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Abstract

This study revisits the celebrated p-efficiency concept introduced by Prékopa [23] and defines a
p-efficient point (pLEP) as a combinatorial pattern. The new definition uses elements from the com-
binatorial pattern recognition field and is based on the combinatorial pattern framework for stochastic
programming problems proposed in [16]. The approach is based on the binarization of the proba-
bility distribution, and the generation of a consistent partially defined Boolean function representing
the combination (F, p) of the binarized probability distribution F and the enforced probability level
p. A combinatorial pattern provides a compact representation of the defining characteristics of a
pLEP and opens the door to new methods for the generation of pLEPs. We show that a combinatorial
pattern representing a pLEP constitutes a strong and prime pattern and we derive it through the solu-
tion of an integer programming problem. Next, we demonstrate that the (finite) collection of pLEPs
can be represented as a disjunctive normal form (DNF) and propose an mixed-integer programming
formulation allowing for the construction of the DNF that is shown to be prime and irreducible. We
illustrate the proposed method to a problem studied by Prékopa [25].

Keyword: A. Prékopa

1 Introduction

The concept of p-efficiency, introduced by Prékopa [23], permits the solution of probabilistically con-

strained mathematical programming problems of the form

min g(x) (1)

subject to Ax ≥ b (2)

P
(
h j(x) ≥ ξ j, j ∈ J

)
≥ p (3)

x ∈ R × Z . (4)

The |J|-dimensional random vector ξ is discretely distributed and its components ξi are not required

to be independent. We denote by x the m-dimensional vector of continuous (R) and integer (Z) deci-

sion variables, by p a prescribed reliability level, by P a probability measure, and by g(x) : Rm → R

the objective function. The system of inequalities (2), with A ∈ Rt×m and b ∈ Rt, represents the set

of deterministic constraints, and the probabilistic constraint (3) is a joint one that ensures that the |J|
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inequalities h j(x) ≥ ξ j ( j ∈ J) hold jointly with a probability at least equal to p. The above program-

ming problem is well-known to be non-convex and NP-hard, and has been receiving sustained attention

[10, 15, 18, 19, 29]. Besides the p-efficiency concept, solution methods based on mixed-integer pro-

gramming (MIP) approaches (e.g., [19, 29]) or robust optimization (e.g., [7]) have also been used to

solve problem (1)-(4).

Within the p-efficiency approach, one has to elicit the p-efficient points of the probability distribution

of ξ prior to reformulating (1)-(4) as an equivalent disjunctive or as an MIP problem.

Definition 1 [23] Let p ∈ [0, 1]. A point v ∈ Rn is called a p-efficient point (pLEP) of the discrete

probability distribution function F, if

F(v) ≥ p, and (5)

there is no v′ ≤ v, v′ , v such that F(v′) ≥ p . (6)

A number of enumerative algorithms have been proposed [3, 15, 18, 25, 26] for the generation of

pLEPs. Others elicit the pLEPs using a cone generation algorithm in [10], a primal-dual approach [9],

or, most recently, through the solution of a mathematical programming problem [17].

In Section 2, we shall revisit the p-efficiency concept and define a pLEP as a pattern. The new def-

inition is derived from the combinatorial pattern recognition [11, 28, 20, 33] framework for stochastic

programming problems proposed in [16]. A combinatorial pattern provides a compact representation

of the defining characteristics of a pLEP and opens the door to new mathematical approaches for the

generation of pLEPs. In Section 3, we show that any combinatorial pattern representing a pLEP consti-

tutes a strong [13] and prime [4] pattern and propose an integer programming formulation allowing for

its generation. In Section 4, we represent the (finite) collection of pLEPs as a disjunctive normal form

(DNF), propose an MIP formulation allowing for the construction of the DNF, and demonstrate show

that the DNF is prime and irreducible [14]. Section 5 provides an illustration of the proposed approach

to a problem studied by Prékopa [25]. Section 6 provides concluding remarks.

