
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2010-6
April 25, 2010

Mathematical Programming Approaches for
Generating pEfficient Points

Miguel Lejeune
Department of Decision Sciences

The George Washington University

Nilay Noyan
Manufacturing Systems/Industrial Engineering Program

Sabanci University, Turkey

Mathematical Programming Approaches for Generating p-Efficient Points

Miguel Lejeune

Department of Decision Sciences, George Washington University, Washington, DC, 20052,

mlejeune@gwu.edu

Nilay Noyan

Manufacturing Systems/Industrial Engineering Program, Sabancı University, Tuzla, 34956 Istanbul, Turkey,

nnoyan@sabanciuniv.edu

April 25, 2010

Abstract: Probabilistically constrained problems, in which the random variables are finitely distributed, are non-

convex in general and hard to solve. The p-efficiency concept has been widely used to develop efficient methods to

solve such problems. Those methods require the generation of p-efficient points (pLEPs) and use an enumeration

scheme to identify pLEPs. In this paper, we consider a random vector characterized by a finite set of scenarios and

generate pLEPs by solving a mixed-integer programming (MIP) problem. We solve this computationally challenging

MIP problem with a new mathematical programming framework. It involves solving a series of increasingly tighter

outer approximations and employs, as algorithmic techniques, a bundle preprocessing method, strengthening valid

inequalities, and a fixing strategy. The method is exact (resp., heuristic) and ensures the generation of pLEPs (resp.,

quasi pLEPs) if the fixing strategy is not (resp., is) employed, and it can be used to generate multiple pLEPs. To

the best of our knowledge, generating a set of pLEPs using an optimization-based approach and developing effective

methods for the application of the p-efficiency concept to the random variables described by a finite set of scenarios

are novel. We present extensive numerical results that highlight the computational efficiency and effectiveness of the

overall framework and of each of the specific algorithmic techniques.

Keywords: Stochastic programming; probabilistic constraints; p-efficiency; outer approximation; valid inequalities

Introduction This study is devoted to the concept of p-efficiency (Prékopa, 1990) and proposes a new

mathematical programming approach to generate p-efficient points.

Definition 0.1 Let p ∈ [0, 1]. A point v ∈ R
n is called a p-efficient point of the probability distribution

function F , if F (v) ≥ p and there is no y ≤ v,y 6= v such that F (y) ≥ p.

Along with mixed-integer programming (MIP) approaches (Kücükyavuz, 2009; Luedtke et al., 2010;

Ruszczyński, 2002), robust optimization and approximation (Calafiore and Campi, 2005; Nemirovski and

Shapiro, 2006), the concept of p-efficiency has been successfully and extensively used to solve probabilistically

constrained stochastic programming problems (Charnes et al., 1958; Prékopa, 1970, 1973), in which the

random vector has a multivariate discrete probability distribution (Dentcheva et al., 2001, 2002; Prékopa,

1990; Sen, 1992). The generic formulation of such problems reads:

min g(x) (1)

subject to Ax ≥ b (2)

P (hi(x) ≥ ξi, i = 1, . . . , n) ≥ p (3)

x ∈ R
m1 × Z

m2 , (4)

1

mailto:mlejeune@gwu.edu
mailto:mlejeune@gwu.edu
mailto:nnoyan@sabanciuniv.edu
mailto:nnoyan@sabanciuniv.edu

2 Lejeune and Noyan: Generating p-Efficient Points

where x is the m-dimensional vector of m1 continuous (R) and m2 integer (Z) decision variables, g(x) :

R
m1 × Z

m2 → R, hi(x) : R
m1 × Z

m2 → R, i = 1, . . . , n, and ξ is a n-dimensional random vector having

a multivariate probability distribution. The set of deterministic constraints is represented by (2) with

A ∈ R
t×m and b ∈ R

t, while (3) is a joint probabilistic (chance) constraint that imposes that the n inequalities

hi(x) ≥ ξi (i = 1, . . . , n) hold jointly with a large probability at least equal to p. The formulation (3) allows

us to model dependencies between random variables and it does not assume any restrictions on the type

of dependencies between components ξi of the random vector ξ. Probabilistic problems with discretely

distributed random variables are non-convex in general. They have been receiving significant attention over

the last few years (Kress et al., 2007; Kücükyavuz, 2009, Lejeune, 2008, 2009; Lejeune and Ruszczyński,

2007; Luedtke et al., 2010; Saxena et al., 2010), and have been applied in a variety of fields (see Dentcheva,

2006 and Prékopa, 1995, 2003 for a review and a comprehensive list of references).

Existing solution methods for problem (1)-(4) based on the concept of p-efficiency involve an enumerative

phase (Avital, 2005; Beraldi and Ruszczyński, 2002; Lejeune, 2008; Prékopa, 2003; Prékopa et al., 1998)

for generating the pLEPs, which are then used to derive a deterministic equivalent reformulation. Pre-

processing methods have been proposed to alleviate the enumeration of candidate points (Lejeune, 2008).

Cone (Dentcheva et al., 2001), primal-dual (Dentcheva et al., 2004), and column generation (Lejeune and

Ruszczyński, 2007) algorithms have been successfully employed and a convexification method (Dentcheva et

al., 2001) has been proposed to obtain a tight relaxation of problem (1)-(4).

This study contributes to the literature in the following ways: (i) the p-efficiency concept is applied to a

random vector whose possible values are discretized with a finite set of scenarios. Other applications of the

p-efficiency concepts are generally proposed for random variables following a discrete probability distribution

which has finite support; (ii) an exact mathematical programming method is proposed to generate pLEPs;

(iii) a mathematical programming-based heuristic is developed for generating “quasi pLEPs”. The term

“quasi pLEP” refers to a point that is very close to being a pLEP, i.e., that enforces requirements that are

marginally more demanding than those defined by a pLEP; (iv) a new preprocessing method is introduced to

reduce the number of scenarios and so to reduce the complexity of the proposed mathematical programming

formulations.

This paper is related to a recent study of Kress et al. (2007) who consider a specific variant

min
m
∑

j=1

xj (5)

P (xi ≥ ξi, i = 1, . . . , m) ≥ p (6)

x ∈ Z
m
+ , (7)

of (1)-(4), in which there is no deterministic constraint besides the non-negativity and integrality restrictions

(7), and the coefficients associated with the decision variables x in the objective function (5) and in the

probabilistic constraint (6) are all equal to 1. Kress et al. reformulate this problem as an NP-hard, minmax

multidimensional knapsack problem (MKP), and propose an enumerative algorithm to solve it. It can be

seen that the optimal solution x∗ of problem (5)-(7) defines a pLEP of the probability distribution function

of the random vector ξ, when ξ has integer-valued components.

Lejeune and Noyan: Generating p-Efficient Points 3

Some of the key features that differentiate the present study from Kress et al. (2007) are that (i) we propose

a new formulation and a new mathematical programming based framework (instead of an enumerative one)

for generating exact and quasi pLEPs. Both the formulation and the solution approach are applicable to the

general probabilistically constrained optimization problem (1)-(4); (ii) our approach can be used to generate

one as well as a series of pLEPs. The rationale for deriving a new solution framework comes from the

observation of Kress et al. that their enumerative algorithm is outperformed by the state-of-the-art MIP

solver CPLEX for problems of moderate to large size. The key feature of the proposed solution framework

is that it is based on an outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)

algorithm, which is enhanced by a new family of valid inequalities, a fixing strategy, and a new preprocessing

method that groups possible realizations of the random vector in bundles defining identical requirements. The

proposed methods constitute an efficient alternative to the sometimes computationally intensive enumerative

methods for generating pLEPs, the cardinality of which is finite yet unknown. An extended computational

study analyzes the contribution of three specific algorithmic techniques (bundle preprocessing, strengthening

valid inequalities and fixing strategy) integrated within the outer approximation method, and investigates

the efficiency and effectiveness of the proposed heuristic algorithm. The computational results show that the

heuristic approach allows the generation of quasi pLEPs in very short CPU times with significantly small

optimality gaps, even when the number of scenarios used to describe the random variables is large.

The paper is organized as follows. Section 1 defines the optimization model to generate a single p-

efficient point. Section 2 introduces a preprocessing method that reduces the complexity of the described

mathematical programming formulation. Section 3 is devoted to the outer approximation solution framework.

Section 4 describes the iterative procedure to generate a series of p-efficient points. Section 5 presents the

computational results, while concluding remarks are given in Section 6.

1. Mathematical Programming Problem for Generating a Single pLEP We denote by S the

finite set of scenarios characterizing the probability distribution of the random vector ξ = (ξ1, . . . , ξn)T .

Let ds
i denote the realization of the random variable ξi under scenario s, i = 1, . . . , n, s ∈ S, i.e., ds =

(ds
1, . . . , d

s
n)T is the n-dimensional deterministic vector representing the joint realizations of the components

ξi, i = 1, . . . , n, under scenario s. The probabilities associated with scenarios are denoted by πs, s ∈ S,

where πs = P(ξ = ds) > 0 and
∑

s∈S

πs = 1. Without loss of generality, we assume that ds is non-negative for

all s ∈ S.

