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1. Introduction 

In this article we introduce methods that are new in Finance and have been developed in 

applied mathematics for solving large linear systems of equations. These systems are of 

the form Ax b= , where the matrix A is either invertible or non-invertible. There have 

been significant advances in the field of applied mathematics during the last two decades 

following improvements in computer technology.  Such are the Krylov subspace 

methods. They are iterative methods that generate a sequence of approximate solutions in 

the space spanned by powers of the matrix A  as follows: starting with the vectorb , we 

compute Ab , and then multiply that vector by A to find 2A b and so on. These algorithms 

are among the most efficient solution approximation methods currently available in 

numerical linear algebra (Saad 2003). Krylov subspace methods are summarized in a 

review article by Simoncini and Szyld (2006).  Among these, GMRES (Generalized 

Minimum RESidual), introduced by Saad and Schultz (1986), has been most prominent 

for solving linear systems with a square non-singular matrix.  However, the GMRES 

algorithm may breakdown when the matrix is singular, as in our application to portfolio 

management.  Recent work by Reichel and Ye (2005) studies the various properties of 

GMRES algorithm at the point of breakdown and proposes an extension of the algorithm, 

BFGMRES (Breakdown Free Generalized Minimum RESdual), which can be applied to 

solving large linear systems with a singular matrix. 

Assuming a mean-variance optimization objective, Markowitz (1952) showed that 

the optimal portfolios can be represented by an efficient frontier in the expected return- 

standard deviation space. The derivation of this efficient frontier requires two types of 

inputs; the expected return of each stock and the variance-covariance matrix of stock 
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returns. Since finding reliable estimates of the expected returns is the most difficult task 

(see Merton 1980), recent academic research (see DeMiguel et al. 2009 or Ledoit and 

Wolf 2003) has focused on the derivation of the global minimum variance portfolio that 

only requires estimates of the variance-covariance matrix of the returns. Specifically, if x  

represents the portfolio weights in the risky securities, Tx its transpose, A the variance-

covariance matrix of the returns, and1 the vector of ones, then the global minimum 

variance portfolio is the solution of two linear equations: 

                                       Ax = 1       (1) 

                                      1Tx =1                        (2) 

Equation (1) shows that the portfolio weights of the global minimum variance portfolio 

depend on the inverse of the covariance matrix A . If A  is non singular, the solution of 

these two equations is 1 1/ ( )Tx A A∗ − −= 1 1 1 . In practice, the covariance matrix is often 

estimated from historical data available up to a given date, called the sample covariance 

matrix, and optimal portfolio weights are computed from this estimate. When the number 

of stocks considered is larger than the number of available historical returns, the sample 

covariance matrix is singular and equations (1) and (2) do not have a unique or well-

defined solution.  

There have been many attempts to find an invertible estimator of the covariance 

matrix. Currently, the most prominent estimators of the covariance matrix are the 

shrinkage estimators found in Chen et al. (1999), Bengtsson and Holst (2002), 

Jagannathan and Ma (2003), Ledoit and Wolf (2003, 2004) . The main idea is to 

substitute the singular matrix A  by an invertible matrix, called the shrinkage estimator, 

derive the corresponding global minimum portfolio and measure its out-of-sample 
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performance. A shrinkage estimator is a weighted average of the sample covariance 

matrix and an invertible covariance matrix estimator that imposes some type of structure. 

As such, a shrinkage estimator always gives an invertible covariance matrix estimator. 

Their main drawback is that one has to specify the structure of the invertible covariance 

matrix estimator, thus introducing specification error as it is difficult to “guess” what this 

structure is.  Moreover, the derivation of shrinkage estimators requires solving an 

additional minimization problem to find the shrinkage intensity or optimal weights for the 

two matrices. 

In this article, we use the break-down free version of the GMRES Krylov 

subspace algorithm to find an estimator of the global minimum variance portfolio. With 

this approach, we avoid imposing any a priori structure on the covariance matrix. We 

compute the out-of-sample performance of the global minimum variance portfolio and 

compare it with the performance of the shrinkage estimator proposed by Ledoit and Wolf 

(2003). The intuition here is that if we can implement an algorithm that circumvents the 

singularity of the sample covariance matrix and controls the estimation errors reasonably 

well, we can eliminate the specification error introduced from using a specific shrinkage 

target.  

  The article is organized as follows. In section 2, we introduce the Krylov 

subspaces iterative methods. In section 3, we describe the GMRES and BFGMRES 

algorithms. We provide a short description of the Ledoit and Wolf estimates of the 

covariance matrix in section 4. Section 5 describes the data used for the analysis 

performed in section 5, where we compare the out-of-sample performance of our estimate 
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of the global minimum variance portfolio with the one derived from the shrinkage 

estimator. We conclude in section 6. 