2 Combinatorial Pattern Modeling Framework - Redefining p-Efficiency
For self-containment purposes, we present in this section a comprehensive overview of the combinato-

rial pattern modeling framework developed to solve probabilistic programming problem. The reader is

referred to [16] for more detailed explanations along with examples illustrated the approach. The pattern

modeling framework involves the following steps: (i) the binarization of the probability distribution, and

(ii) the representation of the combination (F, p) of the binarized probability distribution F and the en-

forced reliability level p as a partially defined Boolean function (pdBf). We shall see that this modeling

framework permits to redefine a pLEP as a combinatorial pattern, which, in turn, allows for the use of a

new approach to derive pLEPs.

Let Ω be the finite set of the possible realizations k of the |J|-dimensional random vector ξ with

distribution function F. A realization k is represented by a |J|-dimensional deterministic vector ωk.
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Definition 2 [16] Consider the Boolean parameter Ik. A realization k is called p-sufficient (Ik = 1) if

and only if P(ξ ≤ ωk) = F(ωk) ≥ p and is p-insufficient (Ik = 0) otherwise.

Using the above concept, we partition Ω into two disjoint sets of p-sufficient Ω+ and p-insufficient

Ω− realizations: Ω = Ω+ ⋃
Ω− with Ω+ ⋂

Ω− = ∅. Note that any p-efficient realization is p-sufficient,

but that the converse is not necessarily true.

The binarization of the probability distribution consists in the mapping of each real-valued vector ωk

into a binary vector βk. The value of its components βk
i j is defined with respect to a set of cut points with

the notation ci j denoting the ith cut point associated with component ξ j.

βk
i j =

{
1 if ωk

j ≥ ci j

0 otherwise
(7)

with

ci′ j < ci j ⇒ βk
i j ≤ β

k
i′ j for any i′ < i, j ∈ J, k ∈ Ω . (8)

This provides us with the n-dimensional binary vector βk =

[
βk

11, . . . , β
k
n11, . . . , β

k
i j, . . . , β

k
n j j, . . .

]
, which is

a vertex of {0, 1}n, where n =
∑
j∈J

n j is the sum of the number n j of cut points for each component ξ j.

The binarization approach defines the binary projection ΩB = Ω+
B
⋃

Ω−B of Ω, where Ω+
B (resp., Ω−B)

denotes the set of binarized p-sufficient (resp., p-insufficient) realizations, and provides a pdBf g(Ω+
B,Ω

−
B)

defined by the pair of sets (Ω+
B,Ω

−
B) such that Ω+

B,Ω
−
B ⊆ {0, 1}

n. The pdBf represents the combination

(F, p) of a probability distribution F and a probability level p.

Evidently, the cut points are parameters whose values cannot be defined arbitrarily. Their values

must be such that they preserve the disjointedness of the binary set projections Ω+
B and Ω−B. Indeed, we

want to prevent p-sufficient and p-insufficient realizations from having the same binary projection. This

requires the use of a consistent [16] set of cut points and we generate the so-called sufficient-equivalent

set [16] whose construction is immediate.

Definition 3 [16] A sufficient-equivalent set of cut points Ce is consistent and includes a cut point ci j

for any value ωk
j taken by any of the p-sufficient realizations on any component ξ j:

Ce = {ci j : ci j = ωk
j, j ∈ J, k ∈ Ω+} . (9)

The pdBf g(Ω+
B,Ω

−
B) associated with the sufficient-equivalent set of cut points is referred to as the

sufficient-equivalent pdBf.

In order to generate a pLEP, we cannot restrict our attention to the realizations included in the support

Ω of the random variable ξ. Besides those, we also consider all points or realizations that can qualify as

p-efficient. For k to be p-efficient, a necessary condition (see Definition 1) is that:

F j(ωk
j) ≥ p, j = 1, . . . , |J| , (10)

where F j is the marginal probability distribution of ξ j. Thus, for every j, we create the set of values Z j

Z j = {ωk
j : F j(ωk

j) ≥ p, k ∈ Ω, j = 1, . . . , |J|} , (11)
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define the direct product [25]
Z = Z1 × . . . × Z j × . . . × Z|J| , (12)

and obtain the extended set Ω
⋃

Z of realizations.

