not sufficiently differentiate 

BBNs in practice from such approaches as generalized linear models (GLMs), generalized additive models (GAMs), 

penalized (e.g., lasso and ridge) regression models, or principal components and partial least squares regression models.  

In fact, we argue that in the case that multivariate normality or multinomiality is crucial to implementation of the structure 

learning algorithm, BBN models learned from data are advantageous only when evidence propagation from disparate 
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parameter spaces in the joint probability distribution are of interest.  In other words, under strict multivariate normality 

local inference in the BBN is equivalent to the various regression approaches; while global inference in the BBN is 

equivalent to jointly interpreting the results of several regression models simultaneously. This latter insight is similar to 

causal chain modeling [35], an approach the authors have not seen used in application to pipe break models.  However, 

BBNs might be superior for integrating various pieces of evidence in real-time inference not necessarily germane to 

regression or classification models.  Perhaps the main consideration limiting the pragmatism of BBN modeling is the 

multivariate normality assumption for continuous data. 

In the discrete case, the most important consideration affecting the validity of model structure and interpretation 

may be the discretization of continuous data for use with discrete probabilistic models.  In some domains, discrete 

observations and variable states prevail, and may be natural knowledge bases for BBN deployment.  Otherwise, care 

should be taken to justify the discretization of each variable, as the discretization choices may significantly affect the 

results and interpretation of the resultant BBN model.  Alternatively, the copula Bayesian network (CBN) technique might 

be used to facilitate distribution-free inference via the BBN modelling approach [36-39].  This is the focus of ongoing 

research conducted by this study’s authors. 

Another important consideration for the construction and deployment of BBNs for infrastructure management 

purposes is the causal interpretation of the model.  While the model assumes that parents are directed towards children 

according to their causal relations, the equivalence class approach to structure building may obfuscate these relationships 

because an undirected link between a pair of variables may sometimes appear in the equivalence class for a DAG.  In 

other words, the models may be score-equivalent when either the link directed from parent to child or child to parent is 

included in the model.  As a result, the learned network may sometimes include directed arcs that do not have a 

mechanistic justification.  Moreover, some directed arcs might be learned from the data according to the independence 

structure encoded in the data, although these arcs may simply reflect correlations and not causal relationships.  If the 

causal interpretation of the model is paramount, construction of the BBN from expert knowledge may be the best 

approach. 

Finally, this modelling study demonstrates that construction of a BBN from data for the purpose of prediction is a 

complex and challenging task.  More flexibility may be required to construct models of either continuous data that do not 
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fit the multivariate normal assumption or hybrid continuous and discrete data that adhere to a mixture of underlying 

distributional assumptions.  More research into the generalization of BBNs to address these challenges is needed. 
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TABLES AND FIGURES 

Table 1.  Variables included in the pipe breaks dataset.  Census and demographic data from the US Census Bureau.  Soil Type 
and Land Cover Variable from the US Geological Survey. 

Census, Demographic, and Weather Variables Soil Type and Land Cover Variables 

tract: the census tract number water: 
Breaks: the number of breaks in the month-tract pair silt_loam: silt loam 
Month ULC: urban land complex 
Area: census tract area GL: gravelly loam 
pop: the population per area in each census tract CL: channery loam 
plus_18: the percent of the population above 18  ML: loam/mucky loam 
white: percent of the population that is white GSL: gravelly/sandy loam 
BLA: percent of the population that is black ROC: quarry gravel pits/rock outcrop 
AAN: percent of the population that is American Indian and 
Alaska Native percent 

SLS: sandy loam and loamy sand 

Asian: percent of the population that is Asian C: complex 
HIP: percent of the population that is Hawaiian or Pacific 
Islander 

TF: tidally flooded 

Other: percent of the population that is other races soils: sassafras and croom 
Multi: percent of the population that is multiple races Ubrthents: loamy fill 
Latino: percent of the population that is Hispanic or Latino 
of any race 

 

HUPA: housing units per area  
OPA: occupied houses per area  
OP: percent of total houses occupied  
VPA: vacant houses per area  
VP: percent of total houses vacant   
AA: average house age   
maxT: average max temperature for the month  
mint: average minimum temperature for the month  
daily_precip: total precipitation for the month divided by 
area 

 

greater_32: the percent of days the temperature is above 32F  
less_32: the percent of days that are below 32F  
straddle_32: the percent of days that straddle 32F  
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Table 2.  Negative Log-likelihood scores of models learned using indicated algorithms. Model likelihood estimated in Netica 
via the EM algorithm using the complete discretized dataset (N=3686). 

Score GS Rsmax2, GS 

Negative Log-
Likelihood 

16.38 20.70 

 

Table 3.  Sensitivity of findings at "Breaks" node to findings at other nodes using the mutual information criterion.  Results 
shown are for the grow-shrink constraint based method only.   

Node Mutual Information Percent Variance of Beliefs 

Breaks 0.82885 100 0.1498667 
pop 0.0818 9.87 0.0015869 
AA 0.01998 2.41 0.0002148 
ML 0.01855 2.24 0.0003578 
soils 0.00258 0.311 0.0000325 
maxT 0.00244 0.295 0.0003051 
minT 0.00244 0.295 0.0003051 
ULC 0.00223 0.269 0.0000266 
silt_loam 0.00198 0.239 0.000022 
plus_18 0.00097 0.118 0.0000077 
GSL 0.00091 0.11 0.0000081 
SLS 0.00058 0.0704 0.000006 
HIP 0.00026 0.0315 0.0000016 
Latino 0.00006 0.00688 0.0000005 
CL 0.00004 0.00512 0.0000006 
TF 0.00002 0.00268 0.0000002 
Other 0.00001 0.00122 0.0000001 
ROC 0.00001 0.000938 0.0000001 
GL 0.00001 0.000846 0 
Multi 0 0.000566 0 
C 0 5.41E-05 0 
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Table 4.  Sensitivity of findings at "Breaks" node to findings at other nodes using the mutual information criterion.  Results 
shown are for the rsmax2 hybrid method using tabu search and the grow-shrink constraint based method.   

Node Mutual Information Percent Variance of Beliefs 

Breaks 0.82495 100 0.1489128 
HUPA 0.07876 9.55 0.0015991 
OPA 0.06751 8.18 0.0010228 
VPA 0.04668 5.66 0.0006463 
maxT 0.02703 3.28 0.0040797 
minT 0.02451 2.97 0.0037078 
AA 0.01981 2.4 0.0002076 
straddle_32 0.01917 2.32 0.0029637 
less_32 0.01871 2.27 0.0028761 
daily_precip 0.0153 1.85 0.0023565 
greater_32 0.01344 1.63 0.0021125 
GSL 0.0004 0.0491 0.0000022 
ROC 0.00009 0.0109 0.0000005 
HIP 0.00007 0.00833 0.0000006 
VP 0.00001 0.000805 0 
GL 0 8.07E-05 0 
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Figure 1.  BBN learned from the grow-shrink (GS) algorithm.  The variable of interest, "Breaks," appears to 
separate two "causal basins" dealing with precipitation and temperature (right) and site-specific physical 
conditions (left). 
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Figure 2.  BBN learned by the rsmax2 algorithm with the grow-shrink constraint-based algorithm combined with 
tabu search.   
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Figure 3.  BBN learned using the gs algorithm with parameters learned in Netica using the Gradient Descent algorithm. 
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Figure 4.  BBN learned using the rsmax2 algorithm (score-learning using tabu search, constraint-based learning using grow-shrink algorithm) with parameters learned in Netica 
using the Gradient Descent algorithm. 
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