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Summary. In this paper we present a Bayesian framework for modeling uncertainty about a
population’s health state preferences. Such a framework is motivated by the need to analyze
preference-based measurement data that arise from evaluation of health states by a sample of
individuals. The Bayesian framework leads to population utility estimation and health policy
evaluation by introducing a probabilistic interpretation of the multiattribute utility theory
(MAUT) models used in health economics. In so doing, our approach combines ideas from the
MAUT approach of Keeney and Raiffa [10] and Bayesian view point to provide an alternate
method of modeling preferences.
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1 Introduction

Preference based measurement of health (PBMH) methods have been developed to
be used in economic evaluation of health policies. Use of preference based measures
requires quantification of health state preferences by a group of individuals. This pref-
erence data is used as a sample to develop an aggregate measure for the population
preferences. A recent overview of PBMH methods can be found in Brazier and Roberts
[4]. The methods that quantify preference based measurement of health (PBMH) are
referred to as the health related quality of life measures (HRQoL). The methods include

Health Utilities Index (HUTI)of Torrance et. al [17]
Quality of Well-Being (QWB) scale of Kaplan et. al [9]
Short Form (SF-6D) survey of Brazier, Roberts and Deverill [2].

These measures are used to quantify a population’s preferences over health states
that have multiple dimensions. Thus, the measures are based on multi attribute evalu-
ation of states using preference weights and scores. They provide a single index number
for each health state. Typically an index value ”1” denotes perfect health and ”0” de-
notes death. In the health economics literature, these index values are referred to as
utility. Elicitation of utility requires sophisticated procedures based on standard gam-
bles as discussed in Brazier and Deverill [1]. A more simplified approach for obtaining
preference measures is to ask respondents to assign values to health states directly and
have the analyst convert these to utilities.
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Preference based measures such as QWB and SF-6D use what is referred to as the
composite approach for estimation of the multi attribute utility function for the health
states. The composite approach involves direct elicitation of utility of multidimensional
health states and requires more health states than that can be evaluated by a single
respondent; see Brazier [3]. Regression type models are used to extrapolate the values
of health states that are not included in the survey. An alternative for estimation of
the utilities for the health states is the decomposed approach employed in the HUI
This method uses the MAUT framework of Keeney and Raiffa [10] and determines a
functional form for the multi attribute utility function of health states. The decom-
posed approach is based on simplifying assumptions such as preferential independence
and wutility independence; see for example, Keeney [11]. The approach yields simpler
forms of utility functions and substantially reduces the valuation effort by decompos-
ing the problem into one-dimensional elicitation problems. In addition to providing
evaluations of all possible health states, the decomposed approach is also flexible in
modeling interactions using multiplicative utility functions. As noted by [3], this is un-
like the composite approach where there is no standard method for determining the
states required to estimate a model with interaction terms. Hazen [8] describes how
the additive or multiplicative decomposition within QALYs can be constructed using
the independence concepts and discusses how they relate to HUI.

Both the composite and decomposed approaches provide us with a sample of health
state valuation data, that is, with health state utilities from a sample of individuals.
The objective is to estimate the health state utilities of the population based on this
sample and use the estimated population utility function to evaluate different health
policy alternatives. Statistical methods have been considered by earlier researchers such
as Dolan [5] and Brazier et al.[2]. In general these approaches employed linear models
with normally distributed error terms. As pointed out by Brazier [3], these models,
that used data from the composite approach, "have estimated crude summary terms
for interactions” and have required range of transformations to deal with highly skewed
data.

Most of the earlier models and associated statistical methods have used classical
sampling theoretic approaches. More recently, Bayesian approaches have been consid-
ered in the health economics literature. For example, nonparametric Bayesian models
are proposed by Kharroubi, O’Hagan and Brazier [12] and by Kharroubi et. al [13] for
HRQoL estimation of a population. Standard gambles are used by the authors to elicit
utilities of health states from the sample of individuals. Although a sampling method
is used by authors to avoid an individual going large number of gambles, the proposed
composite approach still requires large number of evaluations of health states. In view
of this, following Musal et. al [15], we consider a parametric Bayesian approach and use
a decomposed model in our framework. Our framework consists of modeling attribute
utilities, modeling attribute weights and using a multiattribute model for aggregation.