As shown in [16], the application of the binarization process to the extended set of realizations

provides the representation of the upper (resp., lower) envelope of the integer hull of the p-insufficient

(resp., p-sufficient) realizations. It permits the elimination of a number of points and the derivation of

the set Ω̄ of relevant realizations. The eliminazion process rests on the following two principles. First,

multiple realizations have the same binary image and we only keep one of them. Second, by definition of

the sufficient-equivalent set of cut points, the necessary conditions (10) for p-efficiency can be rewritten

as βk
1 j = 1, j ∈ J, and we can delete any realization k such that βk

1 j = 0 for any j ∈ J.

3 ep-Patterns
3.1 Definition

The following concepts are used in the remaining part of the manuscript. The Boolean variables βi j, i =

1, . . . , n j, j ∈ J and their complements β̄i j are called literals. A conjunction of literals t =
∧

i j∈P
βi j

∧
i j∈N

β̄i j

with P
⋂

N = ∅ is a term [4, 14] with degree d = |P| + |N | equal to the number of literals involved in the

definition of t. The set P (resp., N) defines the set of non-complemented (resp., complemented) literals.

A term t covers a realization k, which is denoted by t(k) = 1, if k satisfies all the conditions defined by t,

or alternaltively stated, if the products of the values βk
i j taken k on the literals βi j defining t is equal to 1:

t(k) = 1 ⇔
∧
i j∈P

βk
i j

∧
i j∈N

β̄k
i j = 1 (13)

⇔

 ωk
j ≥ ci j, i j ∈ P

ωk
j < ci j, i j ∈ N

. (14)

The coverage of a term is the number of realizations covered by it. A pattern is also a conjunction of

literals and can be viewed as a term that satisfies a ”coverage condition”. Indeed, a pattern is a subcube of

the n-dimensional unit cube {0, 1}n that intersects Ω̄+
B (i.e., it covers at least one p-sufficient realization)

but does not intersect Ω̄−B (i.e., it does not cover any p-insufficient realization).

Using the above concepts, we redefine a p-efficient point as a combinatorial pattern, therefater re-

ferred to as a p-pattern and denoted by tp.

Definition 4 A term tp =
∧

i j∈P
βi j is called an ep-pattern of the probability distribution function F at the

reliability level p ∈ [0, 1] if∨
k∈Ω̄+

B

tp(k) ≥ 1 and
∧

k∈Ω̄−B

tp(k) = 0, and (15)

i f f or t j′ = βi−1 j′
∧

i j∈P\(i j′)

βi j, j′ = 1, . . . , |J|, we have
∨

k∈Ω̄−B

t j′(k) ≥ 1. (16)
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Definition 4 and Definition 1 enforce equivalent conditions. There is an immediate correspondence

between (15) (resp., (16)) and condition (5) (resp., (6) in Definition 1.

3.2 Properties
An ep-pattern has the following features. First, for the constraint (3) to hold, it is clear that at least one

condition must be imposed with respect to each component of the random vector. Thus, an ep-pattern

includes at least one literal βi j associated with each j and is of degree at least equal to |J|. Second, it

was shown [16] that any pdBf g(Ω̄+
B, Ω̄

−
B) representing (F, p) is a positive monotone (isotone) Boolean

function and it is known (see, e.g., [32]) that patterns representing an isotone function (i.e., an ep-pattern

for g(Ω̄+
B, Ω̄

−
B)) do not need to contain complemented literals. Third, building on the result [16] that any

prime pattern representing g(Ω̄+
B, Ω̄

−
B) includes exactly one literal for each j, it follows that any prime ep-

pattern is of degree |J|. A prime pattern is one that does not include any redundant literals [13]. Further,

we have that:

Proposition 1 An ep-pattern is a prime pattern.

Proof. Let tp =
∧

i j∈P
βi j be an arbitrary ep-pattern. If tp is not prime, then it includes one (or more)

redundant literal and its removal does not transform tp into a term that is not a pattern.

Consider an arbitrary literal βi j′ , (i j′) ∈ P and remove it from tp, giving us the term t′ =
∧

i j∈P\(i j′)
βi j. If

βi j′ is redundant, then t′ should be an ep-pattern, which requires that
∧

k∈Ω̄−B

t′(k) = 0.