We consider the following formulation to generate a single pLEP of the probability distribution of the

random vector ξ represented by deterministic vectors ds, s ∈ S:

min

n
∑

i=1

vi (8)

subject to vi ≥ ds
i δs, i = 1, . . . , n, s ∈ S (9)

∑

s∈S

πsδs ≥ p (10)

δ ∈ {0, 1}|S| (11)

v ∈ R
n
+, (12)

4 Lejeune and Noyan: Generating p-Efficient Points

where v represents a n-dimensional vector of decision variables, δs is a binary variable that can take value

1 if all constraints vi ≥ ds
i , i = 1, . . . , n, hold and that takes value 0 otherwise. Constraints (9) and (10)

require that v satisfies the requirements of a set of scenarios whose aggregate probability is at least equal to

the enforced probability level p.

As in Kress et al. (2007) we refer to the above problem as MKP (minmax multidimensional knapsack

problem). Let us denote by (v∗, δ∗) an optimal solution of MKP and by S∗ = {s ∈ S : δ∗s = 1} ⊂ S the

corresponding optimal set of “selected” scenarios. It is easy to see that v∗
i = max

s∈S∗

ds
i , i = 1, . . . , n, hold true.

Thus, the objective function (8) of MKP minimizes the sum of the componentwise maximum of ds vectors

for which the corresponding scenarios are included in S∗.

Proposition 1.1 The optimal solution (v∗, δ∗) of MKP defines a p-efficient point v∗.

Proof. First, constraints (9) and (10) ensure that P(v∗ ≥ ξ) ≥ p. Second, the optimality of v∗ =

(v∗1 , . . . , v∗n)T implies that for any point v′ = (v∗1 − α1, . . . , v
∗
n − αn)T with αi ∈ {0, 1}n and

n
∑

i=1

αi = 1,

P(v′ ≥ ξ) < p holds true. Obviously, the same argument applies for any point v′ for which the components

of α can take any positive integer value. Thus, there does not exist any point v′ ≤ v∗ such that P(v′ ≥ ξ) ≥ p,

and by Definition 0.1 v∗ is p-efficient. �

MKP is an NP-hard, mixed-integer programming problem. Kress et al. (2007) solve this problem using

an enumerative algorithm (EA) for problem instances where 40, 60 or 100 scenarios are used to describe

the joint realizations of the random variables. Kress et al. report that their EA algorithm outperforms the

branch-and bound (B&B) algorithm of CPLEX when n ≤ 15 |S| ≤ 100, but that the B&B approach is up

to 10 times faster than the EA algorithm for |S| = n = 50. The motivation for our study comes from the

observations that the CPLEX MIP solver outperforms the EA proposed in Kress et al. (2007), and that it

is hard to solve MKP for large problem instances using a standard MIP solver such as CPLEX.

2. Preprocessing The difficulty of solving MKP increases with the dimension of the random vector

and, in particular, with the number of scenarios used to represent the random vector. In this section, we

present a new preprocessing method that can be used to reduce the number of scenarios to which attention

must be paid. The idea is to construct bundles of scenarios, such that all the scenarios included in a bundle

define similar requirements. A preprocessing technique based on the quantile of the marginal probability

distribution associated with each component ξi of the random vector was previously used in Lejeune (2008).

Definition 2.1 The first quantile function F
(−1)
X : (0, 1] → R corresponding to a random variable X is

the left-continuous inverse of the cumulative distribution function FX :

F
(−1)
X (p) = inf{η ∈ R : FX(η) ≥ p}.

Proposition 2.1 A necessary, although not sufficient, condition for v to be p-efficient is that the set of n

inequalities

vi ≥ F
(−1)
ξi

(p), i = 1, . . . , n, (13)

hold, with F
(−1)
ξi

(p) denoting the p−quantile of the marginal probability distribution function of ξi.

Lejeune and Noyan: Generating p-Efficient Points 5

The proof is straightforward and is given in Dentcheva (2001) and Lejeune (2008). While the quantile-based

cuts (13) are implicitly taken into account in Luedtke et al. (2010) to obtain a strengthened formulation to

solve problem (1)-(4), these cuts are used in Lejeune (2008) for developing a preprocessing method, which

discards the scenarios that are not relevant to the attainment of the prescribed probability level p. The

quantile-based preprocessing of scenarios is based on Corollary 2.1.

Corollary 2.1 Any scenario s with ds
i ≤ F

(−1)
ξi

(p), i = 1, . . . , n, is such that all its requirements are

always satisfied by any point v for which P(v ≥ ξi, i = 1, . . . , n) ≥ p holds true.

The proposed preprocessing method, called bundle preprocessing is an extension of the quantile-based

preprocessing approach. The reader interested in the aggregation of scenarios into bundles in multi-stage

stochastic programming is referred to Rockafellar and Wets (1991).

2.1 Bundle Preprocessing The satisfaction of the requirements imposed by scenario s requires that

all inequalities vi ≥ ds
i , i = 1, . . . , n, hold. Also, it follows from Proposition 2.1 that any inequality vi ≥ ds

i

such that ds
i ≤ F

(−1)
ξi

(p) is redundant for the derivation of a pLEP. This observation inspired us to represent

a scenario s by its actual requirement path
[

d̄s
1, . . . , d̄

s
i , . . . , d̄

s
n

]

, which is defined as follows:

d̄s
i =







F
(−1)
ξi

(p) if ds
i ≤ F

(−1)
ξi

(p)

ds
i otherwise

, i = 1, . . . , n, s ∈ S.

Using the requirement path, we create bundles which are clusters of scenarios that have the same require-

ment path. We consider one representative scenario s for each bundle and compute the aggregate bundle

probability π′
s as the sum of the probabilities of all scenarios included in bundle s. Note that all the

scenarios, which would be excluded using Corollary 2.1, are grouped in one bundle whose requirement

path is
[

F−1
ξi

(p), . . . , F−1
ξn

(p)
]

and that, by construction, no bundle has less demanding requirements than
[

F−1
ξi

(p), . . . , F−1
ξn

(p)
]

. Thus, the proposed bundle approach ensures the satisfaction of the conditions defined

by the marginal distribution of each component ξi and makes the quantile-based cuts redundant.

Denoting the set of bundles by S1 and introducing the binary variables γs, s ∈ S1, which are the comple-

ments of δs (γs = 1 − δs), we obtain the strengthened formulation of MKP:

min

n
∑

i=1

vi

subject to vi ≥ d̄s
i (1 − γs), i = 1, . . . , n, s ∈ S1 (14)

∑

s∈S1

π′
sγs ≤ 1 − p (15)

γ ∈ {0, 1}|S1| (16)

v ∈ R
n
+. (17)

The above problem is thereafter referred to as SMKP. The formulation of SMKP in terms of the γs

variables (instead of their complements δs as in Kress et al. (2007)) makes the proposed outer approximation

algorithm computationally more efficient, as it will be explained in Section 3. Since S1 ⊆ S and, in some

cases, the cardinality of S1 is significantly smaller than that of S, the computational benefits of the bundle

6 Lejeune and Noyan: Generating p-Efficient Points

preprocessing method can be very significant. Numerical results supporting this claim are presented in

Section 5.2.1.

3. An Outer Approximation Solution Framework In this section, we develop (exact and heuristic)

mathematical programming methods to solve SMKP. These methods are based on the iterative generation

of outer approximation problems obtained by relaxing the integrality restrictions on a subset of the binary

variables γs, s ∈ S1. The notation OAt denotes the outer approximation problem solved at iteration t.

We shall first describe the initialization phase which involves the solution of the continuous relaxation of

SMKP, the generation of an optimality cut, and its up-front introduction in the formulation of SMKP. Next,

we detail the sequential generation of increasingly tighter outer approximations. It rests on the following

steps: (i) definition of the subset of binary variables for which the integrality restrictions are relaxed; (ii)

generation of valid inequalities that strengthen the incumbent outer approximation; (iii) verification of the

stopping criterion. In addition to the above steps, we can also employ a fixing strategy. Finally, we provide

the pseudo-code of the outer approximation approach, which converges in a finite number of iterations. We

show that the proposed solution framework is exact if the fixing strategy is not used.

3.1 Initialization The initial outer approximation problem OA0 is the continuous relaxation of SMKP.

We use its optimal solution (v∗(0), γ∗(0)) to initiate the sequence of outer approximations. If all the variables

γs, s ∈ S1, have an integer value in the optimal solution of OA0, then (v∗(0), γ∗(0)) is also optimal for SMKP

and we stop. Otherwise, we use the optimal solution of OA0 to derive an optimality cut, i.e., an upper bound

on the optimal objective function value of SMKP.