 

2. Krylov Subspaces 

Modern iterative methods for finding one (or a few) eigenvalues of large sparse matrices 

with only a few nonzero entries or for solving large systems of linear equations, focus on 

avoiding computationally expensive matrix-matrix operations, but rather multiply vectors 

by the matrix and work with the resulting vectors. Iterative methods generate a sequence 

of approximate solutions, where the main computational effort for constructing the k-th 

approximant from the previous one consists of one or a few matrix-vector 

multiplications. This is why large and sparse systems are usually solved iteratively: 

Starting with a vector, b, one computes Ab, then multiplies that vector by A to find A2b 

and so on.  

The power method underlying Krylov subspace methods can find the largest 

eigenvalue of a matrix A. If diag( ) T
iA U Uθ= is the spectral decomposition of the square 

matrix A, then diag( )k k T
iA U Uθ= . As k gets large, the diagonal matrix of eigenvalues 

diag( )k
iθ will be dominated by the largest eigenvalue 1

kθ . Also, 1| | / | |k kx x+ will converge 

to the largest eigenvalue and /k kx x  to the associated eigenvector. If the largest 

eigenvalue has multiplicity greater than one, then /k kx x  will converge to a vector in the 

subspace spanned by the eigenvectors associated with the largest eigenvalue. Once the 

first eigenvalue and corresponding eigenvector have been obtained, one can successively 
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restrict the algorithm to the null space of the known eigenvectors to get the other 

eigenvector/values. 

In practice, if 0x is a random vector and 1k kx Ax+ = , then /k kx x  approaches the 

eigenvector corresponding to the largest eigenvalue of A  when k increases. This simple 

algorithm is applied iteratively but is typically not very accurate for computing many of 

the eigenvectors because any round-off error tends to introduce slight components of the 

more significant eigenvectors back into the computation. Pure power methods can also 

converge slowly, even for the first eigenvector. In the context of solving large linear 

systems,  

, , ,N N NAx b A R x b R×= ∈ ∈                        (3) 

the power methodology described above starts at the seed vector b to form the so-called 

Krylov matrix: 2 1, , ,..., kb Ab A b A b−⎡ ⎤⎣ ⎦  

The order-k Krylov subspace generated by A and the random vector b is the linear 

subspace spanned by the first k powers of A applied to b  (starting from A0 = I); that is, 

   1span( , ,..., )k
kK b Ab A b−=                                        (4) 

The best known Krylov subspace methods are the Arnoldi, Lanczos (Golub and Van 

Loan 1996), GMRES (generalized minimum residual) and BiCGSTAB (stabilized 

biconjugate gradient) methods. All these methods can break down when the matrix is 

singular. We use the break down-free variant of the GMRES algorithm, BFGMRES 

(Reichel and Ye 2005), to address the problem of minimum variance portfolio. 

 

3. GMRES and BFGMRES 
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The Generalized Minimal Residual Error algorithm, henceforth referred to as GMRES, 

for solving large linear systems as in (3) is widely used among iterative methods. 

GMRES approximates the solution by the vector in a Krylov subspace with minimal 

residual. The Arnoldi iteration is used to find this vector. The method is well understood 

when A is non-singular, even though with existing computer power there are many 

competing numerical methods to solve such systems. We are interested in the application 

of the GMRES algorithm to covariance matrices that are large and rank deficient. In that 

case, the GMRES algorithm may break down and fail to provide a solution. 

To set the stage for presenting of the breakdown-free version of the GMRES 

algorithm, we first present the basic GMRES algorithm and the intuition behind it. We 

discuss when and why this algorithm fails and present a modification, BFGMRES, that 

tackles breakdowns. The latter is used to obtain the solution of the linear system in (3) 

when A is a singular matrix.  

 

3.1 Basic GMRES Algorithm 

This is an iterative algorithm where each iteration brings the approximation, kx , closer to 

the solution of the system. The algorithm is run until a predetermined threshold, i.e. a 

predetermined distance for kAx b− , is reached at which point it terminates. Suppose this 

distance is reached at the kth step and that the associated solution is kx . Then, kx  is 

declared as the solution of the optimization problem given by  

 k( , )
min Ax

k kx K A b
b

∈
−

                                                
(5) 
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where ( , )kK A b is the kth Krylov subspace generated by A  andb defined in (3). An initial 

value for the solution, 0x , is needed to start the algorithm. Without loss of generality, we 

set 0 0x = 2.   

 

Arnoldi Process 

At the heart of the GMRES algorithm is the Arnoldi process. The Arnoldi process 

can be thought of as the Gram-Schmidt orthogonalization process (see, for example, 

Golub and Van Loan 1996, p. 230-231) tailored to Krylov subspaces. The algorithm 

begins by taking a vector 1 / || ||v b b=  as the first Krylov subspace 1K , i.e. 1 span( )K b= , 

and it then iteratively generates the orthonormal basis for each subsequent Krylov 

subspace generated by A andb . In general, the orthonormal basis for 1( , )kK A b+  is 

generated from ( , )kK A b  by orthogonalizing the vector 1( ( , ))k kAv K a b+∈  against the 

previous subspace ( , )kK A b . This can be done in a step analogous to that in the Gram-