From (16), we have that tp is an ep-pattern if t j′ = βi−1, j′
∧

i j∈P\(i j′)
βi j is such that

∨
k∈Ω̄−B

t j′(k) ≥ 1. Compare

t j′ = βi−1, j′
∧

i j∈P\(i j′)
βi j and t′ =

∧
i j∈P\(i j′)

βi j the term resulting from the removal of βi j′ . It is clear that any

realization covered that by t j′ is also covered by t′. Thus,
∨

k∈Ω̄−B

t′(k) ≥
∨

k∈Ω̄−B

t j′(k) ≥ 1. This shows that the

term t′ is not an ep-pattern and thus that any ep-pattern is prime. �

Also, since a pattern t is defined as strong [13] if there is no pattern t′ such that the set of realizations

covered by t′ contains those covered by t, we have that:

Proposition 2 A term is an ep-pattern if and only if it is a p-strong pattern.

Proof. Consider any ep-pattern tp with coverage |Qp|. Only terms that impose less demanding require-

ments than those linked with tp can cover a set of realizations that strictly include Qp. The question to

settle is whether there exists any such pattern t′ (
∧

k∈Ω̄−B

t′(k) = 0). If this is the case, tp is not strong. Since

each immediate ”neighbor” t j′ of tp which requires the satisfaction of marginally weaker requirements

covers at least one p-insufficient realization (16), the answer to the above question is negative.

Consider a strong pattern t with coverage |Q|. The definition of a strong p-pattern implies that: (i) t covers

p-sufficient realizations exclusively and (ii) there is no other pattern whose set of covered realizations

strictly includes Q. It is immediate to see that (i) implies (15). Similarly, (ii) implies that any term whose

set of covered realizations strictly includes Q, and which is thus less demanding than t, is not a pattern.

This is equivalent to (16). �
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3.3 Generation
The proposed mechanism to generate ep-patterns is based on the solution of a mathematical programming

formulation. As shown in Section 3.2, a ep-pattern has degree |J|, equal to the dimension of the random

vector, and, while excellent enumerative methods [1, 2, 5, 12] have been proposed to derive combinatorial

patterns, they are described [4, 31] as very computationally demanding to generate patterns of degree 4

or larger.

The derived p pattern tp and the literals that it includes are defined with respect to the optimal values

(u∗,w∗) of the binary decision variables in the integer programming problem IP1 [16]. We denote by

ui j (21) the binary decision variable indicating whether the corresponding literal βi j is included (u∗i j = 1)

or not (u∗i j = 0) in tp. The binary variables w (22) are used to determine the coverage of tp: wk∗ = 1

if the p-sufficient realization k is covered by tp and is equal to 0 otherwise. The objective function

(17) maximizes the coverage |Qp|, Qp =
{
k : wk∗ = 1, k ∈ Ω+

B

}
of tp. Since βk

i j is a parameter indicating

whether ωk
j ≥ ci j (βk

i j = 1) or not (βk
i j = 0), it follows that (18) forces wk to take value 0 if k ∈ Ω+

B is not

covered by tp, while (19) precludes tp from covering any k ∈ Ω−B. Constraints (20) ensure that exactly

one non-complemented literal per component ξ j is included in tp.

Theorem 1 The optimal solution (u∗,w∗) of IP1

z = max
∑

k∈Ω̄+
B

wk (17)

subject to
∑
j∈J

n j∑
i=1
βk

i jui j + |J| (1 − wk) ≥ |J|, k ∈ Ω̄+
B (18)

∑
j∈J

n j∑
i=1
βk

i jui j ≤ |J| − 1, k ∈ Ω̄−B (19)

n j∑
i=1

ui j = 1, j ∈ J (20)

ui j ∈ {0, 1}, j ∈ J, i = 1, . . . , n j (21)

wk ∈ {0, 1}, k ∈ Ω̄+
B (22)

defines the ep-pattern

tp =
∧
u∗ij=1

j∈J,i=1,...,n j

βi j

of degree |J| with maximal coverage |Qp| =
∣∣∣∣{k : wk∗ = 1, k ∈ Ω̄+

B

}∣∣∣∣.
Proof. The coverage constraints (18) and (19) ensure that tp is a pattern, while (20) guarantee that the

degree of tp is equal to |J|. The optimal solution of IP1 generates the pattern with largest coverage, and

is thus strong and an ep pattern (Proposition 2).