The derivation of the optimality cut is based on the following steps. We sort the scenarios in S1 and

the associated scenario probabilities in decreasing order of the optimal values γ∗(0) of the γ variables. The

ordered vector of probabilities is denoted by π̃′. We construct a set V comprising the l scenarios with the

largest γ∗(0) values such that
l

∑

s=1
π̃′

s ≤ 1−p and
l+1
∑

s=1
π̃′

s > 1−p and set (temporarily) the γ variables associated

with the scenarios in V to 1, whereas we set the rest of γ variables to 0. It is easy to see that such a γ vector

is feasible for SMKP and that the solution of SMKP under this strategy provides us with an upper bound

θ̄ on the optimal objective function value. Thus, the following optimality cut
n

∑

i=1

vi ≤ θ̄

is valid. It is easy to see that θ̄ simply equals to
n
∑

i=1

max
s∈S1\V

d̄s
i .

The successive outer approximation problems are constructed by partitioning, at iteration t, the set S1

into two subsets T
(t)
0 and T

(t)
1 : T

(t)
0 includes the scenarios for which the integrality restrictions on the

binary variables are relaxed, while T
(t)
1 includes the remaining scenarios. The partitioning is carried out by

assigning scenario s to subset T
(t)
0 (resp., T

(t)
1) if the corresponding variable γs is expected to be 0 (resp.,

1) in the optimal solution and the cardinality of these subsets are based on a parameter, denoted by Q. In

the initialization phase (t = 0), the value of Q is computed as follows. We determine the set of smallest

cardinality such that the sum of the probabilities of the scenarios included in S1 is strictly larger than 1− p.

This comes up to finding the minimum possible cardinality of a minimal cover set (Hammer et al., 1975) for

the knapsack constraint (15). Suppose that we sort the probabilities of all the scenarios in S1 in descending

Lejeune and Noyan: Generating p-Efficient Points 7

order and this ordered vector of probabilities are denoted by π̃′′. Let

Q̂ = min

{

k :

k
∑

i=1

π̃′′
k > 1 − p, k ∈ {1 . . . |S1|}

}

− 1, (18)

where (Q̂ + 1) is the smallest possible cardinality of a minimal cover, and set Q = Q̂. If all the scenarios

in S are equally likely, we have Q̂ = ⌊(1 − p)|S|⌋. Note that when there are large probabilities π̃′′
k , Q̂ takes

a very small value and the iterative process would require many iterations to find the optimal solution (as

explained in the following section). In such situations, one shall set the value of Q based on the number of

scenarios. For example, in our computational study we define the parameter Q as follows:

Q = max
(

min
(

Q̂, ⌊0.15|S|⌋
)

, ⌊0.05|S|⌋
)

. (19)

As we demonstrate in Section 5.2.3, the way we set the values of Q permits our iterative process to terminate

after a very limited number of iterations.

3.2 Iterative Process In this section, we describe the main steps that are executed at each iteration

of the proposed algorithm. We explain how the outer approximations are constructed. We derive a family

of valid inequalities to strengthen the outer approximation formulations and present the stopping criterion.

We also propose a fixing strategy that is used within a heuristic solution approach.

3.2.1 Outer Approximation In order to solve the SMKP, we derive a series of outer approximation

problems in which the integrality restrictions are relaxed on a subset of binary variables. The selection

of binary variables on which integrality restrictions are initially relaxed and then progressively restored is

executed in a way that leads to a fast convergence of the procedure. The underlying idea is that solving a

limited number of simpler outer approximation problems would be faster than solving the SMKP formulation.

Let T
(t)
0 (resp., T

(t)
1) denote the set of scenarios for which the integrality restrictions on the associated

binary variables are relaxed (resp., imposed) at iteration t. The parameter Q̄ = min(|T
(t−1)
0 |, Q) is used to

construct the new outer approximation OA(t) of SMKP. More precisely, Q̄ scenarios are selected according

to one of the two criteria presented in the next paragraph to build the sets T
(t)
0 and T

(t)
1 (T

(t)
0 ⊆ T

(t−1)
0 ⊆ S1,

T
(t)
1 ⊇ T

(t−1)
1 and T

(t)
1 = S1\T

(t)
0). At each iteration t, Q̄ elements of T

(t−1)
0 are transferred to T

(t)
1 , implying

that the cardinality of T
(t)
0 (resp., T

(t)
1) decreases (resp., increases) by Q̄ as t increases. One may modify the

proposed algorithm so that the value of Q̄ changes at each iteration.

The first selection criterion, referred to as “Criterion 1”, is based on the values of the γ variables in the

optimal solution of OA(t−1). The Q̄ scenarios with the largest γs, s ∈ T
(t−1)
0 , values are removed from T

(t−1)
0

and added to T
(t−1)
1 to obtain T

(t)
1 . The second criterion, referred to as “Criterion 2”, is based on a random

selection; Q̄ scenarios with the smallest indices are included in T
(t)
1 .

Let A(t) denote the set of scenarios selected to be included in set T
(t)
1 (t ≥ 1). The sets T

(t)
0 and T

(t)
1 are

constructed as follows:

T
(t)
1 = T

(t−1)
1 ∪ A(t)

T
(t)
0 = T

(t−1)
0 \ A(t)

, (20)

with T
(0)
0 = S1 and T

(0)
1 = ∅. The initial sets T

(1)
0 and T

(1)
1 are derived from the optimal solution (v∗(0), γ∗(0))

of the continuous relation of SMKP. For example, using Criterion 1, we sort γ
∗(0)
s , s ∈ S1, and include in

8 Lejeune and Noyan: Generating p-Efficient Points

A(1) the scenarios whose corresponding variables γ
∗(0)
s have the Q̄ largest values in the optimal solution of

the continuous relaxation. Then, T
(1)
1 = A(1) and T

(1)
0 = S1 \ T

(1)
1 .

The outer approximation problem OA(t) is obtained by removing the integrality restrictions on γ variables

corresponding to the scenarios in T
(t)
0 , and by replacing constraints (15) and (16) in SMKP by constraints

(23), (24), (26)-(28). Setting u0 = min
s∈T

(t)
0

π′
s, the formulation of OA(t) reads:

min

n
∑

i=1

vi (21)

subject to vi ≥ d̄s
i (1 − γs), i = 1, . . . , n, s ∈ S1 (22)

∑

s∈T
(t)
0

π′
sγs ≤ w(1 − p) (23)

u0w +
∑

s∈T
(t)
1

π′
sγs ≤ 1 − p (24)

n
∑

i=1

vi ≤ θ̄ (25)

0 ≤ γs ≤ 1, s ∈ T
(t)
0 (26)

γs ∈ {0, 1}, s ∈ T
(t)
1 (27)

w ∈ {0, 1} (28)

v ∈ R
n
+ . (29)

Notice that, since the enforced probability level p is at least equal to 0.5, and generally is close to 1,

the cardinality of |T
(t)
0 | is in general strictly larger than that of |T

(t)
1 |. Thus, Problem (21)-(29) contains a

significantly lower number (|T
(t)
1 |) of binary decision variables than does SMKP and so is easier to solve.

The difference of cardinality between |T
(t)
0 | and |T

(t)
1 | is a monotone increasing function of the prescribed p

value and of the original number of scenarios.

Proposition 3.1 Problem (21)-(29) is an outer approximation of SMKP.

Proof. We have to show that any feasible solution of SMKP is feasible for problem (21)-(29). This

implies the following relation between the feasible sets

Z = {γs : (15), (16)} ⊆ Z ′ = {γs : (23), (24), (26), (27), (28)} .

Consider a subset of scenarios V ⊆ S1 such that
∑

s∈V

π′
s ≤ 1 − p and obtain a feasible solution of SMKP

by setting γs = 1, s ∈ V, and γs = 0, s ∈ S1 \ V . We refer to this solution as γV and it is easy to see that

γV ∈ Z. To prove the claim we show that γV also belongs to Z ′.

Indeed, if V
⋂

T
(t)
0 = ∅, then w can take value 0 in (23), constraint (24) reads

∑

s∈T
(t)
1

π′
sγ

V
s ≤ 1 − p and by

(15) we have γV ∈ Z ′. If V
⋂

T
(t)
0 6= ∅, then w = 1 by (23). Since S1 = T

(t)
0

⋃

T
(t)
1 and γV satisfies (15), we

have
∑

s∈S1

π′
sγ

V
s =

∑

s∈(T
(t)
0

⋃

T
(t)
1)

⋂

V

π′
s =

∑

s∈T
(t)
0

⋂

V

π′
s +

∑

s∈T
(t)
1

⋂

V

π′
s ≤ 1 − p. (30)

Lejeune and Noyan: Generating p-Efficient Points 9

Since min
s∈T

(t)
0

π′
s ≤

∑

s∈T
(t)
0

⋂

V

π′
s, the following inequality is evidently always true

min
s∈T

(t)
0

π′
s +

∑

s∈T
(t)
1

⋂

V

π′
s ≤

∑

s∈T
(t)
0

⋂

V

π′
s +

∑

s∈T
(t)
1

⋂

V

π′
s. (31)

Then, by (30) and (31) the solution γV satisfies (24) and the assertion trivially follows. �

3.2.2 Strengthening Valid Inequalities In this section, we derive a family of valid inequalities that

strengthen the successive outer approximation formulations. This contributes to reducing the number of

iterations and to improving the computational efficiency of the proposed algorithms. The motivation for the

proposed family of valid inequalities rests on the following observation. If one of the γs, s ∈ T
(t)
0 , variables

does not take value 0 in the optimal solution of OA(t), then (23) forces w to be equal to 1. This allows any

number of the other γs, s ∈ T
(t)
0 , variables to take a non-zero value without impacting the optimal value

of OA(t). Preliminary computational results show that many of the variables γs, s ∈ T
(t)
0 , take a non-zero

value in the optimal solution of OA(t), whereas they could be equal to 0. In order to circumvent the above

issue, we strengthen the formulation of OA(t) by introducing the set of valid inequalities defined in the next

proposition. These valid inequalities are also useful in improving the computational performance of the fixing

strategy, which will be discussed in the next section.

