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Abstract

In this paper we give an overview of Markov models that are used for
describing dynamics of operating environments in reliability analysis. We
present both continuous and discrete-time Markov chains as well as diffu-
sion processes. We also consider Markov modulated stochastic processes
that are known as hidden Markov models and discuss their properties.
More specifically, we give an overview of Markov modulated Poisson and
Markov modulated Bernoulli processes.
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1 Introduction and Overview

Stochastic process models are fundamental for assessing the reliability of items
that operate under a dynamic environment. As pointed out by Singpurwalla
[42], since the dynamic environment causes changes in the physics of failure, use
of stochastic processes provides flexibility in describing failure characteristics
under these environments. Earlier uses of stochastic process models include
Mercer [24] who modeled item wear and Klein [21] who used a Markov chain
model to describe stochastic deterioration of a system. Gaver [13] is the first
who propose modeling the failure rate as a stochastic process and introduced
the notion of a randomly changing environment.

Assessment of reliability of an item/system as a function of the stochastic
process governing the environment was considered by Çinlar ([5] [6], [7]), and
the notion further developed by Çinlar and Özekici [9] who considered models
of stochastic dependence caused by a random environment. The model of [9]
is studied further in Çinlar et al. [10]. Related developments are those by
Lindley and Singpurwalla [23], and by Singpurwalla and Youngren [44]. Özekici
[26] analyzed the optimal maintenance problem of a single-component device
operating in a random environment. In all these cases, the environment is
characterized by a stochastic process model; see Singpurwalla [42], for a survey.
Recent work in stochastic hazard processes can be found in Özekici [28].
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Note that a stochastic process is a collection of random variables that are
indexed by a parameter space T . In our setup the parameter space T will be
time which could be discrete, say T = I = (0, 1, 2, . . . , ), or continuous, say
T = R+ = (t; 0 ≤ t < ∞). In our notation, the collection of random variables
X0, X1, . . . , Xn, . . ., will denote a discrete time stochastic process, {Xn; n ∈ I},
whereas the collection {Yt; t ∈ R+} denotes a continuous time stochastic process.
The state space E of the stochastic process, that is, the possible set of values
that either Xn or Yt can take, can be discrete or continuous. When E is discrete,
the process {Xn; n ∈ I} is said to be a discrete state, discrete time stochastic
process, and {Yt; t ∈ R+} is a discrete state, continuous time process. Similarly,
when E is continuous the process {Yt; t ∈ R+} is referred to as a continuous
state, continuous time process.

Of the several stochastic process models that have been considered by the
above authors, the simplest is the Markov process, but many stochastic models
used in reliability analysis belong to the Markov processes. Important class
of Markov processes include discrete and continuous time Markov chains and
diffusion processes. In Section 2 we will give an overview of Markov processes
and discuss some of the widely used examples. Most of the material in this
section can be found in Çinlar [8], Karlin and Taylor [19] or Ross [37].

Stochastic processes that are governed by Markov processes which cannot
be observed, are referred to as hidden Markov models; see [41]. Such processes
have found applications in areas such as speech recognition [36], signal pro-
cessing [15], biology and medicine [14], environmental sciences [16], software
engineering ([29], [11], [38]) and have been of interest to statisticians ([4], [40],
[30], [3])because of the difficult inferential issues that they pose. The hidden
Markov models will be discussed in Section 3. An application of the hidden
Markov models to software reliability analysis is presented in Section 4.

2 Markov Processes

The stochastic process {Zt; t ∈ T} is said to be a Markov process (MP) if for
any t, s ∈ T and for any set of states A ∈ E,

P (Zt+s ∈ A|Zu; u ≤ t) = P (Zt+s ∈ A|Zt). (1)

The above relationship is referred to as the Markov property. It simply states
that given the present the future of the process is independent of the past. If
(1) holds for all values of t, then MP is said to be time-homogeneous.