Denoting by z∗ the optimal value of IP1, we obtain an upper bound (|Ω+
B| − z∗) on the number of

ep-patterns. It is important to note that the binarization process allows the removal (marginal quantile

condition, same binary projection) of a very large number of p-insufficient realizations which facilitates

the solution of IP1.
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4 Disjunctive Normal Form of ep-Patterns

In this section, we represent the collection of ep-patterns as a disjunctive normal form (DNF) and propose

an integrated and a sequential approaches to construct the DNF.

A disjunction
S∨

s=1
ts of terms ts is called a DNF, and has degree d if |Ps

⋃
Ns| ≤ d, s = 1, . . . , S ,

with Ps (resp., Ns) denoting the set of uncomplemented (resp., complemented) literals involved in the

definition of the term ts. The objective is here to construct a DNF containing the exhaustive series of

ep-patterns tp
s . Thus, the constructed DNF f =

S∨
s=1

tp
s is such that:{

f (k) ≥ 1, k ∈ Ω+
B

f (k) = 0, k ∈ Ω−B
. (23)

4.1 Integrated Construction
We propose an MIP formulation allowing for the construction of a DNF (23) that contains the minimal

number of patterns needed to cover all ep- sufficient realizations. The method is integrated in that all the

patterns included in the DNF are obtained through the solution of a single MIP problem. Every pattern

included in the DNF is an ep-pattern.

The following notations are used. Let M = |Ω+
B| − z∗ be an upper bound (see Section 3.3) on the

number of patterns needed to cover each k ∈ Ω+
B, with z∗ denoting the optimal value of IP1. The

continuous variable hs (30) indicates whether the term tp
s is included (h∗s = 1) or not (h∗s = 0) in the DNF

(33) defined by the optimal solution of IP1. The binary variable wk
s (31) indicates whether k ∈ Ω+

B is

covered (wk∗
s = 1) or not (wk∗

s = 0) by the pattern tp
s included (h∗s = 1) in the DNF. The binary variable

ui j,s (32) indicates whether βk
i j is included (u∗i j,s = 1) or not (u∗i j,s = 0) in the definition of tp

s . The MIP

problem MIP1 minimizes (24) the number of patterns (tp
s : h∗s = 1) in the support set of the DNF.

Theorem 2 The optimal solution (u∗,w∗,h∗) of MIP1

min
M∑

s=1
hs (24)

subject to
∑
j∈J

n j∑
i=1
βk

i jui j,s + |J| (1 − wk
s) ≥ |J|, k ∈ Ω̄+

B, s = 1, . . . ,M (25)

∑
j∈J

n j∑
i=1
βk

i jui j,s ≤ |J| − 1, k ∈ Ω̄−B, s = 1, . . . ,M (26)

wk
s ≤ hs, k ∈ Ω+

B, s = 1, . . . ,M (27)
M∑

s=1
wk

s ≥ 1, k ∈ Ω+
B (28)

n j∑
i=1

ui j,s = 1, j ∈ J, s = 1, . . . ,M (29)

0 ≤ hs ≤ 1, s = 1, . . . ,M (30)

wk
s ∈ {0, 1}, k ∈ Ω+

B, s = 1, . . . ,M (31)

ui j,s ∈ {0, 1}, i = 1, . . . , n j, j ∈ J, s = 1, . . . ,M (32)
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defines a DNF

f =
∨
h∗s =1

tp
s (33)

containing the minimal number of ep-patterns

tp
s =

∧
u∗ij,s=1,

j∈J,i=1,...,n j

βi j

of degree |J| and coverage

|Qp
s | =

∣∣∣∣∣∣∣∣
k :

∑
j∈J

n j∑
i=1

βk
i j u∗ij,s = |J|, k ∈ Ω̄+

B


∣∣∣∣∣∣∣∣ (34)

needed to cover all the ep- sufficient realizations

f (k) ≥ 1, k ∈ Ω+
B .

Proof. Constraints (25) and (26) guarantees that each term tp
s is a pattern: (25) identifies which k ∈ Ω+

B

is covered by tp
s , while the set of constraints (26) does not allow any k ∈ Ω−B to be covered by any of

the generated terms tp
s . The minimization of the number of patterns included in f implies that each tp

s

is strong and thus a ep-pattern (Proposition 2). Constraints (28) ensures that each k ∈ Ω+
B is covered

by at least one pattern included in the DNF, since each wk
s can only take 1 if tp

s (k) = 1 and h(s) = 1.