Proposition 3.2 The following set of inequalities

vi + ηs ≥ d̄s
i , i = 1, . . . , n, s ∈ T

(t)
0 (32)

ηs ≤ γs(max
i=1,...,n

{d̄s
i − F

(−1)
ξi

(p)}), s ∈ T
(t)
0 (33)

γs ≤ ηs, s ∈ T
(t)
0 (34)

ηs ≥ 0, s ∈ T
(t)
0 (35)

is valid for SMKP (and for OA(t)) and strengthens the formulation of OA(t).

Proof. First, observe that the bundle preprocessing guarantees that d̄s
i ≥ F

(−1)
ξi

(p) for all i =

1, . . . , n, s ∈ S, and there always exists a vector η satisfying the above inequalities. If there is no shortfall

(i.e., vi ≥ d̄s
i , i = 1, . . . , n) for scenario s, it is easy to see that γs = 0 is a feasible solution. If there is a

shortfall (i.e., vi < d̄s
i for at least one i ∈ 1, . . . , n) for scenario s, then (32) forces ηs to be at least equal to

the maximum (i ∈ 1, . . . , n) shortfall amount (d̄s
i − vi), while (33) ensures that γs takes a strictly positive

value, at most equal to 1. It follows that the set of inequalities (32)-(35) do not cut any integer solution

feasible for SMKP (and for OA(t)).

According to (26), in the optimal solution of OAt, any variable γs can take a strictly positive value even

if there is no shortfall for scenario s. When there is a shortfall for scenario s, i.e., ηs > 0, (32) and (33)

guarantees γs to be at least equal to max
i=1,...,n

{ d̄s
i−vi

d̄s
i
−F

(−1)
ξi

(p)
: d̄s

i −F
(−1)
ξi

(p) > 0}, while the formulation of OA(t)

enforces γs to be equal to max
i=1,...,n

d̄s
i−vi

d̄s
i

. Since max
i=1,...,n

d̄s
i−vi

d̄s
i

≤ max
i=1,...,n

{ d̄s
i−vi

d̄s
i
−F

(−1)
ξi

(p)
: d̄s

i − F
(−1)
ξi

(p) > 0} ≤ 1,

we have strengthening inequalities. In this case, there exists an index i such that d̄s
i − F

(−1)
ξi

(p) > 0 for

scenario s, otherwise, ηs=0 by (33). �

10 Lejeune and Noyan: Generating p-Efficient Points

In the computational study described in Section 5, the valid inequalities (32)-(35) are introduced in the

formulation of OA(t). The computational results show that these valid inequalities contribute to forcing the

variables γs, s ∈ T
(t)
0 to take value 0 whenever it is possible.

Observation 1 After adding the valid inequalities (32)-(35), it is easy to see that the constraints vi ≥

d̄s
i (1 − γs), i = 1, . . . , n, s ∈ T

(t)
0 , become redundant. Therefore, constraint (22) can be replaced by

vi ≥ d̄s
i (1 − γs), i = 1, . . . , n, s ∈ T

(t)
1 , (36)

which leads to a reduction in the number of constraints by n · |T
(t)
0 |.

3.2.3 Stopping Criterion The stopping criterion of the algorithm is defined with respect to the value

taken by w in the optimal solution of OA(t). Let (v∗, γ∗,w∗) be the optimal solution of OA(t).

Proposition 3.3 If w∗ = 0, then the optimal solution of OA(t) is also optimal for SMKP.

Proof. Consider that the optimal solution (v∗, γ∗,w∗) of OA(t) is such that w∗ = 0. This implies that

γ∗
s = 0 for all s ∈ T

(t)
0 and

∑

s∈T
(t)
1

π′
sγs ≤ 1− p. Since γ∗

s = 0 for all s ∈ T
(t)
0 and T

(t)
0 ∪T

(t)
1 = S1, the solution

(v∗, γ∗, 0) satisfies (15) and it also satisfies (16) by (27). Then, it is easy to see that (v∗, γ∗) is feasible

for SMKP. This argument, combined with Proposition 3.1 establishing that problem (21)-(29) is an outer

approximation of SMKP, completes the proof. �

We note that Proposition 3.3 remains true when we add the valid inequalities (32)-(35) to the formulation

of OA(t) and replace (22) in OA(t) by (36). As discussed above, when w∗ = 0, we have γ∗
s = 0 for all

s ∈ T
(t)
0 . Then, (33) implies that ηs = 0 for all s ∈ T

(t)
0 and vi ≥ d̄s

i , i = 1, . . . , n, s ∈ T
(t)
0 . This observation

combined with the satisfaction of (36) implies that (v∗, γ∗) satisfies (14).

In summary, we continue updating the compositions of the sets T
(t+1)
0 and T

(t+1)
1 for the (t + 1)th outer

approximation and solving the outer approximation problems until w∗ = 0.

3.2.4 Fixing Strategy The fixing strategy relies on the postulate that the values of the γ variables

in the optimal solution of the outer approximation problem are very informative to find the optimal set of

scenarios S∗ = {s ∈ S1 : γ∗
s = 0}. Preliminary tests support this idea. Recall that scenario s belongs to the

set S∗ if its requirements vi ≥ d̄s
i , s ∈ S1, are satisfied in the optimal solution (v∗, γ∗) of SMKP. We identify

the scenarios in set T
(t−1)
0 whose associated γ variables are equal to 0 in the optimal solution of the outer

approximation and fix those γ variables to 0. The main idea here if γs = 0 in the optimal solution of OA(t),

it is expected that γs = 0 at some solution that is close to the optimal solution of SMKP. However, for the

described greedy approach we can not guarantee to find an optimal solution.

The fixing strategy reduces very significantly the number of decision variables included in the successive

approximation problems and makes the solution method heuristic. There is no guarantee that binary vari-

ables with value 0 in the optimal solution of an outer approximation problem will necessarily be equal to 0 in

the optimal solution of SMKP. The best solution found by using the fixing strategy is thus sub-optimal for

SMKP. This explains why the solution obtained by the fixing heuristic method defines a quasi pLEP. The

proximity (“closeness”) of a quasi pLEP to a pLEP is measured by the optimality gap of the quasi pLEP

Lejeune and Noyan: Generating p-Efficient Points 11

with respect to the pLEP (optimal solution). Since the objective function is the sum of the components,

the optimality gap is calculated by the sum of the components of the quasi pLEP and the pLEP. When

the heuristic method finds a quasi pLEP with a small optimality gap value, this solution can be viewed as

a point that is very close to qualifying as a pLEP. Such quasi pLEPs impose marginally more demanding

requirements that those defined by pLEPs and can be used to derive a tight inner approximation of problem

(1)-(4).

We introduce the following notations. Let us denote by T (t) (resp., T
(t)
F) the set of scenarios whose binary

variables are not fixed (resp., are fixed to 0) by the end of iteration t. Clearly, T
(t)
F is the complement of T (t)

with respect to the set S1. Let D(t) denote the set of scenarios for which the corresponding γ variables are

fixed to 0 at iteration t. We set D(t) =
{

s : γ∗
s = 0, s ∈ T

(t−1)
0

}

and then for t ≥ 2 we have

T
(t)
F = T

(t−1)
F

⋃

Dt,

T (t) = S1 \ T
(t)
F

(37)

with T
(1)
F = ∅. The following constraint can be incorporated into to the final proposed formulation at

iteration t in order to represent the fixations described above:

vi ≥ max
s∈T

(t)
F

d̄s
i . (38)

The proposed fixing strategy fixes the variables γs, s ∈ T
(t)
0 , to 0 when they take value 0 in the optimal

solution of OA(t). Hence, it is critical to set the variables γs, s ∈ T
(t)
0 , equal to 0 whenever possible in

order to benefit from the fixing strategy in improving the computational performance of the heuristic. The

strengthening valid inequalities help us to deal with the above issue and further reduce the number of decision

variables included in the outer approximation problems. The numerical results presented in Section 5.2.3

show the efficiency and effectiveness of the heuristic algorithm.