In Section 2 we introduce a model for single attribute utilities. Using a decomposed
approach and an additive utility function, modeling of attribute weights is presented
in Section 3. We discuss Bayesian aggregation of attribute utilities and weights as well
as probabilistic evaluation of health state preferences in Section 4. Concluding remarks
are given in Section 5.
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2 Bayesian Modeling of Attribute Utilities

Assume that preference ordering of the K. + 1 levels with respect to each attribute
c=1,...,C,
XCJ =< Xc’z << Xc,KC =< XC’KCJFl (1)

is identical for the population, where X, ; denotes the jth level of a single attribute c.
We are interested in making inference about the unknown population utilities

u(Xep2) <+ <u(Xek.), (2)

where u(X. 1) = 0 and u(X, x,+1) = 1. We may have a prior opinion on these values
and we are interested in updating this prior opinion based on the sample utility mea-
surements on the N individuals. In general u(X z j) = uz ; 1s the utility declared by the
i — th individual for attribute ¢ at level j.

We focus on a single criterion and to reflect the ordering that applies to the popu-
lation we assume that for all individuals

O<ug<ug<- - <ug <l (3)

It is desirable to have a probability model for utility vectors u’ = (uj, ..., u% ) which
is consistent with the ordering and flexible enough to reflect the diminishing utility
scenario encountered in many applications. As suggested in Musal et. al [15], the or-
dered Dirichlet model can provide that kind of flexibility in describing different utility
scenarios. The ordered Dirichlet model has been previously used in reliability growth
modeling by Mazzuchi and Soyer [14] and Erkanli, Mazzuchi and Soyer [7] who pointed
out such properties with respect to behavior of reliabilities over time. The ordered
Dirichlet model for the utility vector u = (ug,us, ..., ux) is given by

TR & (¢ N = Y A
p( |/g7 ) Hﬁglf(ﬁa])g( J J—l) ) ()

where u; = 0 and ug 41 = 1 and the distribution is defined over the simplex (3). The
model parameters are 3 and « such that 3 > 0,a; > 0 and Z]K:Zl a; = 1.

In the ordered Dirichlet model (4), the marginals are beta densities denoted as
(] 8,0) ~ Beta(a}, 8(1 - a})) (5)

for j = 2,... K, where o] = 2122 ak, Eluj | B,a] = af and 3 is the precision
parameter where lower values are associated with a more diffused distribution of the
utility level. As pointed out by van Dorpe, Mazzuchi and Soyer [6], for 7 < j, the model

implies that
(u; — ;) | 8,0 ~ Beta(B(a; — af), 8(1 — a; +a7)). (6)

Thus, the changes in the adjacent utilities (u; — u;_1), for j =2,..., K + 1, follow a
beta distribution where the mean is given by

Eluj —uj-1]8,0] = (o] —aj_q) = a;. (7)



4 R. Muzaffer Musal and Refik Soyer

It follows from the above that, a; can be interpreted as the expected increase in
utility as a result of going from attribute level X;_; to attribute level X; whereas o is
the expected utility at attribute level X ;. We note that o} is increasing with j, implying
that for the population we expect utility is an increasing function of the attribute when
high values of the attribute are desirable. If Elu; —uj_1 | §,a] = «; is a decreasing
sequence in j, then we expect that the marginal utility is diminishing as the attribute
level gets larger. In this case, we will have Efu; | 3,a] = «j is discrete concave in
7. Thus, the model is attractive in that it allows for incorporation of different prior
information about expected behavior of utilities into the analysis. Such prior beliefs
can be used in specification of the prior distribution of the parameters o and .

In the Bayesian paradigm uncertainty about all unknown quantities are described
probabilistically. Thus, completion of Bayesian modeling of attribute utilities requires
us to specify the prior distribution of o and 3. We will denote the prior by p(3, a). It
is not unreasonable to assume that o and g are independent a priori. Since 3 is the
precision parameter, a reasonable prior distribution for 5 is the gamma distribution. As
pointed out by Musal et. al [15], in specifying the prior distribution of a, one can use the
properties of the ordered Dirichlet model discussed above. More specifically, if we have
prior beliefs about the monotonocity of «;’s, then a distribution which reflects that
belief will be the appropriate choice. However, in modeling health state preferences,
one of the objectives is to infer about such monotonic behavior and thus, a prior which
does not force an ordering of a;’s is more desirable. Since the ordered Dirichlet model

(4) requires that ZJK:; o = 1, a natural prior for « is the Dirichlet distribution

R SO N T
p(oz | b’ ) - H;(:_gl F(baj) jl;[Q(aj) ’ (8)

where a; > 0 and b > 0 are specified parameters such that ZJK:'EI a; = 1. Note that

a;’s are the expected values of ;’s and b is the precision parameter of the model.