A continuous time MP, Zt, with continuous state space E is called a diffusion
process. Diffusion processes are used to describe item wear and system degrada-
tion over time; see for example, Park and Padgett [35]. Brownian motion and
gamma process [2] are the most commonly used diffusion processes for modeling
such phenomena. An important class of MPs are processes with independent
increments. A continuous time stochastic process Zt will have independent in-
crements if for all t1 < t2 < . . . < tn the random variables Zt1 , Zt2 − Zt1 , . . . ,
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Ztn
− Ztn−1 are independent; see [37]. Furthermore, the process will have sta-

tionary increments if the distribution of (Zt+s − Zt) does not depend on t. It
is easy to see that every stochastic process Zt with independent increments is a
MP.

Both Brownian motion and gamma process have the independent increments
property. As noted by Singpurwalla [42] and Park and Padgett [35], the Gaus-
sian assumption of increments in the Brownian motion makes it an unattractive
choice for modeling wear and degradation since the process is not monotonically
increasing. One way to alleviate this is to use a geometric Brownian motion or
a gamma process as suggested in [35]. As pointed by the authors, the gamma
process is more desirable than the geometric Brownian motion since it is always
positive and increasing.

The original use of gamma process for descibing deterioration goes back to
Abdel-Hameed [1]. A gamma process Zt is a diffusion process with the following
properties:

(i) Z0 = 0;

(ii) Zt has independent increments;

(iii) (Zt − Zs) has a gamma distribution G[(at − as), b] with shape parameter
(at − as) > 0 and scale parameter b > 0 for all t > s.

An excellent review of gamma processes and their use in maintenance is
given in van Noortwijk [45].

2.1 Markov Chains

A MP with discrete state space E is called a Markov chain. If the process is a
discrete time process, that is, if T = I then the process is called a discrete time
Markov chain or more commonly a Markov chain. More specifically, a stochastic
process {Xn;n ∈ I} is said to be a Markov chain, with state space E, if for all
n,m ∈ I, and (x1, x2, . . .,) ∈ E,

P (Xn+m = xn+m|Xn = xn, . . . , X0 = x0) = P (Xn+m = xn+m|Xn = xn).
(2)

The Markov chain (MC) is said to be time homogeneous, if the above relation-
ship is independent of n, that is,

P (Xn+m = j| Xn = i) = Pm(i, j),

where Pm(i, j) is called the m-step transition function of the MC. P (i, j) =
P1(i, j) is called the transition probability from state i to state j of the time
homogeneous MC, that is,

P (Xn+1 = j| Xn = i, . . . , X0) = P (Xn+1 = j| Xn = i) = P (i, j).
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The matrix P, whose (i, j)th element is P (i, j) is called the transition proba-
bility matrix of the MC. Note that P (i, j) ≥ 0, for any i, j ∈ E and

∑
j∈E

P (i, j) =

1.
A continuous time discrete state space MP, Yt, is called a continuous time

Markov chain. Our discussion of continuous time Markov chains in the next
section is based on [41].

2.2 Continuous Time Markov Chains

The stochastic process {Yt; t ∈ R+} is said to be a continuous time Markov
chain (CTMC) with discrete state space E, if for any j ∈ E, and t, s ∈ R+

P (Yt+s = j|Yu; u ≤ t) = P (Yt+s = j|Yt). (3)

If the above relationship holds for all values of t, then the CTMC is said to be
time-homogeneous, and we write

P (Yt+s = j|Yt = i) = Ps(i, j).

where Ps(i, j) is called the transition function of the CTMC and it has the
following properties:

(i) Ps(i, j) ≥ 0

(ii)
∑

j∈E

Ps(i, j) = 1

(iii) Pr+s(i, j) =
∑

k∈E

Pr(i, k)Ps(k, j).

The relationship (iii) above is called the Chapman-Kolmogorov Equation.
A CTMC with

P (Yt+s = j|Yt = i) =

{
Ps(i, j) = 0, if j < i
e−λs(λs)j−i

(j−i)! , if j ≥ i,
(4)

is known as a homogeneous Poisson process for some constant λ > 0.
Associated with any CTMC, is a discrete parameter, discrete state stochastic

process {Xn;n ∈ I}, where Xn can be constructed from the process {Yt; t ∈ R+}
as follows:

Xn = Yt , for Tn ≤ t < Tn+1 , n = 0, 1, 2, . . . , (5)

where 0 ≡ T0 < T1 < · · · < Tn < Tn+1 < · · · are the times at which the CTMC
changes states. The process {Xn;n ∈ I} keeps track of the various states that
the process {Yt; t ∈ R+} takes over time starting with the initial state YT0

at time 0. The process {Xn; n ∈ I} is said to be engendered by the process
{Yt; t ∈ R+} and has certain properties.
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Result 1: Suppose that {Yt; t ∈ R+} is a CTMC with state space E. Let
{Xn; n ∈ I} be the corresponding discrete parameter process that is engendered
by the above CTMC via the tracking scheme mentioned before. Then, {Xn;n ∈
I} is a MC with some transition matrix P, where P (i, j) > 0, for i 6= j, P (i, i) =
0, and

∑
j∈E

P (i, j) = 1.