3.3 Pseudo-Code This section presents the pseudo-code of the algorithmic framework proposed to

solve SMKP. When the fixing strategy is not employed, the method is exact and the solution it provides, if

proven optimal, defines a pLEP. If we implement the fixing strategy, the method is a heuristic. The heuristic

algorithm is designed to find a feasible solution which has a small optimality gap, and defines a quasi pLEP

(which may be a pLEP).

Since the number of γ variables is finite, it is easy to see that the proposed algorithms stop within finitely

many iterations. When the fixing strategy is not employed (Step 12 is skipped), the algorithm finds an

optimal solution for SMKP. The exactness of the algorithm easily follows from Propositions 3.1, 3.2 and 3.3.

4. Iterative Generation of a Set of p-Efficient Points The satisfaction of all (n) requirements

imposed by any pLEP ϑ guarantees to attain the prescribed probability level p: (v ≥ ϑ) implies that

P (ξ ≤ v) ≥ p. However, the cost triggered by satisfying the requirements imposed by different pLEPs can

fluctuate very much. An industrial supply chain management problem described in Lejeune and Ruszczyński

(2007) illustrates the differences in the costs associated with the multiple p-efficient points. This observation

motivates our iterative solution approach that allows for the elicitation of all or a subset of p-efficient points.

In the proposed iterative approach, the first pLEP is generated by solving SMKP. The other pLEPs are

12 Lejeune and Noyan: Generating p-Efficient Points

Algorithm 1 Algorithms for SMKP (to generate a single pLEP).

1: (Bundle Preprocessing) Employ the bundle preprocessing method; find set S1 and the probability vector

π′.

2: Solve the LP relaxation of SMKP to obtain the optimal solution (γ∗(0),v∗(0)).

3: if all γ variables are integral then

4: Stop

5: else

6: Initialize the iterative process and set t = 1. Let T
(1)
F = ∅.

7: Obtain initial sets T
(1)
0 and T

(1)
1 , which form a partition of S1:

Calculate the parameter Q using (18) and (19) (or using a similar approach) and then set Q̄ = Q.

Using a selection criterion (Criterion 1 or Criterion 2) define T
(1)
1 as the set of Q̄ scenarios from S1

and T
(1)
0 = S1 \ T

(1)
1 .

8: Find the upper bound on the objective function value: Construct set V comprising of l scenarios with

the largest γ∗(0) values such that
l

∑

s=1
π̃′′

s ≤ 1 − p and
l+1
∑

s=1
π̃′′

s > 1 − p and set θ̄ =
n
∑

i=1

max
s∈S1\V

d̄s
i .

9: Solve OA(1) to obtain the optimal solution denoted by (v∗, γ∗, w∗).

10: while w∗ 6= 0 do {Iteratively increase the number of binary variables in set T
(t)
1 }

11: Let t := t + 1

12: Execute this step if “fixing strategy” is used, otherwise skip.

Update the set T
(t)
F (fixing some of the γs, s ∈ T

(t−1)
0 , variables): Let

T
(t)
F = T

(t−1)
F ∪ {s ∈ T

(t−1)
0 | γ∗

s = 0} and T
(t−1)
0 = T

(t−1)
0 \ {s ∈ T

(t−1)
0 | γ∗

s = 0}.

13: Update sets T
(t)
0 and T

(t)
1 : Calculate the parameter Q using (18) and (19) (or using a similar

approach) and then set Q̄ = min(|T
(t−1)
0 |, Q).

Use a selection criterion to pick Q̄ scenarios from T
(t−1)
0 to define A(t).

Let T
(t)
1 = T

(t−1)
1 ∪ A(t) and T

(t)
0 = T

(t−1)
0 \ A(t).

14: Solve OA(t) to obtain the optimal solution denoted by (v∗, γ∗, w∗).

15: end while

16: end if

Lejeune and Noyan: Generating p-Efficient Points 13

obtained using a slightly “modified” version of SMKP. More precisely, we introduce in SMKP the constraints

(42)-(45) that ensure that its optimal solution defines a pLEP that has not already been generated.

We denote by M a parameter taking a sufficiently large positive value, e.g., Mi = max
s∈S

d̄s
i i = 1 . . . , n, or

simply, M = max
i∈{1,...,n},s∈S

d̄s
i and Mi = M, i = 1 . . . , n. Let use denote the pLEP generated at iteration k by

ϑ(k), then ϑ(1) = v∗ with v∗ being the optimal solution of SMKP. The (k + 1)th pLEP is obtained through

the solution of the MIP problem (39)-(47), which can be solved using the exact solution approach described

in Section 3.

Proposition 4.1 If feasible, the optimal solution (v∗, γ∗,y∗) of

min

n
∑

i=1

vi (39)

subject to vi ≥ d̄s
i (1 − γs), i ∈ n, s ∈ S1 (40)

∑

s∈S1

π′
sγs ≤ 1 − p (41)

vi − ϑr
i + 1 ≤ Miy1(r, i), 1 ≤ r ≤ k, i = 1, . . . , n (42)

y2(r, i) ≤ Mi(1 − y1(r, i)), 1 ≤ r ≤ k, i = 1, . . . , n (43)

n
∑

i=1

y2(r, i) ≥ 1, 1 ≤ r ≤ k (44)

y1(r, i), y2(r, i) ∈ {0, 1}, 1 ≤ r ≤ k, i = 1, . . . , n (45)

γ ∈ {0, 1}|S1| (46)

v ∈ R
n
+ (47)

defines the (k + 1)th p-efficient point ϑ(k+1) = v∗.

Proof. Constraints (40)-(41) guarantee that any feasible solution v is such that P(ξ ≤ v) ≥ p. By

Definition 0.1, a vector v is p-efficient if it is different from and not dominated by any of the pLEPs generated

up to iteration k. In other words, we generate a new pLEP at iteration (k+1) if there is no ϑ(r), r = 1, . . . , k,

such that

ϑ(r) ≤ v∗ and ϑ(r) 6= v∗, r = 1, . . . , k. (48)

Equivalently, if there exits an index i, i ∈ n, such that v∗i < ϑ
(r)
i for all r = 1, . . . , k, (at least one component

of v∗ is strictly smaller than that of the pLEPs generated at previous iterations), then v∗ is not dominated

by the pLEPs generated up to iteration k. It can be seen that constraints (42)-(45) enforce (48). Indeed,

(44) requires that for at least one index i, i ∈ n, y2(r, i) is equal to 1 for all r ≤ k. Let us denote one of

those indices associated with r ≤ k by ir, i.e., y2(r, ir) = 1. Then it follows from (43) that y1(r, ir) = 0,

which, combined with (42), ensures that vir
≤ ϑr

ir
− 1 for all r ≤ k. �

Proposition 4.1 indicates that, each time we solve problem (39)-(47) to optimality, we obtain a new pLEP

(ϑ(k+1) = v∗). The mathematical programming based generation of a set of pLEPs is one of the significant

contributions of this paper.

The algorithms proposed to solve SMKP are here applied to a “modified” version of SMKP, which is

obtained by adding constraints (42)-(45) to the SMKP formulation. The algorithm discovers an empty

14 Lejeune and Noyan: Generating p-Efficient Points

feasible set when there is no more pLEP left to be identified. Note that solving problem (39)-(47) using the

heuristic approach, described in Section 3.2.4, provides a quasi pLEP at each iteration. The computational

efficiency of the heuristic algorithm allows its recursive application to generate a set of quasi pLEPs.

5. Computational Results In Section 5.1, we present the problem instances used in our computational

study. In Section 5.2, we first assess the individual contribution of the three specific algorithmic techniques

(preprocessing, valid inequalities, fixing strategy) integrated within the outer approximation method. We

then analyze the efficiency and effectiveness of the outer approximation method proposed for generating

quasi pLEPs.

The optimization problems are modelled with the AMPL mathematical programming language (Fourer

et al., 2003) and solved with the 11.2 CPLEX solver (ILOG, 2008). Each problem instance is solved on a

64-bit HP workstation running on Linux with 2 quad- core 1.6GHz CPU, and 16GB of RAM. All the reported

CPU times are in seconds. In our computational study, we terminate CPLEX when the prescribed CPU time

limit of 3600 seconds is reached.

5.1 Testing Set The computational evaluation is carried out with respect to three families of problem

instances for a total of 423 instances. For the first family, we use random sampling to generate a set of

scenarios representing a Poisson probability distribution. The problem instances of the second family are

obtained by using a stratified sampling approach to represent a given distribution. In the third family, we

consider all the possible values that a random variable following a discrete distribution with finite support

can take. All the data instances are generated with MATLAB R2006.

5.1.1 Family 1: Random Sampling The specifics of the first family of problem instances are that

they concern random vectors of large dimensionality and that a discretized representation of the random

vectors is obtained using random sampling. More precisely, we consider random vector ξ comprising n

components ξi, each of which following a Poisson distribution. The value of the arrival rate parameter

λi of the Poisson distribution is sampled from the uniform distribution on one of the following intervals:

[50, 100], [50, 150], [50, 200] and [100, 150]. We use random sampling to extract |S| scenarios. For each of the

problem instances, we consider two different probability settings. The first one assumes that all scenarios

are equally likely, while the second assigns to each scenario a value, which is sampled from the uniform

distribution on the interval [0.2, 0.7]. Those values are then normalized to obtain the probability πs associated

with each scenario s.