Schmidt process by taking 1 1, 1 ,( ... )k k k k k kv Av h v h v+ = − + +% where ,
T

i j i jh v Av= . The 

orthonormal basis vector is given by 1 1 1/ || ||k k kv v v+ + += % % and we define the matrix of 

orthonormal basis vectors of ( , )kK A b  as  

 [ ]1 2, ,...,k kV v v v=                                                  (6) 

                                                 
2 The algorithm was run with random vectors for x0 and there was no change in the solution. Although 
Smoch (1999) attributes the breakdown of the GMRES algorithm partly to the selection of the initial value, 
the breakdown-free version of the algorithm seemed to not be sensitive to the selection of the initial value. 
Note that although this initial condition does not satisfy equation (2) and does not correspond to a vector 
defining a portfolio, the results of the simulation would be unchanged if we were starting with a portfolio 
with equal weights (=1/N) in all securities. 
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Additionally, the Arnoldi process, at each iteration, creates a k k× upper Hessenberg3 

matrix T
k kV AV .  

From this we can write what is called the Arnoldi decomposition given by  

 1k k kAV V H+=                                                      (7) 

where kH  is a matrix of size ( 1)k k+ × given by 
1,

   
0 0 ... 

T
k k

k
k k

V AV
H

h +

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 . Here we have 

established a relationship among ( , ),k kK A b AV  and 1k kV H+ . For example, suppose the 

algorithm terminates at the kth step and hence we have ( , )kx K A b∈ . Then, there exists a 

y such that kx V y= , i.e. x is a linear combination of the columns of kV .  

Referring back to the minimization problem we began with, we can write 

1k k kAx AV y V H y+= =  by the Arnoldi decomposition. Similarly, since the first basis 

vector is 1 / || ||v b b=  we can write 1 1 1kb v V eβ β += =  where 1e is the first column of the 

identity matrix and bβ = .  

With these relationships, we can write an equivalent form of the minimization 

problem as follows:  

 1( , )
min min

k
k

kx k A b y
Ax b e H yβ

∈ ∈
− = −

R                             
  (8) 

This is a simpler and more familiar form of the minimization problem that can be 

solved using a method such as ordinary least squares. This y by its definition is the vector 

of coefficients of the solution kx in the kth Krylov subspace. Hence, the kth iterate of the 

                                                 
3 An upper Hessenberg matrix is a matrix with zero entries below the first subdiagonal (the diagonal entries 
to the left and below the main diagonal). 
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solution in the kth
 Krylov subspace ( , )kK A b can be written as k kx V y= . The GMRES 

Algorithm is explicitly described in the Appendix. 

 

3.2 Breakdown of the GMRES algorithm 

If the matrix A is non-singular the solution of the system is guaranteed under GMRES. 

When a solution exists, GMRES’s finding this solution is equivalent to the Krylov 

subspace not being augmented further, i.e. if the solution exists in ( , )kK A b  we 

have 1 0kv + = . This means that the last row of the matrix kH  is zero. Let kH −  be 

kH without its last row. Then by the Arnoldi decomposition k k kAV V H −=  since the matrix 

of basis vectors V is not augmented any further either.  

 We can also establish the following results: The column vectors in kV  span an 

invariant subspace of A; The eigenvalues of kH −  are equal to the eigenvalues of A. 

The non-singular A has no zero eigenvalues. Hence, kH −  has no zero eigenvalues 

and it is non-singular. Using the Arnoldi decomposition, we have reduced the least 

squares problem to the solution of a non-singular linear system.  

Here we see that the ability to solve the system depends on the fact that A is non-

singular. However, when A is singular, which is the case we are interested in, we cannot 

obtain that kH −  is non-singular. In this case the GMRES algorithm will not succeed and 

will break down. Reichel and Ye (2005) solve the problem of the Arnoldi process 

breaking down by creating a more general form of the Arnoldi process, which they use in 

their Breakdown-Free GMRES algorithm.  
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3.3 Breakdown-Free GMRES Algorithm 

We first introduce notation used by Reichel and Ye (2005). The kth iteration of the 

Arnoldi decomposition of the matrix A can be rewritten as 

T
k k k k kAV V H f e= + where k k

kH R ×∈  is an upper Hessenberg 

matrix, N k
kV R ×∈ , 1kV e b= , T

k k kV V I= , 0T
k kV f = , kI  denotes the identity matrix of order k, 

and ke is the kth axis vector. When 0kf ≠  it is convenient to define the matrices  

( 1)
1 , N kk

k k
k

fV V R
f

× +
+

⎡ ⎤
= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

 and ( 1)ˆ k k k
k T

k k

H
H R

f e
+ ×⎡ ⎤

= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

.  

We can then write the decomposition as 1
ˆ

k k kAV V H+= which is equivalent to the form of 

the Arnoldi decomposition presented in Section 3.2.  

This procedure can be explained intuitively: Suppose a breakdown occurs at step 

M of the algorithm. This means that the subspace ( , )MK A b  does not contain a solution of 

the system, i.e. the column vector M Mv V∈  is not required to generate the solution.  