Thus, the Markov property of the {Yt; t ∈ R+} process is inherited by its
engendered {Xn; n ∈ I} process. The process {Xn; n ∈ I} is called the embedded
chain of the CTMC.

Result 2: For any u ≥ 0, and a constant µ(i) > 0,

P (Tn+1 − Tn ≥ u | Xn+1 = j, Xn = i) = e−µ(i)u.

Thus the sojourn times in a CTMC have an exponential distribution whose scale
parameter depends only on the current state i; it does not depend on the state
to which Xn is going to make a transition to j. Thus µ need only be indexed
by i.

Result 3: For any ui ≥ 0, i = 1, 2, . . . , and µ(ij) > 0, j = 0, 1, 2, . . ..

P (T1 − T0 ≥ u1, T2 − T1 ≥ u2, . . . , Tn − Tn−1 ≥ un | X0 = i0, . . . , Xn = in)

= exp(−µ(i0)u1) exp(−µ(i1)u2) · · · exp(−µ(in−1)un) .

That is, the sojourn times of a CTMC are, conditional on X0, . . . , Xn, indepen-
dently, but not identically exponentially distributed. The scale parameters of
the exponential distributions depend only on the current states of the Xi’s.

The next result pertains to the joint distribution of the sojourn time in a
state, and the state to which the CTMC is going to make a transition to. Spe-
cially, for any i, j ∈ E, and any u ≥ 0.

Result 4:

P (Xn+1 = j, Tn+1 − Tn ≥ u | X0, . . . , Xn, T0, . . . , Tn)

= P (Xn+1 = j, Tn+1 − Tn ≥ u | Xn = i) = P (i, j)e−µ(i)u .

Thus for a CTMC, the said joint distribution depends only on the current
state of the process i, via the µ(i), and the transition probability matrix P
of the embedded chain. Furthermore, the transition to a particular state is
independent of the time spent in the current state.

In principle, we should be able to obtain results parallel to those of the four
claims for processes other than the Markov. However, the attractive properties
of inheriting the Markovian feature, the exponentiality and the (conditional)
independence of the sojourn times, and the (conditional) independence between
the sojourn time and the state transitioned to, may be lost; see Limnios [22] for
semi-Markov processes. Finally, since homogeneous Poisson processes with the
parameter λ > 0 is a special case of the CTMC, our Claims 2, 3, and 4 simplify
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with all the µ(·)’s replaced by a common λ. Consequently, here, conditioning
on the current state does not matter. Furthermore, in the case of a Poisson
process P (i, j) = 1, only if j = i + 1; otherwise it is zero.

2.3 The Generator of CTMC and Markovian Analysis

Analogous to the notion of a transition probability matrix of a MC, is the
notion of a transition probability matrix of a CTMC. Specifically, the matrix
Ps, whose (i, j)th element element is Ps(i, j), is of relevance for studying several
characteristics of a CTMC. Recall that Ps(i, j) is the probability that the CTMC
transitions from state i to state j in a time interval of length s.

Result 5: For any i, j ∈ E, Ps(i, j) is differentiable, and d
dsPs(i, j) =

A(i, j) = µ(i)[P (i, j) − I(i, j)], where I(i, j) = 1, if j = i, and is zero oth-
erwise. Thus

A(i, j) =

{
− µ(i), if j = i

µ(i)P (i, j), if j 6= i .