We consider 58 types of instances and generate 6 problem instances per each type to take the randomness

in data generation into account. Each instance type is defined with respect to the tuple (n, |S|, p, D), where

n = 10, 20, 50, |S| = 500, 1000, 3000, 5000, p = 0.8, 0.9, 0.95, and D indicates whether the scenarios are

assumed to be equally likely or not.

5.1.2 Family 2: Stratified Sampling For this family of instances, the scenarios representing the

random variables are obtained using a stratified sampling approach. More precisely, the possible values for a

multivariate random variable that follows an identified probability distribution are separated into four strata

that correspond to the fractiles of the multivariate probability distributions.

Lejeune and Noyan: Generating p-Efficient Points 15

To generate the set of |S| scenarios used to discretize the random variables, we define a number fi, i =

1, 2, 3, 4, with
4
∑

i=1

fi = |S|, of scenarios that are extracted from each stratum. The first fractile includes the

realizations whose cumulative probability does not exceed 0.25. By changing the values of fi, 1, . . . , 4, we

generate� symmetric: fi = 0.25 · |S|, i = 1, . . . , 4,� right-skewed: f1 = 0.1 · |S|, f2 = 0.2 · |S|, f3 = 0.3 · |S|, f4 = 0.4 · |S|, and� left-skewed: f1 = 0.6 · |S|, f2 = 0.2 · |S|, f3 = 0.1 · |S|, f4 = 0.1 · |S|

sample probability distributions. Each scenario is assigned the same probability equal to 1/|S|.

For this family of problem instances, we consider 21 types of instances and generate 5 problem instances

per type. The type of an instance is defined with respect to the tuple (n, |S|, p, D), where n = 5, 10, |S| =

1000, 2000, and p = 0.7, 0.8, 0.9, 0.95.

Note that considering random variables of moderate (n = 5, 10) dimensionality is most relevant in many

applications (see, e.g., Henrion, 2004; Kress et al., 2007; Lejeune and Ruszczyński, 2007; Prékopa, 1995).

Enforcing a large probability level on a multivariate random variable is close to setting many components of

a pLEP equal to the largest value that the corresponding component of the random vector can take. Note

also that it is not easy to generate a representative set of realizations for a large-dimensional random vector,

since most of the sampled realizations tend to have small cumulative probabilities.

5.1.3 Family 3: Discrete Probability Distribution The problem instances are generated by as-

suming that each random variable follows a discrete probability distribution with finite support. We consider

12 types of instances and generate 5 problem instances per type. The type of an instance is defined with

respect to the tuple (n, |S|, p, D), where n = 6, 8, |S| can take different very large (up to 65, 000) values and

p = 0.9, 0.95. The probabilities of the scenarios are defined by the discrete distribution.

5.2 Contributions of Specific Algorithmic Techniques In this section, we evaluate the contribu-

tion of each novel algorithmic technique integrated in the outer approximation solution framework.

First, we would like to emphasize that solving the MKP formulation directly using an MIP solver such as

CPLEX is hard for large problem instances. Since the optimal solution cannot be reached or proven within

the prescribed time limit for many instances, we compute an upper bound on the optimality gap by using a

lower bound on the objective value. Let ObfT denote the best lower bound on the objective function value

found by the B&B algorithm of CPLEX and Obf∗T denote the best objective function value reached within

the time limit T (T = 3600 seconds). We define the upper bound on the optimality gap (UBOP) as follows:

UBOP =
Obf∗T −ObfT

ObfT

.

Table 1 reports upper bounds on the optimality gaps when the MKP formulation is solved directly by

using the B&B algorithm of CPLEX. The results in Table 1 are obtained for a set of Family 1 problem

instances (Section 5.1). It can be seen from Table 1 that when applied to the MKP formulation, the B&B

algorithm of CPLEX does not find an optimal solution within the time limit of 3600 seconds and the UBOP

values are not very small even for problem instances of moderate size. This highlights the difficulty of solving

MKP.

16 Lejeune and Noyan: Generating p-Efficient Points

Problem Instances Upper Bound on Optimality Gap

n |S| p D: Equal Prob. D: General Prob.

10 500 0.9 4.47% 4.24%

20 500 0.9 4.46% 4.45%

50 500 0.9 3.76% 3.73%

10 1000 0.9 8.81% 8.29%

20 1000 0.9 7.55% 6.94%

50 1000 0.9 6.26% 6.43%

Table 1: Using the direct formulation of MKP

5.2.1 Bundle Preprocessing Results pertaining to the reduction in the number of scenarios that

remain under consideration after the bundle preprocessing phase are reported for Family 1 (resp., Family 2

and family 3) in Table 2 (resp., Table 3 and Table 4). The notation |B| refers to the average number (i.e.,

we consider 5 data sets per type of instances) of bundles into which the |S| scenarios have been aggregated,

while R = (|S| − |S1|)/|S| indicates the percentage by which the number of scenarios to be considered has

been reduced. Table 3 distinguish symmetric, right-skewed, and left-skewed probability distributions.

Tables 2-4 demonstrate that the reduction in the number of scenarios increases as (i) the enforced prob-

ability level p increases, and as (ii) the dimensionality n of the random vector decreases. Table 3 highlights

that the bundle approach performs very well regardless of the skewness of the probability distributions. Ta-

bles 3 and 4 show that the average reduction in the number of scenarios varies between 60.46% to 99% of the

initial number of scenarios. Clearly, the number of binary variables included in MKP (or SMKP) decreases

in the same proportion. Thus, the bundle preprocessing approach has a dramatic impact in reducing the

complexity of the MKP formulation and on the efficiency of any solution method. Moreover, the bundle

algorithm takes few seconds of CPU time for most of the problem instances. For the really large problem

instances from Family 1, the bundle algorithm is slightly slower. For example, it takes on average almost 8,

22 and 70 seconds for the problem instances presented in Table 2 with n = 10, |S| = 5000, n = 20, |S| = 5000

and n = 50, |S| = 5000, respectively.

It appears that the contribution of the bundle preprocessing technique is even more conclusive when

it is applied to discrete probability distributions (Table 4) than when it is applied to sample probability

distributions obtained with random sampling (Table 2) and stratified sampling (Table 3). The average

reduction in the number of scenarios is at least equal to 93.78% of the initial number of scenarios. Finally,

note that the bundle preprocessing approach is versatile enough to be used within any solution method.

5.2.2 Strengthening Valid Inequalities The evaluation of the strengthening valid inequalities is

carried out through the comparison of the solution times obtained by including them or not within the

outer approximation framework. The relative CPU time reduction consecutive to the incorporation of the

valid inequalities is reported in Table 5 for problem instances belonging to Family 1. The numerical results

are obtained for each selection criterion discussed in Section 3.2.1 and indicate that the strengthening valid

inequalities significantly contribute to improving the computational performance of the outer approximation

algorithm.