Indeed, besides (25) forcing wk
s to take value 0 if k is not covered by tp

s , (27) ensures that wk
s is equal

to 0 if tp
s is not included (h∗s = 0) in f . Constraint (29) ensures that each term tp

s contains exactly one

literal associated with each component ξ j. Hence, tp
s has degree |J|. The coverage |Qs| of tp

s is equal to

the number (34) of k ∈ Ω+
B which satisfy all the conditions imposed by tp

s . �

Note that we dot need to explicitly impose the decision variables hs to be binary in MIP1. In the optimal

solution of MIP1, the components of h will naturally take value 0 or 1, when they are constrained to be

in interval [0, 1]. Since the objective function minimizes
M∑

s=1
hs, each hs is set to its minimum (0), if the

corresponding ep-pattern tp
s is not needed to guarantee the coverage of all ep-sufficient realizations. On

the other hand, if tp
s is needed to satisfy the coverage condition, at least one of the wk

s, k ∈ Ω̄−B takes value

1, which implies (27) that the corrsponding hs is equal to 1.

The introduction of the set of auxiliary constraints hs ≥ hs+1, s = 1, . . . , (M − 1) could facilitate the

solution of MIP1. Alternatively, we could have the set of constraints
∑

k∈Ω+
B

wk
s ≥

∑
k∈Ω+

B

wk−1
s+1, s = 1, . . . , (M−

1) which would rank the patterns tp
s in decreasing order of coverage: |Qs| ≥ |Qs+1|, s = 1, . . . , (M − 1)

and tp
1 would be the strong ep-pattern with maximal coverage defined by the optimal solution of IP1.

From a computational point of view, it is important to generate a DNF that is as simple as possible

[34]. The “simplicity” of a DNF is typically assessed with respect to the degree and the number of the

patterns included in the DNF. In that respect, the minimal and prime features are coveted properties. A

DNF said to be minimal or irredundant [14] if the removal of one of its patterns results in a different

mapping {0, 1}n → {0, 1}, and it is prime [14] if all the patterns it includes are prime.
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Corollary 1 The optimal solution of MIP1 defines a prime DNF f =
∨

h∗s =1
tp
s .

It is straightforward, since the DNF only includes ep-patterns and those are prime by construction.

Corollary 2 The optimal solution of MIP1 defines a minimal DNF.

Proof. The optimal solution of MIP1 defines the smallest cardinality set of patterns for covering every

k ∈ Ω+
B. It implies that the removal of any one of the patterns tp

s in f leaves at least one p-sufficient

realization uncovered, thus modifying the mapping {0, 1}n → {0, 1}. �

It is well documented [10] that each discrete probability distribution has a finite, yet unknown, num-

ber of ps. The solution of MIP1 answers that question.

Corollary 3 The number N p of ep-patterns and of pLEPs of the probability distribution F at the relia-

bility level p is equal to N p =
M∑

s=1
h∗s .

4.2 Sequential Construction

The above MIP contains M · (n + |Ω+
B|) integer and M continuous decision variables. If the number |Ω+

B|

of sufficient realizations is high, the solution of the above problem could be challenging. In this section,

we develop an alternative, sequential method for the derivation of a DNF containing a set of ep-patterns

covering all p-sufficient realizations. The approach involves the solution of a finite sequence of integer

programming problems (i.e., N p of them) of smaller dimension than MIP1. Each iteration s involves three

steps: (i) solution of an IP problem IPs and generation of an ep-pattern tp
s ; (ii) determination of the set

Qs of realizations covered by tp
s and update of the residual set Hs of uncovered p-efficient realizations;

(iii) verification of stopping criterion. We denote by Hs the set of p-sufficient realizations that are not

covered by any of the ep-patterns generated at iterations s′ = 1, . . . , (s − 1).

A) Initialization: Set s = 0.