Consequently, if Ps(i, j) is known for every i, j ∈ E, then A(i, j) is known,
and from there we know µ(i)and P (i, j). Thus a knowledge of the transition
probability matrix Ps of the CTMC enables us to obtain the transition proba-
bility matrix P of the embedded chain, and also, the µ(i)’s, the scale parameters
of the distributions of the sojourn times of the process. Conversely, if E is a
finite set of say m elements, then a knowledge of µ(1), . . . , µ(m), and P enables
us to obtain A, the matrix whose (i, j)th element is A(i, j). Once A is known,
we may obtain the matrix Ps via the matrix-geometric relationship

Ps = esA =
∞∑

k=0

skAk

k!
;

the term ”geometric” is motivated by the fact that the summation above is a
consequence of the geometric series expansion of esA. The above development
is known as a Markovian analysis. The matrix A is called the generator of the
CTMC.

3 Hidden Markov Models

As previously pointed out, hidden Markov models (HMMs) are stochastic pro-
cesses that are governed by MPs which cannot be observed. Examples of HMMs
include Markov modulated Bernoulli processes ([27] and [30]) where the govern-
ing or modulating process is a MC and Markov modulated Poisson processes
[12] where the modulating process is a CTMC. It is important to note that here
we use the term HMM or a Markov modulated process in a more general manner
to include any MP as a governing process. Sometimes in the literature the term
HMM is used to refer only to discrete time processes governed by MCs (see for
example, [3]) whereas the term Markov modulated process is reserved for the
case where the governing process is a CTMC; see for example, Rydén [39].
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In reliability modeling, the HMMs are sometimes referred to as random
environment models as in Özekici and Soyer [32]. In [32] the item/system in
question is assumed to operate in a randomly changing environment depicted
by Y = {Yt; t ∈ T} where Yt is the state of the environment at time t. The
environmental process Y is a MP with some state space E which is assumed
to be discrete to simplify the notation. Note that if the environmental process
is assumed to be a semi-Markov process, then the resulting processes will be
hidden semi-Markov models as considered by [22] and [33].

In what follows, we assume that the environmental process Y is a MP and
we consider the Markov Modulated Poisson Process (MMPP) and the Markov
modulated Bernoulli process. As noted in [41], MMPP is a special case of the
Markov Renewal Process (MRP) of Çinlar [5] as well as the Doubly Stochastic
Poisson Process of Kingman [20] which is also known as the Cox process.

3.1 Markov Modulated Poisson Model

Let N be a modulated Poisson process such that Nt depicts the total number
of arrivals until time t. The modulation is done via an environmental process Y
with a discrete state space E where Yt represents the state of the environment
at time t. The rate of arrivals at time t is λ(Yt) for some arrival rate vector λ
defined on E. We suppose that while the environment is at state i arrivals occur
according to an ordinary Poisson process with rate λ(i). To be more precise,

P [Nt = k|Y ] =
e−AtAk

t

k!
(6)

where

At =
∫ t

0

λ(Ys)ds (7)

for all k = 0, 1, · · · and t ≥ 0.
It follows from the above that, given Y, N is a nonstationary Poisson process

with mean value function E[Nt|Y ] = At. Defining T to be the arrival time pro-
cess so that Tn is the time of the nth arrival, we have the conditional interarrival
time distribution

P [Tn+1 − Tn > t|Y, Tn] = e−(ATn+t−ATn ). (8)

The modulated process reduces to the ordinary Poisson process with rate λ if
the arrival rate vector is λ(i) = λ independent of the environment for all i. In
this case, At = λt deterministically.

The arrival process N can be studied via the additive functional A of Y. In
particular, (6) and (8) directly yield

P [Nt = k] = E[
e−AtAk

t

k!
] (9)

and
P [Tn+1 − Tn > t|Tn] = E[e−(ATn+t−ATn )]. (10)
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Therefore, the probability law of A, thus that of the environmental process Y,
will play an important role in our analysis of N and T.