Lejeune and Noyan: Generating p-Efficient Points 17

Problem Instances D: Equal Probabilities D: General Probabilities

n |S| p |B| R |B| R

10 500 0.95 116.6 76.68% 115.8 76.84%

20 500 0.95 239.2 52.16% 233.8 53.24%

50 500 0.95 439.8 12.04% 437.6 12.48%

10 1000 0.95 178.4 82.16% 177.4 82.26%

20 1000 0.95 412 58.80% 414.2 58.58%

50 1000 0.95 856.6 14.34% 852.2 14.78%

10 2000 0.95 281.4 85.93% 277.2 86.14%

20 2000 0.95 693.4 65.33% 697 65.15%

50 2000 0.95 1643.8 17.81% 1636.8 18.16%

10 3000 0.95 358.8 88.04% 354.4 88.19%

20 3000 0.95 948 68.40% 951.2 68.29%

50 3000 0.95 2399.2 20.03% 2392.8 20.24%

10 5000 0.95 525.8 89.48% 529.6 89.41%

20 5000 0.95 1433.4 71.33% 1435.4 71.29%

50 5000 0.95 3844.4 23.11% 3820.4 23.59%

10 500 0.9 216.2 56.47% 214.4 56.83%

20 500 0.9 394.8 20.90% 392.8 21.33%

50 500 0.9 496.2 0.73% 496.2 0.73%

10 1000 0.9 355.2 63.98% 352.8 64.13%

20 1000 0.9 727.8 27.13% 723.6 27.68%

50 1000 0.9 989.8 0.97% 989.4 0.98%

10 2000 0.9 605.4 69.50% 603.0 69.61%

20 2000 0.9 1325.4 33.19% 1321.2 33.40%

10 3000 0.9 842.8 71.72% 838.2 71.84%

10 5000 0.9 1268.8 74.43% 1268.8 74.43%

10 500 0.8 375.6 24.43% 375.8 24.47%

20 500 0.8 490.8 1.77% 490.4 1.80%

10 1000 0.8 706.0 29.13% 699.6 29.62%

20 1000 0.8 975.0 2.65% 974.4 2.70%

Table 2: Efficiency of Bundle Preprocessing Approach: Random Sampling

18 Lejeune and Noyan: Generating p-Efficient Points

Problem Instances
|B| R

Skewness n |S| p

Symmetric 5 1000 0.95 7 99.30%

5 1000 0.9 55.8 94.42%

5 1000 0.8 227.8 77.22%

5 1000 0.7 239.6 76.04%

10 2000 0.95 19 97.15%

10 2000 0.9 199.8 90.01%

10 2000 0.8 790.8 60.46%

Right-skewed 5 1000 0.95 2.6 99.74%

5 1000 0.9 24.2 97.58%

5 1000 0.8 111.4 88.86%

5 1000 0.7 275.2 72.48%

10 2000 0.95 3.2 99.84%

10 2000 0.9 3.8 99.81%

10 2000 0.8 268.2 86.59%

Left-skewed 5 1000 0.95 8.6 99.14%

5 1000 0.9 9.6 99.04%

5 1000 0.8 105.4 89.46%

5 1000 0.7 264.0 73.60%

10 2000 0.95 50 97.50%

10 2000 0.9 378 81.10%

10 2000 0.8 639.2 68.04%

Table 3: Efficiency of Bundle Preprocessing Approach: Stratified Sampling Instances (D: Equal Probabilities)

Problem Instances
|B| R

n |S| p

6 9375 0.9 432 95.39%

6 12500 0.9 729 94.17%

6 15625 0.9 972 93.78%

8 36864 0.9 768 97.91%

8 61440 0.9 864 98.59%

8 65536 0.9 1152 98.24%

6 9375 0.95 144 98.46%

6 12500 0.95 324 97.41%

6 15625 0.95 288 98.16%

8 36864 0.95 576 98.44%

8 61440 0.95 648 98.95%

8 65536 0.95 486 99.26%

Table 4: Efficiency of Bundle Preprocessing Approach: Discrete Probability Distribution

Lejeune and Noyan: Generating p-Efficient Points 19

Reduction Percentage

Problem Instances D: Equal Probabilities D: General Probabilities

n |S| Criterion 1 Criterion 2 Criterion 1 Criterion 2

10 500 89.82% 62.24% 87.19% 64.10%

20 500 98.26% 68.21% 98.53% 68.75%

50 500 > 99.90% > 99.91% 98.59% > 99.94%

10 1000 91.96% 48.33% 94.30% 58.53%

20 1000 99.83% 77.79% 99.86% 73.52%

50 1000 > 99.65% > 99.68% > 99.66% > 99.67%

Table 5: Reduction in CPU Times by “Strengthening Valid Inequalities” (p = 0.9)

5.2.3 Fixing Strategy We solve a set of problem instances from Family 1 with the proposed outer

approximation algorithm with and without employing the fixing strategy (the algorithm uses all the other

proposed algorithmic techniques). It can be seen from Table 6 that the use of the fixing strategy results in

a significant CPU time reduction.

Problem Instances Equal Probabilities General Probabilities

n |S| Criterion 1 Criterion 2 Criterion 1 Criterion 2

10 500 99.86% 99.79% 99.94% 99.73%

20 500 99.99% 99.41% 99.98% 99.55%

50 500 99.90% 99.97% 99.90% 99.94%

10 1000 99.93% 99.98% 99.95% 99.99%

20 1000 99.89% 99.90% 99.90% 99.90%

50 1000 99.65% 99.68% 99.66% 99.67%

Table 6: Reduction in CPU Times by “Fixing Strategy” (p = 0.9)

Recall that the use of the fixing strategy makes the solution method heuristic. The applicability of

the heuristic depends, apart from the computational efficiency, on the solution quality (effectiveness). In

order to evaluate the effectiveness, we calculate the optimality gap, which requires the knowledge of the

optimal objective function value. However, as mentioned before, solving the MKP formulation directly using

a standard MIP solver is hard for large problem instances. We derive a “stronger formulation of MKP”

using a modeling technique that Luedtke et al. (2010) employed for probabilistically constrained linear

programming problems. In order to evaluate the computational efficiency and effectiveness of the heuristic

algorithm, we solve the reformulated problem for each problem instance, compare the CPU times, and

analyze the optimality gap associated with the proposed heuristic. We note that the approach of solving the

stronger formulation of MKP to obtain an optimal solution is referred as the “stronger formulation method”.

20 Lejeune and Noyan: Generating p-Efficient Points

Problem Instances Average CPU Average Number of Iterations

D n |S| Criterion 2 Criterion 1 Stronger Form. Meth. Criterion 2 Criterion 1

Equal 10 500 0.44 0.50 0.48 10.2 8.5

20 500 1.16 1.15 0.94 7.2 6.2

50 500 3.36 3.38 2.43 4.3 4.0

10 1000 1.04 2.05 1.78 10.5 9.2

20 1000 3.37 3.86 3.63 8.00 7.00

50 1000 11.12 12.07 9.00 4.0 4.0

10 2000 2.64 29.24 7.07 10.3 9.5

20 2000 11.49 124.32 13.92 8.0 7.0

10 3000 3.75 138.29 15.67 10.2 9.3

10 5000 8.05 1264.19 78.17 10.5 10.2

General 10 500 0.47 0.54 0.50 10.3 9.0

20 500 1.20 1.24 0.94 7.3 6.3

50 500 3.54 3.51 2.44 6.7 6.0

10 1000 1.17 1.99 1.76 10.7 9.0

20 1000 3.40 3.59 3.58 8.0 7.0

50 1000 11.27 11.93 8.90 6.7 5.7

10 2000 2.56 16.66 7.10 10.8 9.8

20 2000 11.86 55.86 13.97 8.3 7.0

10 3000 3.97 170.30 15.68 10.2 9.5

10 5000 7.25 1166.92 78.16 10.2 9.8

Table 7: Efficiency of Heuristic Algorithm (p = 0.9).

Effectiveness: The optimality gap values are all zero.

Table 7 presents the CPU times and the number of iterations averaged over 6 problem instances from

Family 1 and shows that the heuristic algorithm based on “Criterion 2” terminates very fast. Moreover,

using any of the criterion (“Criterion 1” or “Criterion 2”), the heuristic provides the optimal solution of

MKP (i.e., zero optimality gap) for each problem instance. This indicates that, for the Family 1 problem

instances, the optimal solution obtained with the fixing strategy defines an exact pLEP.

Tables 8 and 9 focus on the solution quality of the heuristic, and show that, for very fine and stratified

sampled probability distributions (Table 8) as well as for the discrete distributions with very large support

(Table 9), the heuristic is very fast to find solutions with very small optimality gaps. This indicates that the

quasi pLEP defined by the solution, which is obtained by the heuristic, is very close being an exact pLEP.

Thus, the requirements imposed by the quasi pLEP are only marginally more demanding than those defined

by the exact pLEP and can be used to derive an inner approximation for problem (1)-(4), that is essentially

of the “quality “ (i.e., as tight) as the inner approximation obtained from the exact pLEP.”

We would like to remark that we solve the strong formulation of MKP after application of the bundle

preprocessing technique. The number of scenarios is extremely large for some instances, and, without

preprocessing, we were not able to solve the “stronger formulation of MKP”.

The numerical results show that the selection criterion used while constructing the sets T
(t)
0 and T

(t)
1

has a significant role in the computational performance of the outer approximation algorithm. Even if both

Lejeune and Noyan: Generating p-Efficient Points 21

criteria perform similarly in terms of the number of iterations required for the algorithm to terminate, it

turns out that for the generated problem instances the random criterion, which we refer to as “Criterion

2”, provide results with smaller CPU times in general. Thus, there is a room for further improvements by

coming up with alternate criteria. One may also consider different ways of setting the value of Q (see Section

3.1) for further computational improvements.