B) Iterative process:

1. Set s← s + 1.

Derivation of an ep-pattern through the solution of problem IPs:

z = max
∑

k∈Hs

wk (35)

subject to
∑
j∈J

n j∑
i=1
βk

i jui j + |J| (1 − wk) ≥ |J|, k ∈ Hs (36)

∑
j∈J

n j∑
i=1
βk

i jui j ≤ |J| − 1, k ∈ Ω̄−B (37)

n j∑
i=1

ui j = 1, j ∈ J (38)

ui j ∈ {0, 1}, j ∈ J, i = 1, . . . , n j (39)

wk ∈ {0, 1}, k ∈ Hs (40)
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The optimal solution (u∗,w∗) defines the ep-pattern tp
s . Go to 2.

At s = 1, Hs = Ω+
B and IP1 = IP1.

2. Determination of coverage Qs =
{
s : wk∗ = 1, k ∈ Hs

}
of tp

s and update of Hs = Hs−1 \Qs. Go to 3.

3. Verification of stopping criterion. If Hs = ∅, then stop. Otherwise, go to 1.

It is obvious that the proposed method converges finitely and stops after N p iterations. The output is

a minimal and prime DNF f =
∨

s=1,...,Np
tp
s covering all p-sufficient realizations.

5 Illustration
This section illustrates the proposed approach with the numerical example introduced by Prékopa [25] in

which the support set of the bivariate random variable ξ is: Ω = {ω j : 0 ≤ ω j ≤ 9, ω j ∈ Z}, j = 1, 2. The

binarization process is carried out with Matlab and the mathematical programming problems are solved

with the CPLEX 12.1 solver.

Let p = 0.6. The sufficient equivalent set of cut points Ce comprises 12 cut points: n1=7 and n2=5:

Ce = {3, 4, 5, 6, 7, 8, 9 ; 5, 6, 7, 8, 9}. The binarization of the set of relevant realizations (containing 29

p- sufficient realizations and 6 p-insufficient ones) and the pdBf associated representing F and p = 0.6

are given in Table 1. We derive the prime ep-pattern with maximal coverage using problem IP1. The

problem is solved at the root node and defines the optimal solution (u∗,w∗) = (u∗, 28)), with u∗11 = u∗22

= 1, and all the other components of u∗ = 0. The prime ep-pattern with maximal coverage is thus

tp = β11 β22, and it covers 28 p-sufficient realizations. To generate, using the integrated approach, the

minimal and prime DNF composed of ep-patterns covering all p-sufficient realizations, we solve problem

MIP1. The problem is solved in less than 2 seconds. The DNF includes the two (N p=2) following

patterns: f = β11 β22︸ ︷︷ ︸
tp
1

∨
β71 β12︸ ︷︷ ︸

tp
2

. Two iterations are needed to generate a prime DNF covering all

p-sufficient realizations using the sequential method (Section 4.2).

When p = 0.8, Ce comprises 9 cut points: Ce = {4, 5, 6, 7, 8, 9 ; 7, 8, 9}: n1=6 and n2=3. The set of

relevant realizations contains 13 p-sufficient realizations and 5 p-insufficient ones. The corresponding

pdBf is given in Table 2. The prime ep-pattern with maximal coverage is β11 β22. It covers 17 p-sufficient

realizations. We obtain the same DNF with both the integrated and the sequential approaches. It contains

two patterns: f = β11 β22
∨

β61 β12.

6 Conclusion
This study revisits the p-efficiency concept introduced by Prékopa [23]. We redefine a pLEP as a so-

called ep-pattern. The new definition uses elements from the combinatorial pattern recognition field

[11, 28, 33] and is based on the combinatorial pattern framework for stochastic programming problems

proposed in [16]. The method involves the binarization of the probability distribution, and the generation