However it can be shown that any solution of the system is in 1( , ) ( )p
MK A b N A− +  where 

( )pN A  is the null space of pA and p is the index of the matrix A, i.e. the largest Jordan 

block of A associated with the zero eigenvalue is of order p (Reichel and Ye 2005, 

Theorem 2.1).  

Thus, whenever there is a breakdown at step M of the process, the subspace 

1( , )MK A b−  has to be extended to capture the component of the solution in ( )pN A  which 

is an eigenvector of pA corresponding to the zero eigenvalue. This eigenvector can be 

approximated with a Krylov subspace generated by a new vector v̂ , which we can select 
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randomly. We select a random vector v̂ of the same size as Mv , orthogonalize this vector 

against the column vectors in MV and replace Mv with this vector v̂ .   

Next, we create a matrix 1 pU v⎡ ⎤= ⎣ ⎦  with the old Mv  that was replaced by v̂ . We 

will explain the reason below. From 1
ˆ

M M MAV V H+= we have that 

1 1, 1 1 2, 1 2 1, 1 1 , 1...M M M M M M M M MAv h v h v h v h v− − − − − − −= + + + +  and this can be written as 

1 1, 1 1 2, 1 2 1, 1 1 , 1 1...M M M M M M M MAv h v h v h v h u− − − − − − −= + + + +  where the notation 1u means that 

it is the first column of the matrix 1U .  

We can now proceed with the algorithm where for subsequent iterations 

, 1, 2,...k M M M= + + we require the iterates of the matrix ,  kV V , satisfy the condition 

that the columns of kV are orthogonal to the columns of 1kV −  as well as orthonormal to the 

columns of 1U . This procedure can be written as 

follows: 1 1( ) ( )T T
k k k k k kAv V V Av U U Av f− − = and then we can write 

1 , k
k k

k

fV V
f+

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦                

         (9) 

and 

 

       (10) 

 

We can now test to see whether ˆ
kH  is full rank. If ˆ

kH  is not full rank, its condition 

number will be very large. To detect this, we set a predefined tolerance level for the 

ˆ k
k T

k k

H
H

f e
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
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condition number of ˆ
kH 4. If the condition number of ˆ

kH is greater than this tolerance 

level, we continue the generalized procedure. When the condition number of ˆ
kH falls 

below this tolerance level, we revert to the standard Arnoldi process. In this manner we 

have found a way to proceed with the algorithm even when a breakdown has occurred.  

Suppose another breakdown occurs at step S M> . We proceed in a similar 

fashion. The vector Sv  is appended to matrix 1U  giving a new matrix [ ]2 1   vSU U= . A 

new random vector, v% , is generated and orthogonalized against the columns of 1SV −  and 

U2. The last column of SV  is replaced by this v% and the steps are followed identically to 

what was done after the first breakdown. In this manner the BFGMRES algorithm averts 

the failure of the standard Arnoldi decomposition and finds a way to proceed. The 

algorithm is summarized in the Appendix. 

 

4. Ledoit-Wolf Shrinkage Estimates of the Covariance Matrix 

When the number of stocks N is larger than the number of historical returns per stock T, 

Ledoit and Wolf (2003, 2004) propose replacing the sample covariance matrix as an 

estimate of the true covariance matrixΣ with a weighted average of the sample 

covariance matrix and a low-variance target estimator, arg
ˆ

t etΣ , an invertible positive 

definite symmetric N N× matrix. The noninvertible matrix Σ̂  is replaced with the 

convex linear combination  

arg
ˆ ˆ ˆ(1 )LW t etλ λΣ = − Σ + Σ                 (11) 

                                                 
4 The condition number of a matrix is the ratio of the largest and the smallest singular values of the matrix.  
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where [0,1]λ∈ is the shrinkage intensity and controls how much weight is given to the 

target invertible matrix: for 1λ =  the shrinkage estimate equals the shrinkage target 

arg
ˆ

t etΣ ; for 0λ = , the unrestricted sample covariance matrix estimate Σ̂  is recovered. This 

is a well-known technique in Statistics called shrinkage, originally developed by Stein 

(1956). The key advantage of this construction is that the regularized estimate ˆ
LWΣ  is 

always invertible and outperforms the individual estimators Σ̂  and arg
ˆ

t etΣ  in terms of 

accuracy. 

 The target matrix Ledoit and Wolf use is Sharpe’s (1963) single index model 

estimator, which imposes a lower dimensional structure on the estimator. In (12) the 

shrinkage intensity λ controls how much structure is imposed: the heavier the weight, the 

stronger the single-index model-based structure. 

 The shrinkage intensity is chosen by minimizing a risk function, ( )R λ , such as 

the mean squared error (MSE), which in a matrix setting is the squared Frobenius norm: 

( )
2

2 arg
arg

1 1

ˆ ˆ( ) || (1 ) || (1 )
p p

t et
t et ij ij ij

i j
R E E s sλ λ λ λ λ σ

= =

⎛ ⎞
= Σ + − Σ −Σ = + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑       (12)                                

where ( )ijσΣ = , arg
arg

ˆ ( )t et
t et ijsΣ = and ˆ ( )sijΣ = . 