2.1 Bayesian Analysis of Utilities

Our objective is to describe uncertainty about the population utility u = (ug, ..., uk)
based on the information provided by the sample of N utility vectors
u' = (ub, ub, ... ub)i=1,...,N,

where u'’s are assumed to follow the ordered Dirichlet model (4). Thus, given sample
utilities u™ = (u',u?,...,u”) from the N individuals, we are interested in the poste-
rior predictive distribution p(uu®). The distribution p(uju®') describes our inferences
about population utilities for a given attribute.

The posterior predictive distribution is obtained via the calculus of probability as

plofn) = [y 5.0)0(5. ol 9)
Using the conditional independence of u and u”, given 8 and a, (9) reduces to

p(uju™) = / p(ulB, a)p(8, alu™)dBda, (10)

s
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where p(u|3, a) is given by (4) and p(3, a|u’¥) is the posterior distribution of the param-
eters of the ordered Dirichlet model. Once sample utilities u” is available, uncertainty
about a and (3 is revised via Bayes’ rule

p(B, alu®) o« L(B, a;u™ )p(B, o), (11)

where L(3, a; u®) is the likelihood function based on the ordered Dirichlet distribution
(4). More specifically, we have

£(@.a50") = [ | ey o

Uy ) 12
1= Jj=

J

The posterior distribution p(3, a|u’¥) can not be obtained analytically for any choice
of the prior distributions discussed earlier. However, we can draw samples from the pos-
terior distribution using Markov chain Monte Carlo (MCMC) methods; see Musal et.
al [15] for details. Since p(3, aju’Y) is not analytically available, evaluation of the pos-
terior predictive distribution (10) requires use of Monte Carlo methods. Given samples
(B, a(s))il from the posterior distribution p(3, aju’¥), we can approximate (10) via
the Monte Carlo average

s
plafu) % 2 3 (s, o). (13
s=1
By using the predictive distribution we can make probability statements about utilities
at each of the attribute levels and approximate the population’s expected utility function
by plotting the E(u; |u®) versus the attribute level X ;'s. We can also provide posterior
probability bounds for the utilities.

3 Modeling Attribute Weights

The development in Section 2 is presented for a single attribute, that is, for attribute
¢, with K, + 1 levels and observed utility vectors u} = (u.,, ..., u’c ) for individuals
1 =1,..., N.In general for specifying the ordered Dirichlet model for the multiattribute
problem, all model parameters are indexed by ¢, that is, we actually have (0., a.) with
prior p(fe.ac).

If we have mutual utility independence of the attributes (see for example, [10]),
then the above development can be easily extended to C' attributes. In this case the
parameters (3., a.) are assumed to be independent for ¢ = 1,...,C and thus the
approach presented in Section 2 yields independent posterior predictive distributions
p(ucul)) for ¢ = 1,...,C. The mutual utility independence of the attributes justifies
the use of multiplicative multiattribute utility model as considered by Torrance, Boyle
and Hardwood [16] for describing society’s preference for health states. Furthermore, if
additive utility independence (see Keeney [11]) can be justified, then the multiattribute
utility function can be written as

C
u(X1, Xa, ..., Xc) = > weu(Xe), (14)
c=1
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where w,’s are welghts representing the relative importance of the attributes such that
0<wc<1andz _ we =1

In the multiattribute utility (MAU) function (14), u(X.)’s are unknown utilities
whose posterior distributions are available to us via using Monte Carlo based methods.
The weight vector w = (wq,,ws,...,we) is also an unknown quantity. Thus, from a
Bayesian perspective for given levels of X1, X5,..., X, uncertainty about the MAU
needs to be described probabilistically. Such a development requires us to consider a
probability model for the attribute weight vector w. The model needs to be consistent
with the requirement that Zle w, = 1 and that the weights are negatively correlated.
An appropriate probability model for this case is the Dirichlet distribution

C
p(w | 5,7y) = H )t (15)

Hc 1 F /Q'Yc c=1
where v = (71,...,7¢). It is well known that all the marginal distributions are Beta
densities, that is,
(we | K,7) ~ Beta (mc, (Y0 — %))7 (16)

where v9 = Ecczl ~. = 1. Prior distributions of the unknown parameters x and  can
be specified to reflect these properties. For example, the prior for v can be specified as
a Dirichlet distribution. Since 7.’s represent expected attribute weights in the model,
the prior parameters can be chosen to reflect our best guesses about attribute weights
in the population. As before, a gamma density is a reasonable prior for the precision
parameter s.