We assume that Y is the minimal Markov process associated with a Markov
renewal process (X, S) with Markov kernel Q. In other words, Xn is the nth
state visited by the environmental process and Sn is the time of this visit such
that

Yt = Xn whenever Sn ≤ t < Sn+1. (11)

Moreover, the Markov kernel gives

Q(i, j, t) = P (i, j)(1− e−µ(i)t) (12)

where P is the transition matrix of the embedded Markov chain X and µ is the
vector of jump rates. More precisely, if the process Y is in some state i, then it
stays there for an exponentially distributed amount of time with rate µ(i) and
then jumps to some other state j with probability P (i, j). It also follows that

Fi(t) = 1− e−µ(i)t (13)

and the generator of the Markov process Y is given by the matrix

G(i, j) =
{ −µ(i), if j = i

µ(i)P (i, j), if j 6= i.
(14)

Let Pt denote the transition function of Y so that

Pt(i, j) = P [Yt = j|Y0 = i]. (15)

Following [33], we define another process Y λ such that

Y λ
t =

{
Yt, if t < T1

∆, if t ≥ T1
(16)

where T1 is the time of the first arrival. While the environment is in state i,
the time of an arrival has the exponential distribution with rate λ(i). It is clear
that Y λ is also a Markov process on the extended state space E∆ = E ∪ {∆}
and it is obtained by “stopping” the Markov process Y as soon as an arrival
occurs. Here, ∆ is an absorbing state where the process is dumped to as soon
as it is stopped. The transition matrix of the embedded Markov chain is now
extended as

Pλ(i, j) =





µ(i)
µ(i)+λ(i)P (i, j), if i, j ∈ E

λ(i)
µ(i)+λ(i) , if i ∈ E, j = ∆
1, if i, j = ∆

(17)

and the transition rate vector is

µλ(i) =
{

µ(i) + λ(i), if i ∈ E
0, if i = ∆.

(18)
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If we let the matrix Gλ(i, j) = µλ(i)(Pλ(i, j)− I(i, j)) denote the generator
of Y λ, then it is well known that the transition function Pλ

t (i, j) = P [Y λ
t =

j|Y λ
0 = i] for all i, j ∈ E∆ is given by the matrix-exponential solution

Pλ
t = eGλt =

+∞∑
n=0

tn

n!
Gn

λ. (19)

A further simplification is obtained by noting that

Gλ(i, j) = G(i, j)− Λ(i, j) (20)

for all i, j ∈ E where Λ is a diagonal matrix defined as

Λ(i, j) =
{

λ(i), if j = i
0, if j 6= i.

(21)

Since Gλ(∆, j) = 0 and Gλ(i,∆) = λ(i) for all i ∈ E and j ∈ E∆, we can rewrite
(19) as

Pλ
t (i, j) = eGλt(i, j) = e(G−Λ)t(i, j) (22)

for all i, j ∈ E.
Now, note that our construction of Y λ implies

T1 = inf{t ≥ 0; Y λ
t = ∆} (23)

and T1 is the first-passage-time to the absorbing state ∆. So, it has a phase-type
distribution and, in particular,

Pi[T1 > t] = Pi[Y λ
t ∈ E] =

∑

j∈E

Pλ
t (i, j) =

∑

j∈E

e(G−Λ)t(i, j). (24)

Note that in reliability applications where a device fails exponentially with a
failure rate that depends on the randomly changing environment, (24) gives the
survival function. In this case, the mean time to failure is another quantity of
interest. Using the Markov property, it can be computed by solving the system
of linear equations

Ei[T1] = µλ(i)−1 +
∑

j∈E

Pλ(i, j)Ej [T1] (25)

for i ∈ E so that the explicit solution is

Ei[T1] =
∑

j∈E

[I − Pλ]−1 (i, j)µλ(j)−1. (26)

Following [33] an ergodic analysis can be developed. Suppose that both X
and Y are ergodic processes with limiting distributions ν(j) = limn→+∞ P [Xn =
j] and π(j) = limt→+∞ P [Yt = j]. This implies that ν is the unique solution of
ν = νP with the normalizing condition

∑
i∈E ν(i) = 1. It can be shown that
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π(j) =
ν(j)/µ(j)∑

k∈E (ν(k)/µ(k))
. (27)

Using Theorem 1 of [33], we can obtain

lim
t→+∞

Ei[Nt − λ̂t] =
∑

j∈E

π(j)

[
λ̂− λ(j)

µ(j)

]
(28)

and

lim
t→+∞

Ei[Nt]
t

= λ̂ =
∑

j∈E

π(j)λ(j). (29)

It follows from Fischer and Meier-Hellstern [12], the expected number of arrivals
until time t is

Ei[Nt] = λ̂t +j∈E

([
eGt − I

]
[G + Π]−1

)
(i, j)λ(j) (30)

where Π(i, j) = π(j).