Ledoit and Wolf (2003) derived a methodology for choosing λ that guarantees 

minimizing ( )R λ without the need of having to specify any underlying distribution, and 

without requiring computationally expensive procedures such as MCMC (Markov Chain 

Monte Carlo), bootstrap, or cross-validation. In more detail, Sharpe’s (1963) single-index 

model assumes that stock returns are generated by the model: 

0it i i t itx xα β ε= + +                          (13) 
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where the residuals itε  are uncorrelated to market returns 0tx and to one another. Also, 

within stocks the variance is constant, that is, ( ) .it iiVar ε δ=  The covariance matrix 

implied by this model is 

                                                  
2
00

Tσ ββΦ = + Δ                            (14) 

where 2
00σ  is the variance of market returns, β is the vector of slopes and Δ  is the 

diagonal matrix containing the residual variances .iiδ This model can be estimated by 

running a regression of stock i’s returns on the market. 

If we denote ib  the slope estimate and iid  the residual variance estimate, then the 

single-index model yields the following estimator for the covariance matrix of stock 

returns, ( )ijφΦ = , 

                                                   
2
00

TF s bb D= +                             (15) 

where 2
00s is the sample variance of market returns, b is the vector of slope estimates and D 

is the diagonal matrix with the residual variance estimates iid  on the diagonal. Let ijf  

denote the ( , )-thi j entry of F.  The optimal shrinkage density is given by 

ˆ
max 0,min ,1

T
κλ∗ ⎧ ⎫⎧ ⎫= ⎨ ⎨ ⎬⎬
⎩ ⎭⎩ ⎭

         (16) 

where  

ˆˆˆ
ˆ

π ρκ
γ
−

=  

with 2

1 1

ˆ ( )
N N

ij ij
i j

f sγ
= =

= −∑∑ , { }
2

. .
1 1 1

ˆ ˆ ˆ,  ( )( ) /
N N T

ij ij it i jt j ij
i j t

x x y x s Tπ π π
= = =

= = − − −∑∑ ∑ , and  
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{ }{ }

, ,
1 1 1,

2
, . . .

1

ˆ ˆˆ ˆ   
2

1ˆ ( ) ( )( )

N N N
jj ii

ii ii ij jj ij
i i j j i ii jj

T

ii ij it i ii it i jt j ij
t

s sr
s s

x x s x x x x s
T

ρ π θ θ

θ

= = = ≠

=

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

= − − − − −

∑ ∑ ∑

∑
 

The optimal shrinkage density is truncated at 0 and 1 in order to avoid overshrinkage or 

negative shrinkage (negative λ) as in finite samples ˆ /Tκ may by higher than 1 or be 

negative. It is also worth noting that (17) is valid regardless of the sample size T. In 

particular, T can be substantially smaller than N, which is the case with the data 

considered in this article. 

 

5. Data 

We extracted equity returns from the Center for Research in Securities prices (CRSP) 

monthly database5. We focus on the period between January 1972 and December 2008. 

When generating covariance matrices we consider the calendar year January 1st through 

December 31st.  

We use the monthly returns to generate the sample covariance matrix using data 

from January of year 10t − until December of year t . This covariance matrix is used to 

generate the weights for the global minimum variance portfolio. We build this portfolio 

in January of year 1t +  and hold it until December of year 1t + . In this case the in-sample 

period is from January 1st of year 10t −  until December 31st of year t . The out-of-sample 

period is one year, from January 1st of year 1t +  until December 31st of year 1t + . To 

summarize, we build the minimum variance portfolio using the 10-year in-sample period 

                                                 
5 CRSP stores data on a security level rather than a company level. We only use common stock for this 
analysis, which corresponds to equities with a share code of 10 or 11.  
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and we compute its returns over the twelve months of the 1-year out-of-sample period. 

Using these twelve monthly returns, we compute the expected return, standard deviation 

of returns and Sharpe ratio on the out-of-sample period. To compute the Sharpe ratio, we 

use the monthly 3-month T-Bill rate (observed in the out-of-sample period) as a proxy for 

the risk-free rate. The T-Bill data are extracted from the Federal Reserve Economic Data 

(FRED). 

For each 11- year in-sample-out-of-sample period we considered only the equities 

that were available for the entire 11-year period. Equities that entered the 11-year 

window after the beginning of the period or that dropped out before the end of the period 

are omitted from the calculations. Equities with any missing returns are also removed 

within the window. The number of equities considered for all 27 periods ranges from 

1226 to 2416. Since we have 120 observations in each period, the sample covariance 

matrix is always very singular.     

 

6. Results  

In Ledoit and Wolf  (2003, 2004), different shrinkage methods are implemented and 

compared, and they find that the “shrinkage to market” outperforms the other shrinkage 

methods with their data set. We refer to “shrinkage to market” as the Ledoit and Wolf’s 

method in the rest of the article and we only use the “shrinkage to market” method as a 

basis of comparison.  