Health state preference data typically include attribute weights w® = (w}, wi, ..., wh),
t=1,...,N, elicited from the sample of N individuals (see for example, [15]). As be-
fore, we treat the N weight vectors as the samples from the Dirichlet distribution in
(15). Thus, it is possible to develop Bayesian machinery to revise our uncertainty based
on such data.

If we specify, p(k, ), as the prior distribution for £ and ~ then given sample weights,
w?, from N individuls, the posterior distribution is obtained via

p(r,yIw™) o< Lk, v; w™)p(k,7), (17)

where the likelihood function, L(k,~;w?") is based on the Dirichlet model (15). The
posterior distribution (17) can not be analytically obtained for any reasonable choice of
the prior p(k,7). As before, MCMC methods can be used to draw samples from (17).
As in the case of attribute utilities of Section 2, the objective is to make inference about
the attribute weight vector of the population. Thus, we are interested in obtaining the
posterior predictive distribution

p(wlw™) = / p(wlk, )p(s, 7w )drdly. (18)

. . . . . S
The integral in (18) can not be obtained analytically, but given samples (x(*), (%)) "_
from the posterior distribution (17) we can approximate it via the Monte Carlo average

p(wlw™ p(w|s®), ), (19)

W+~
M-
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where p(w|k(®),4(*)) is the Dirichlet density. Note that once we simulate the weight
vectors w(®), for s = 1,..., S, from the Dirichlet distribution, then we can make prob-
ability statements about attribute weights such as Pr(w; > w;|w’). In other words,
we can infer probabilistically if certain attributes are more important than the others
for the population.

4 Bayesian Evaluation of Health States

In Sections 2 and 3, we have presented a Bayesian framework for modeling attribute
utilities and weights. In so doing, we have discussed how to obtain two sets of posterior
samples, that is, sample of utilities for given attributes and attribute weights. Using
these, we can make probability statements using the MAU function (14). Given samples
from the posterior predictive distributions p(u.|u®) for ¢ = 1,...,C and p(w|w®), we
can evaluate the population utility distribution for a specific health state.

For a specific health state, A; with the attribute levels, (X 4,,..., X¢,4,), We can
obtain the probability distribution of the corresponding MAU via the Monte Carlo
evaluation of u (X1, 4,, ..., Xc,4,) using (14). For A;, we can write

C
w(Xy, 4,0 Xea,) =Y we(Xea,), (20)
c=1

and using the posterior samples we can obtain a histogram estimate of the posterior
distribution of u (X1, 4;, ..., X¢,4,). In a similar manner, we can make probability state-
ments on whether health state A; is preferred to state A; in the population, that is,

Pr(A; = Ajjul .. ud,wh).
This probability is equivalent to
P?”{’LL ()(1’,41.7 - 7XC,A,;) >u (XLA]., Ce 7XC,AJ-) \uiv7 - ,ug7WN} (21)

which can be approximated using the posterior samples.

The literature on the preference based measures of health generally has considered
other alternatives to the additive model. A common method of decomposition that
is used to account for potential interactions in attribute utilities is the multiplicative
utility model. Musal et. al [15] considered a multiplicative model and developed a
Bayesian framework similar to what is presented here.

5 Concluding Remarks

In this paper we have presented a Bayesian framework for modeling uncertainty about
a population’s health state preferences. Our development is based on the composite
approach as in Torrance, Boyle and Hardwood [16]. The Bayesian framework involves
modeling both the attribute utilities and attribute weights and provides probabilistic
evaluation of health state preferences. Since our focus has been on the Bayesian per-
spective here, computational issues involving implementation of MCMC methods for
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developing posterior inferences are not discussed in the paper. For this we refer the
interested reader to Musal et. al [15] where such methods are applied in analysis of
actual health state preference data.

It is possible to consider extensions of the models proposed here. For example,
the precision parameters (§.’s, in modeling utilities, can be assumed to be constant
across the attributes. This can be one way to impose a dependence structure for dif-
ferent attribute utilities. Other possible extensions include incorporation of covariate
information in the utility and attribute weight models and taking into consideration
heterogeneity of individuals. Such issues have been consdered in [15].
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