3.2 Markov Modulated Bernoulli Process

We now consider discrete-time models for systems observed periodically at dis-
crete time points. The system survives each period with a probability that
depends on the state of the prevailing environment in that period. Since each
period ends with a failure or survival, one can model this system as a Bernoulli
process where the success probability is modulated by the environmental pro-
cess. Using this setup with a Markovian environmental process, Özekici [27]
focuses on probabilistic modeling and provides a complete transient and er-
godic analysis. We suppose throughout the following discussion the sequence
of environmental states Y = {Yt; t = 1, 2, · · · } is a MC with some transition
matrix P on a discrete state space E.

Consider a system observed periodically at times t = 1, 2, · · · and the state
of the system at time t is described by a Bernoulli random variable

Xt =
{

1, if system is not functioning at time t
0, if system is functioning at time t.

Given that the environment is in some state i at time t, the probability of failure
in the period is

P [Xt = 1|Yt = i] = π(i) (31)

for some 0 ≤ π(i) ≤ 1. The states of the system at different points in time con-
stitute a Bernoulli process X = {Xt; t = 1, 2, · · · } where the success probability
is a function of the environmental process Y .

Given the environmental process Y, the random quantities X1, X2, · · · rep-
resent a conditionally independent sequence, that is,

P [X1 = x1, X2 = x2, · · · , Xn = xn|Y ] =
n∏

k=1

P [Xk = xk|Y ]. (32)
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In the above setup, the reliability of the system is modulated by the environ-
mental process Y which is assumed to be a MP and thus the model is referred
to as the Markov Modulated Bernoulli Process (MMBP). If the system fails in
a period, then it is replaced immediately by an identical one at the beginning
of the next period. It may be possible to think of the environmental process Y
as a random mission process such that Yt is the tth mission to be performed.
The success and failure probabilities depend on the mission itself. If the device
fails during a mission, then the next mission will be performed by a new and
identical device.

If we denote the lifetime of the system by L, then the conditional life distri-
bution is

P [L = m|Y ] =
{

π(Y1), if m = 1
π(Ym)

∏m−1
j=1 (1− π(Yj)) if m ≥ 2.

(33)

Note that if π(i) = π for all i ∈ E, that is, the system reliability is independent
of the environment, then (33) is simply the geometric distribution P [L = m|Y ] =
π(1− π)m−1. We can also write

P [L > m|Y ] = (1− π(Y1))(1− π(Y2)) · · · (1− π(Ym)) (34)

for m ≥ 1.
We represent the initial state of the MC by Y1, rather than Y0, as it is

customarily done in the literature, so that it represents the first environment
that the system operates in. Thus, most of our analysis and results will be
conditional on the initial state Y1 of the Markov chain. Therefore, for any event
A and random variable Z we set Pi[A] = P [A|Y1 = i] and Ei[Z] = P [Z|Y1 = i]
to express the conditioning on the initial state.

As pointed out by [27], the life distribution satisfies the recursive expression

Pi[L > m + 1] = (1− π(i))
∑

j∈E

P (i, j)Pj [L > m] (35)

with the obvious boundary condition Pi[L > 0] = 1. The survival probabilities
can be explicitly computed via

Pi[L > m] =
∑

j∈E

Qm
0 (i, j) (36)

where Q0(i, j) = (1− π(i))P (i, j). Using (36), the conditional expected lifetime
can be obtained as

Ei[L] =
+∞∑
m=0

∑

j∈E

Qm
0 (i, j) =

∑

j∈E

R0(i, j) (37)

where R0(i, j) =
∑+∞

m=0 Qm
0 (i, j) = (I − Q0)−1(i, j) is the potential matrix

corresponding to Q0.
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4 Application of HMMs in Software Reliability

The notion of an operational profile was introduced by Musa et al. [17]. An
operation is an externally initiated task performed by a system “as built”. The
operational profile of any software describes how users employ the system. It is
a quantitative and probabilistic characterization of how a system will be used.
An operational profile is defined as a set of operations and the probabilities of
their occurrence; see Musa [25].