As this is an industry standard, we use the Sharpe ratio to compare the two 

methods. The Sharpe ratio is calculated as follows: 

Mean Monthly Out of Sample Return-Risk Free RateSharpe Ratio=
Standard Deviation of Monthly Returns
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In our calculations we use a one-year forecast window. Hence, we use the following 

formula to compute the Sharpe Ratio: 

Mean Out of Sample Returns Over 12 Months-Average 3-Month T-Bill Rate Over 12 MonthsSharpe Ratio=
Standard Deviation of Out of Sample Returns Over 12 Months  

 

<Insert Table 1> 

 

In Table 1, where the Sharpe Ratios for the two methods are reported, we see that 

in 17 out of 27 periods, or 63% of the time, the BFGMRES Sharpe ratios outperform the 

Ledoit and Wolf Sharpe ratios. To investigate whether the Sharpe ratios corresponding to 

the two methods over these 27 years are statistically significantly different, we first 

applied the Durbin-Watson Test for autocorrelation (see for example Gujarati 2003, p. 

467-472) to the two sets of Sharpe ratios to test whether there is temporal dependence. In 

both cases, the 27 Sharpe Ratios were not found to be serially correlated (p-value= 0.56 

for the BFGMRES Sharpe Ratios and p-value=0.66 for the Ledoit-Wolf Sharpe Ratios). 

Thus we can assume the BFGMRES and Ledoit-Wolf Sharpe Ratios are independently 

distributed over time. The correlation between the Sharpe Ratios of the two methods is 

0.97 indicating they are highly correlated within a year and cannot be assumed to be 

independent samples. Moreover, with 27 observations we cannot assess whether the 

Sharpe Ratios of the two methods are normally distributed, which is required in order to 

use Jobson and Korkie’s (1981) approach. We use the Wilcoxon signed-rank test (see, 

e.g. Hollander and Wolfe 1999, p. 36), the nonparametric analogue to the paired t-test for 

two related samples, to assess whether the median Sharpe Ratio for the GMRES method 

differs from the Ledoit-Wolf median Sharpe Ratio. The test has a p-value of 0.26 for 
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testing whether the two medians differ and a p-value of 0.13 for testing whether the 

median Sharpe Ratio for BFGMRES exceeds that of Ledoit-Wolf. Thus, we conclude that 

there is no statistically significant difference between the two and that both methods 

perform roughly the same with respect to Sharpe Ratios. 

Ledoit and Wolf (2003) use standard deviations to compare the performance of 

the different shrinkage estimators of the covariance matrix. We also compute the standard 

deviations of the returns of the optimal portfolios over the 27 out-of-sample periods 

(1982 to 2008). Due to the closeness of the results, to make sure that we have a basis for 

comparison of the two methods, we apply Levene’s test (Levene 1960; Gastwirth et al. 

2009) to test whether the standard deviations corresponding to BFGMRES and Ledoit 

and Wolf generated returns are different. Levene’s test makes no assumptions about the 

underlying distribution of the returns. We find that their standard deviations are not 

statistically significantly different (p-value=0.5298) and thus they cannot be used to 

compare the performance of the two methods.     

As the standard deviations of the returns generated by BFGMRES and Ledoit-

Wolf are not found to be statistically significantly different, we can compare the two 

methods with respect to the expected returns they generate. We use the expected 

annualized returns of the two methods for our comparison and followed the same analysis 

steps as for the Sharpe Ratios. The Durbin-Watson test for autocorrelation was not 

statistically significant in either case (p-value= 0.43 for the BFGMRES annualized 

returns and p-value=0.59 for the Ledoit-Wolf annualized returns) so that we can treat the 

two sets of annualized returns as samples of serially independent observations. The 

Wilcoxon signed rank test has a p-value of 0.055 for testing whether the BFGMRES 
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median annualized return exceeds that of Ledoit-Wolf and is marginally significant at 

level 5%. That is, we conclude the median BFGMRES return exceeds that of Ledoit-

Wolf at any level greater than 5.5%.  

 

<Insert Figure 1> 

 

In Figure 1, we plot of the cumulative returns for the two methods. Over the 

period from 1982 to 2008, the cumulative returns generated using BFGMRES are 

consistently higher than the cumulative returns from Ledoit-Wolf’s method. Even more 

interesting is the finding that the distance between the BFGMRES based cumulative 

returns and those of Ledoit and Wolf increases as time increases. That is, if one were 

using the BFGMRES method to generate the minimum variance portfolio rather than 

Ledoit-Wolf’s, the improvement in cumulative returns would steadily increase.  Over the 

26 years simulation period, the cumulative returns of the BFGMRES method end up to 

outperform the Ledoit and Wolf cumulative returns by 31.7%. 

 

7. Concluding remarks 

 In this article we introduce a new methodology to tackle singular covariance matrices in 

mean-variance portfolio optimization. Following the approach of several authors (e.g. 