Problem Instances Average Optimality Gap Average CPU Average Number of Iterations

Skewness n |S| p Criterion 1 Criterion 2 Criterion 1 Criterion 2 Criterion 1 Criterion 2

Symmetric 5 1000 0.9 0.76% 0.00% 0.16 0.2 20.2 20.6

5 1000 0.8 0.00% 0.00% 5.82 6.54 20.8 20.8

5 1000 0.7 0.00% 0.00% 0.43 0.43 20.8 20.8

10 2000 0.9 0.00% 0.00% 0.28 0.36 9.2 10.0

10 2000 0.8 1.12% 1.73% 69.5 191.21 17.2 17.6

Right-skewed 5 1000 0.9 0.00% 0.00% 0.06 0.05 13.4 14.6

5 1000 0.8 0.00% 1.09% 1.18 1.31 20.4 20.6

5 1000 0.7 1.71% 0.46% 6.21 6.06 20.0 19.75

10 2000 0.9 0.00% 0.00% 0.01 0.01 3.0 2.5

10 2000 0.8 0.00% 0.00% 0.61 0.6 12.8 12.8

Left-skewed 5 1000 0.9 0.00% 0.00% 0.02 0.02 6.6 6.0

5 1000 0.8 0.62% 1.58% 0.29 1.4 16.4 17.4

5 1000 0.7 0.52% 0.78% 2.22 3.06 18.4 17.2

10 2000 0.9 0.35% 1.34% 17.33 39.43 18.6 17.8

10 2000 0.8 2.08% 2.30% 58.15 212.69 19.0 18.6

Table 8: Effectiveness of Heuristic Algorithm: Stratified Sampling Instances (D: Equal Probabilities)

Problem Instances Average Optimality Gap Average CPU Average Number of Iterations

n |S| Criterion 1 Criterion 2 Criterion 1 Criterion 2 Criterion 1 Criterion 2

6 9375 0.14% 0.45% 3.42 1.67 19 19

6 12500 0.05% 0.59% 3.36 3.3 19 19

6 15625 0.67% 1.28% 5.49 6.52 19 19

8 36864 0.41% 0.67% 3.02 4.26 16 17

8 61440 0.00% 0.47% 2.92 4.04 16 16

8 65536 0.73% 0.94% 5.18 7.67 16 16

Table 9: Effectiveness of Heuristic Algorithm: Discrete Probability Distribution (p = 0.9)

6. Concluding Remarks Probabilistically constrained problems, in which the random variables are

finitely distributed, are generally not convex and thus very challenging to solve. The methods based on the

p-efficiency concept have been widely used to solve such problems and typically use an enumeration algorithm

to find the p-efficient points. In this study, we propose an alternative approach to the existing enumeration

algorithms. First, we formulate a MIP problem whose optimal solution defines a pLEP and whose feasible

solutions with small optimality gaps define quasi pLEPs. Quasi pLEPs impose conditions that are sufficient

for the satisfaction of probabilistic constraint (2) and that are only marginally more demanding than those

defined by pLEPs. Second, we propose a mathematical programming framework to generate exact and quasi

22 Lejeune and Noyan: Generating p-Efficient Points

pLEPs. The proposed framework constructs a sequence of increasingly tighter outer approximation prob-

lems. The exact solution method uses a bundle preprocessing technique and strengthening valid inequalities.

The heuristic method combines the above two techniques with a fixing strategy. We perform an extensive

computational study considering different types of probability distributions with finite support (discrete

distribution with finite support, sampled distributions obtained with random and stratified sampling). The

numerical results attest to the effectiveness and computational efficiency of each of the individual algorithmic

techniques as well as of the overall outer approximation framework.

Finally, we note the following additional contributions of this study. First, the outer approximation

method can be used to derive, not only one, but a subset of pLEPs. Second, the development of powerful

methods for the application of the p-efficiency concept to random variables described by a finite set of

scenarios is novel. Third, the bundle preprocessing method is very powerful, since (i) it reduces tremendously

the number of scenarios, thereby allowing for the solution of very complex problems that could not be

solved otherwise, and (ii) it is general enough to be incorporated in other existing solution methods for

probabilistically constrained problems.

Acknowledgment. The first author is supported by Grant # W911NF-09-1-0497 from the Army Re-

search Office.

References

[1] Avital, I. Chance-Constrained Missile-Procurement and Deployment Models for Naval Surface Warfare.

Naval Postgraduate School Dissertation; Monterrey, CA; 2005.

[2] Beraldi, P, Ruszczyński, A. The Probabilistic Set Covering Problem. Operations Research 2002; 50;

956-967.

[3] Calafiore G.C, Campi, M.C. Uncertain Convex Programs: Randomized Solutions and Confidence Levels.

Mathematical Programming 2005; 102; 25-46.

[4] Charnes A, Cooper, W.W, Symonds, G.H. Cost Horizons and Certainty Equivalents: An Approach to

Stochastic Programming of Heating Oil. Management Science 1958; 4; 235-263.

[5] Dentcheva D. Optimization Models with Probabilistic Constraints. In: Calafiore G, Dabbene, F (Eds),

Probabilistic and Randomized Methods for Design under Uncertainty. Springer-Verlag: London; 2006.

[6] Dentcheva D, Lai, B, Ruszczyński, A. Dual Methods for Probabilistic Optimization Problems. Mathe-

matical Methods of Operations Research 2004; 60; 331-346.

[7] Dentcheva D, Prékopa, A, Ruszczyński, A. Concavity and Efficient Points of Discrete Distributions in

Probabilistic Programming. Mathematical Programming 2001; 47 (3); 1997-2009.

[8] Dentcheva, D, Prékopa, A, Ruszczyński, A. Bounds for Probabilistic Integer Programming Problems.

Discrete Applied Mathematics 2002; 124; 55-65.

[9] Duran M.A, Grossmann, I.E. An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear

Programs. Mathematical Programming 1986; 36 (3); 307-339.

Lejeune and Noyan: Generating p-Efficient Points 23

[10] Fletcher R, Leyffer, S. Solving Mixed Integer Nonlinear Programs by Outer Approximation. Mathemat-

ical Programming 1994; 66; 327-349.

[11] Fourer R, Gay, D.M, Kernighan, B.W. AMPL: A Modeling Language for Mathematical Programming.

Second Edition. Duxbury Press Brooks Cole Publishing Co; 2003.

[12] Hammer P.L, Johnson, E.L, Peled, U.N. Facets of Regular 0-1 Polytopes. Mathematical Programming

1975; 8; 179-206.

[13] Henrion R. 2004. Introduction to Chance-Constrained Programming. Tutorial Paper for the Stochastic

Programming Community Home Page. http://stoprog.org/index.html?SPIntro/intro2ccp.html.

[14] ILOG. 2008. ILOG AMPL CPLEX System Version 11.0 User’s Guide. ILOG CPLEX Division.

http://www.ilog.com.

[15] Kress M, Penn, M, Polukarov, M. The Minmax Multidimensional Knapsack Problem with Application

to a Chance-Constrained Problem. Naval Research Logistics 2007; 54; 656-666.

[16] Kücükyavuz S. 2009. On Mixing Sets Arising in Probabilistic Programming. Working Paper:

http://www.optimization-online.org/DB HTML/2009/03/2255.html.

[17] Lejeune M.A. Preprocessing Techniques and Column Generation Algorithms for p-Efficiency. Journal

of Operational Research Society 2008; 59; 1239-1252.

[18] Lejeune M.A. Linear Reformulation of Probabilistically Constrained Optimization Problems Using Com-

binatorial Patterns. International Colloquium on Stochastic Modeling and Optimization, Dedicated to

the 80th birthday of Professor András Prékopa. Piscataway, NJ; 2009.

[19] Lejeune M.A, Ruszczyński, A. An Efficient Trajectory Method for Probabilistic Inventory-Production-

Distribution Problems. Operations Research 2007; 55 (2); 378-394.

[20] Luedtke J, Ahmed, S, Nemhauser, G. An Integer Programming Approach for Linear Programs with

Probabilistic Constraints. Mathematical Programming 2010; 122 (2); 247–272.

[21] Nemirovski A, Shapiro, A. Convex Approximations of Chance Constrained Programs. SIAM Journal on

Optimization 2006; 17; 969–996.

[22] Prékopa A. On Probabilistic Constrained Programming. In: Proceedings of the Princeton Symposium

on Mathematical Programming. Princeton University Press: Princeton, NJ; 1970; p. 113–138.

[23] Prékopa A. Contributions to the Theory of Stochastic Programming. Mathematical Programming 1973;

4;202–221.

[24] Prékopa A. Dual Method for a One-Stage Stochastic Programming Problem with Random RHS Obeying

a Discrete Probability Distribution, Zeithschrift für Operations Research 1990; 34; 441–461.

[25] Prékopa A. Stochastic Programming. Kluwer Academic: Dordrecht, Boston; 1995.

[26] Prékopa A. Probabilistic Programming. In: Ruszczynski A, Shapiro A (Eds), Stochastic Programming,

Handbooks in Operations Research and Management Science, vol.10. Elsevier: Amsterdam; 2003; p.

267–351.

24 Lejeune and Noyan: Generating p-Efficient Points

[27] Prékopa A, Vizvari, B, Badics, T. Programming Under Probabilistic Constraint with Discrete Random

Variable. In: Giannessi F., Komlósi, S., Rapcsák, T. (Eds), New Trends in Mathematical Programming.

Boston, MA, USA; 1998.

[28] Rockafellar R.T, Wets, R.J-B. Scenarios and Policy Aggregation in Optimization Under Uncertainty.

Mathematics of Operations Research 1991; 16 (1); 119-147.

[29] Ruszczyński A. Probabilistic Programming with Discrete Distributions and Precedence Constrained

Knapsack Polyhedra. Mathematical Programming 2002; 93; 195-215.

[30] Saxena A, Goyal, V, Lejeune, M.A. MIP Reformulations of the Probabilistic Set Covering Problem.

Mathematical Programming 2010; 121 (1); 1-31.

[31] Sen S. Relaxations for Probabilistically Constrained Programs with Discrete Random Variables. Oper-

ations Research Letters 1992; 11; 81-86.