10



Table 1: Illustrative Example: p=0.6

ωk βi j

k ω1 ω2 β11 β21 β31 β41 β51 β61 β71 β12 β22 β32 β42 β52 Ik

1 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 1
3 3 7 0 0 0 0 0 0 0 0 0 0 0 0 1
4 3 8 0 0 0 0 0 0 0 0 0 0 0 0 1
5 3 9 0 0 0 0 0 0 0 0 0 0 0 0 1
6 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0
7 4 6 0 0 0 0 0 0 0 0 0 0 0 0 1
8 4 7 0 0 0 0 0 0 0 0 0 0 0 0 1
9 4 8 0 0 0 0 0 0 0 0 0 0 0 0 1
10 4 9 0 0 0 0 0 0 0 0 0 0 0 0 1
11 5 5 0 0 0 0 0 0 0 1 0 0 0 0 0
12 5 6 0 0 0 0 0 0 0 1 0 0 0 0 1
13 5 7 0 0 0 0 0 0 0 1 0 0 0 0 1
14 5 8 0 0 0 0 0 0 0 1 0 0 0 0 1
15 5 9 0 0 0 0 0 0 0 1 0 0 0 0 1
16 6 5 0 0 0 0 0 0 0 1 1 0 0 0 0
17 6 6 0 0 0 0 0 0 0 1 1 0 0 0 1
18 6 7 0 0 0 0 0 0 0 1 1 0 0 0 1
19 6 8 0 0 0 0 0 0 0 1 1 0 0 0 1
20 6 9 0 0 0 0 0 0 0 1 1 0 0 0 1
21 7 5 0 0 0 0 0 0 0 1 1 1 0 0 0
22 7 6 0 0 0 0 0 0 0 1 1 1 0 0 1
23 7 7 0 0 0 0 0 0 0 1 1 1 0 0 1
24 7 8 0 0 0 0 0 0 0 1 1 1 0 0 1
25 7 9 0 0 0 0 0 0 0 1 1 1 0 0 1
26 8 5 0 0 0 0 0 0 0 1 1 1 1 0 0
27 8 6 0 0 0 0 0 0 0 1 1 1 1 0 1
28 8 7 0 0 0 0 0 0 0 1 1 1 1 0 1
29 8 8 0 0 0 0 0 0 0 1 1 1 1 0 1
30 8 9 0 0 0 0 0 0 0 1 1 1 1 0 1
31 9 5 0 0 0 0 0 0 0 1 1 1 1 1 1
32 9 6 0 0 0 0 0 0 0 1 1 1 1 1 1
33 9 7 0 0 0 0 0 0 0 1 1 1 1 1 1
34 9 8 0 0 0 0 0 0 0 1 1 1 1 1 1
35 9 9 0 0 0 0 0 0 0 1 1 1 1 1 1
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Table 2: Illustrative Example: p=0.8

ωk βi j

k ω1 ω2 β11 β21 β31 β41 β51 β61 β12 β22 β32 Ik

1 4 7 1 0 0 0 0 0 1 0 0 0
2 4 8 1 0 0 0 0 0 1 1 0 1
3 4 9 1 0 0 0 0 0 1 1 1 1
4 5 7 1 1 0 0 0 0 1 0 0 0
5 5 8 1 1 0 0 0 0 1 1 0 1
6 5 9 1 1 0 0 0 0 1 1 1 1
7 6 7 1 1 1 0 0 0 1 0 0 0
8 6 8 1 1 1 0 0 0 1 1 0 1
9 6 9 1 1 1 0 0 0 1 1 1 1

10 7 7 1 1 1 1 0 0 1 0 0 0
11 7 8 1 1 1 1 0 0 1 1 0 1
12 7 9 1 1 1 1 0 0 1 1 1 1
13 8 7 1 1 1 1 1 0 1 0 0 0
14 8 8 1 1 1 1 1 0 1 1 0 1
15 8 9 1 1 1 1 1 0 1 1 1 1
16 9 7 1 1 1 1 1 1 1 0 0 1
17 9 8 1 1 1 1 1 1 1 1 0 1
18 9 9 1 1 1 1 1 1 1 1 1 1

of a consistent partially defined Boolean function representing the combination (F, p) of the binarized

probability distribution F and the enforced probability level p.

To qualify as p-efficient, a point has to satisfy multiple requirements. These can be captured by

a combinatorial ep-pattern which provides a compact representation of the defining characteristics of

a pLEP and opens the door to new mathematical approaches for the generation of pLEPs. We show

that any pattern representing a pLEP is strong and prime [12] and we propose an integer programming

formulation allowing for the generation of an ep-pattern. We also show that the (finite) collection of

pLEPs can be represented as a prime and irreducible DNF and propose an MIP formulation allowing for

the construction of the DNF. Its optimal solution defines the cardinality of the set of pLEPs. We also

design a sequential method to derive the exhaustive collection of ep-patterns. We illustrate the proposed

approach to a problem studied by Prékopa [25].
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