Demiguel et al. 2009; Ledoit and Wolf 2003, 2004) we consider the global minimum 

variance portfolio in order to avoid the estimation of expected returns. Contrary to Ledoit 

and Wolf’s (2003, 2004) shrinkage based method, the BFGMRES method does not 

require any structural assumptions on the covariance matrix of historical returns. As 
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acknowledged in Ledoit and Wolf (2003), choosing a priori the right shrinkage target is 

“an art.” Our approach does not require any interventional choice on the part of the user. 

Yet, the performance of this purely numerical algorithm on average is better with respect 

to Sharpe ratios, although not statistically significantly so, and consistently better in terms 

of cumulative returns over the 27 years of our data analysis. 

Although this article addresses only the issue of the global minimum variance 

portfolio, the entire efficient frontier can be derived using the same algorithm as long as 

the expected returns of the stocks can be estimated.  
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Appendix 

GMRES Algorithm 

Iteration k= 0:  

Initialize: Set 0 0x = , 1 / || ||v b b=  and [ ]1 1V v=  

Iteration k=1  

 Step 1: Create orthogonal vector 2 1 1,1 1v Av h v= −%  with 1,1 1 1
Th v Av=  

 Step 2: Normalize orthogonal vector 2 2 2/v v v= % %  

 Step 3: Update the V matrix [ ]2 1 2,V v v= and set 1
1

2

h
H

v
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠%

 

Step 4: Solve the simplified least squares optimization 1 1min
y R

e H yβ
∈

−   and call 

the solution 1y  

 Step 5: Calculate 1 1x V y=  

 

Iteration k >1 until convergence 

 Step 1: Create orthogonal vector 1 1, 1 ,( ... )k k k k k kv Av h v h v+ = − + +%  with ,
T

i j i jh v Av=  

 Step 2: Normalize orthogonal vector 1 1 1/k k kv v v+ + += % %  

Step 3: Update V matrix with [ ]1 1 2 1, ,...,k kV v v v+ +=  and H matrix with  

1

10
k k

k
k

H h
H

v
−

+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

where T
k k kh V Av=  

Step 4: Solve the simplified least squares optimization 1min
k k

y R
v H yβ

∈
− and call 

the solution ky  
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 Step 5: Compute k k kx V y=  

 

BFGMRES Algorithm 

Input A, b 

Iteration k = 0:  

Initialize: Set 0 0x = , 1 / || ||v b b= , [ ]1 1V v= , [ ]0U = , [ ]0Ĥ = , [ ]0G =  and tolerance, a 

user defined minimum for the minimum condition number of ˆ
kH . Set 0p = , where p  

counts break down points. 

Iteration k=1, 2, 3,… until convergence 

 

Step 1: Define T
k k kh V Av=  and T

k p kg U Av= . Create the orthogonal vector 

1k k k k p kv Av V h U g+ = − −% . 

 Step 2: Normalize the orthogonal vector 1 1 1/k k kv v v+ + += % %  

 Step 3: Update 1

1

ˆ
ˆ

0
k k

k
k

H h
H

v
−

+

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠%

  

Step 4: Compute condition number of ˆ
kH . If the condition number of ˆ

kH is larger 

than predefined tolerance level, i.e. if the standard Arnoldi process breaks down, 

go to step 5. Otherwise, go to step 13 

Step 5: Set 1p p= + and 1p p kU U v+ ⎡ ⎤= ⎣ ⎦   

Step 6: Let 1
ˆ ( ,:)kH k− denote the kth row of 1

ˆ
kH − . Define 1

1
1

ˆ ( ,:)
k

k
k

G
G

H k
−

−
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

and set 

1
ˆ ( ,:) 0kH k− =  
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Step 7: Generate random vector v̂ such that v̂  is a unit vector, 1 ˆ 0T
kV v− = and 

1 ˆ 0T
pU v+ = , i.e. v̂ is orthogonal to the columns of 1kV − and pU . Replace the last 

column of kV , kv , with v̂ .  

Step 8: Define T
k k kh V Av=  and 1

T
k p kg U Av+= . Create orthogonal vector 

1 1k k k k p kv Av V h U g+ += − −% .  

Step 9: Normalize orthogonal vector 1 1 1/k k kv v v+ + += % %  

Step 10: Update 1

1

ˆ
ˆ

0
k k

k
k

H h
H

v
−

+

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠%

  

Step 11: If the condition number of ˆ
kH is larger than predefined tolerance level, 

i.e. if the standard Arnoldi process breaks down go to step 7. Otherwise, go to 

step 12. 

Step 12: Set [ ]1 1 k k kV V v+ +=  

Step 13: If p>0 then [ ]1k k kG G g−= else set 1k kG G −=  

Step 14: Solve 1

ˆ
min

k
k

k
k

y R
k

H
y b e

G∈

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠  

Step 15: k k kx V y=  



25 
 

 

References 

1) Arnoldi, W. E. 1951. The principle of minimized iterations in the solution of the 

matrix eigenvalue problem, Quarterly of Applied Mathematics, 9:17–29.  

 

2) Bengtsson, C. and Holst, J. 2002.  On portfolio selection: Improved Covariance 

Matrix Estimation for Swedish Asset Returns. Working paper, Department of 

Economics, Lund University. 