Optimal testing problems involving operational profiles are discussed in de-
tail in [29] and [34]. Once testing is completed, the software is released to the
users. This is done in an uncontrolled setting and the sequence of operations as
well as their durations are now random. This operational process or the envi-
ronmental process now modulates the parameters of the reliability model and
play a crucial role in software reliability assessment. Now, the environmental
state Yt at time t represents the operation performed by the user. The analysis
of the software failure process obviously depend on the stochastic structure of
the operational process.

In Özekici and Soyer [31], Y is assumed to be a MP. Briefly, this means that
the sequence of operations performed is a MC and the amount of time spent on
each operation is exponentially distributed. More precisely, we let Xn denote
the nth operation that the system performs and Tn be the time at which the
nth operation starts. Following our developmen X is a MC with some transition
matrix

P (i, j) = P [Xn+1 = j|Xn = i] (38)

and
P [Tn+1 − Tn > t|Xn = i] = e−µ(i)t (39)

so that the duration of the nth operation is exponentially distributed with rate
µ(i) if this operation is i. The probabilistic structure of the operational process
is given by the generator A(i, j) = µ(i)(P (i, j)− I(i, j)) where I is the identity
matrix.

An overview of software failure models is presented in Singpurwalla and
Soyer [43]. Perhaps the most important aspect of these models is related to the
stochastic structure of the underlying failure process. This could be a “times-
between-failures” model which assumes that the times between successive fail-
ures follow a specific distribution whose parameters depend on the number of
faults remaining in the program after the most recent failure. One of the most
celebrated failure models in this group is that of Jelinski and Moranda [18]
where the basic assumption is that there are a fixed number of initial faults
in the software and each fault causes failures according to a Poisson process
with the same failure rate. After each failure, the fault causing the failure is
detected and removed with certainty so that the total number of faults in the
software is decreased by one. In the present setting, the time to failure distribu-
tion for each fault in the software is exponentially distributed with parameter
λ(k) during operation k and this results in an extension of the Jelinski-Moranda
model.
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In dealing with software reliability, one is interested in the number of faults
Nt remaining in the software at time t. Then, N0 is the initial number of faults
and the process N = {Nt; t ≥ 0} depicts the stochastic evolution of the number
of faults. If there is perfect debugging, then N decreases as time goes on,
eventually to diminish to zero. Defining the bivariate process Zt = (Yt, Nt), it
follows that Z = (Y,N) is a MP with discrete state space F = E×{0, 1, 2, · · · }.
As pointed out in [43], this follows by noting that Y is a MP and N is a process
that decreases by 1 after an exponential amount of time with a rate that depends
only on the state of Y . In particular, if the current state of Z is (i, n) for any
n > 0, then the next state is either (j, n) with rate µ(i)P (i, j) or (i, n− 1) with
rate nλ(i). If n = 0, then the next state is (j, 0) with rate µ(j). Note that 0 is
an absorbing state for N .

This implies that the sojourn in state (i, n) is exponentially distributed with
rate

β(i, n) = µ(i) + nλ(i) (40)

and the generator Q of Z is

Q((i, n), (j, m)) =




−(µ(i) + nλ(i)), j = i,m = n
µ(i)P (i, j), j 6= i,m = n
nλ(i), j = i,m = n− 1

. (41)

Reliability is defined as the probability of failure free operation for a specified
time. We will denote this by the function

R(i, n, t) = P [L > t|Y0 = i,N0 = n] = P [Nt = n|Y0 = i,N0 = n] (42)

defined for all (i, n) ∈ F and t ≥ 0. Note that this is equal to the probability that
there will be no arrivals until time t in a Markov modulated Poisson process with
intensity function λ̂(t) = nλ(Yt). Thus, following Fischer and Meier-Hellstern
[12], we can obtain the explicit formula

R(i, n, t) =
∑

j∈E

[
e(A−nΛ)t

]
ij

(43)

where

e(A−nΛ)t =
+∞∑

k=0

tk

k!
(A− nΛ)k (44)

is the exponential matrix and Λ(i, j) = λ(i)I(i, j).
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[28] S. Özekici, Stochastic hazard process, Wiley Encyclopedia of Operations
Research and Management Science (New York) (J. J. Cochran, ed.), Wiley,
2010, pp. xx–xx.
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