 

3) Chen, L. K. C., Karceski, J. and Lakonishok J., 1999. On Portfolio Optimization: 

Forecasting Covariances and Choosing the Risk Model. Review of Financial 

Studies, 12: 937-974.  

 

4) DeMiguel V., Garlappi L., Nogales F. and Uppal R., 2009. A generalized 

approach to portfolio optimization: Improving performance by constraining 

portfolio norms, Management Science, 1-15. 

 

5) Gastwirth, J.L., Gel, Y.R. and Miao, W. 2009. The Impact of Levene’s Test of 

Equality of Variances on Statistical Theory and Practice (to appear in Statistical 

Science). 

 

6) Golub, G. H. and Van Loan, C. F. 1996 Matrix Computations (3rd Ed.). Johns 

Hopkins University Press. 



26 
 

 

7) Gujarati, D. 2003 Basic Econometrics (3rd Ed.) McGraw-Hill  

 

8) Hollander, M. and Wolfe, D. A. 1999. Nonparametric Statistical Methods (2nd 

ed.) Wiley and Sons. 

 

9) Ipsen,  I.  and Meyer, C. 1998.  The Idea behind Krylov Methods The American 

Mathematical Monthly, Vol. 105, No. 10, pp. 889-899  

 

10) Jahannathan, R. and Ma, T. 2000. Risk Reduction in Large Portfolios: Why 

Imposing the Wrong Constraint Helps. Journal of Finance, 54(4): 1651-1683. 

 

11) Ledoit, O. and Wolf, M. 2003. Improved Estimation of the Covariance Matrix of 

Stock Returns with an Application to Portfolio Selection, Journal of Empirical 

Finance, 10:603-621. 

 

12) Ledoit, O. and Wolf, M. 2004. Honey, I shrunk the sample covariance matrix, 

Journal of Portfolio Management, 30:110-117. 

 



27 
 

13) Levene, H. 1960. Robust tests for equality of variances, in Ingram Olkin, Harold 

Hotelling et al. Contributions to Probability and Statistics: Essays in Honor of 

Harold Hotelling, Stanford University Press, pp. 278–292. 

 

14) Markowitz, H. 1952. Portfolio Selection, Journal of Finance 7:77-91. 

 

15) Merton, R. C. 1980. On estimating the expected return on the market: An 

explanatory investigation. Journal of Financial Economics 8: 323-361.  

 

16) Reichel, L. and Ye, Q. 2005. Breakdown-free GMRES for singular systems. 

SIAM J. Matrix Anal. Appl., 26(4): 1001-1021. 

 

17) Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems, Manchester 

University Press. 

 

18) Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). SIAM. 

 

19) Saad, Y. and Schultz, M.H. (1986) GMRES: A generalized minimal residual 

algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 

7:856-869. 

 

20) Sharpe, W. F. (1963). A simplified model for portfolio analysis. Management 

Science, 9(1):277-293. 

 



28 
 

21) Simoncini, V. and Szyld, D. B. (2007). Recent computational developments in 

Krylov subspace methods for linear systems. Numerical Linear Algebra with 

Applications, 14:1-59. 

 

 

 

 

 

 

 



29 
 

Figure 1 
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Figure 1: The cumulative returns generated by the two methods plotted against each year in the out-of-sample period, 1982-2008. The 

cumulative returns are computed as the sum of the annual returns for each out-of-sample year in the period. Over this period, 

BFGMRES yields higher cumulative returns compared to Ledoit and Wolf’s method. 

 

 



30 
 

Table 1 

 

   Sharpe Ratio 

Out‐of‐sample year BFGMRES Ledoit and Wolf

             1982  0.70  1.18 

1983*  5.29  4.76 

1984  1.30  1.38 

1985  4.00  4.33 

1986  1.32  1.55 

1987*  0.33  0.32 

1988*  2.53  1.91 

1989*  3.89  2.81 

1990  ‐1.72  ‐1.28 

1991*  2.37  1.46 

1992  1.11  1.19 

1993*  1.78  1.67 

1994*  ‐0.38  ‐0.66 

1995*  5.63  5.46 

1996*  2.38  1.88 

1997*  3.54  3.28 

1998  ‐0.26  0.00 

1999*  ‐1.18  ‐1.38 

2000*  1.38  1.05 



31 
 

2001*  1.06  0.87 

2002*  0.52  0.28 

2003  3.00  3.49 

2004*  2.83  2.38 

2005*  0.71  0.00 

2006  2.47  3.62 

2007  ‐0.57  0.13 

2008*  ‐1.91  ‐2.21 

 

TABLE 1:  The Sharpe ratios for each of the out-of-sample years between 1982 and 2008. The Sharpe ratios have been calculated on a 

monthly basis and then annualized i.e. the asset returns are multiplied by 12 and the standard deviations are multiplied by √12. The 

risk-free rate is computed as the sum of the monthly returns. The * indicates the years where BFGMRES outperforms the Ledoit and 

Wolf method: 17 out of the 27 years in the data set we have analyzed.  

 

 

 


