
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2010-10
May 8, 2010

A Bayesian Hidden Markov Model for
Imperfect Debugging

Antonio Pievatolo
CNR IMATI, Italy

Fabrizio Ruggeri
CNR IMATI, Italy

Refik Soyer
Department of Decision Sciences

The George Washington University

A Bayesian Hidden Markov Model for Imperfect

Debugging

Antonio Pievatolo

CNR IMATI, I-20133, Milano, Italy

Fabrizio Ruggeri

CNR IMATI, I-20133, Milano, Italy

Refik Soyer

Department of Decision Sciences

The George Washington University, Washington, DC, 20052

September 20, 2010

Abstract

In this paper we present a new model to describe software failures from a debugging
process. Our model allows for the imperfect debugging scenario by considering potential
introduction of new bugs to the software during the development phase. Since the intro-
duction of bugs is an unobservable process, latent variables are introduced to incorporate
this property via a hidden Markov model. We develop a Bayesian analysis of the model
and discuss its extensions. We also consider how to infer the unknown number of states of
the hidden Markov model. The model and the Bayesian analysis are implemented to actual
software failure data.

Keywords: Software reliability; failure times; Bayes factor; model selection

1 Introduction

Many papers have been published on software reliability since the original works of Jelinski and
Moranda (1972) and Musa and Okumoto (1984); see Singpurwalla and Wilson (1999). Bayesian
methods have been widely used in this field as discussed in the recent review by Wiper (2007).

Possibility of imperfect debugging and introduction of new bugs during software testing
have been considered in earlier papers starting with Kremer (1983) who proposed a birth-death
process for the number of bugs in the software at a given time. Gaudoin, Lavergne and Soler

1

(1994) considered failures at times T1 < . . . < Tn and modelled the interfailure times with
independent exponential distributions. In particular, they took

Ti − Ti−1 ∼ E(λi), i = 1, . . . , n.

with
λi+1 = λie

−θi , (1)

where λi and θi, i = 1, . . . , n, are nonnegative. From (1), it is clear that the parameter θi plays
a relevant role in describing the effect of the intervention during software testing. If θi = 0, then
there is no debugging effect on software reliability, which increases (decreases) if θi > 0 (θi < 0).
The latter case is due to introduction of new bugs to the software.

A slightly modified version of this model was proposed by Gaudoin (1999), who considered

λi+1 = (1 − αi − βi)λi + µβi,

for modelling the more realistic case where intervention at each stage may introduce new bugs
while fixing the existing ones at the same time. The effect of the positive intervention is modelled
by α, whereas β is used for the negative one.

In a Bayesian framework, Basu and Ebrahimi (2003) proposed exponential interfailure times
with a martingale process Gamma prior such that E(λi+1|λi) = λi, i = 1, . . . , n.

More recently, Durand and Gaudoin (2005) considered a hidden Markov model (HMM)
similar to the one we introduce in Section 2, but they considered a non Bayesian approach and
used an EM algorithm to obtain maximum likelihood estimates. They motivated the choice of a
HMM since, under suitable conditions, a process of general interarrival times can be described
by exponential interarrivals conditional upon a HMM. They applied the Bayesian information
criterion (BIC) to choose among models with different number of states of the hidden process.
As mentioned by the authors, the choice of the starting values of the EM algorithm could
have an influence on both parameter estimation and model selection. As indicated by the
sensitivity studies we performed, estimation from our MCMC approach, based on very simple
posterior conditional distributions, was not sensitive to starting points. Another advantage of
the proposed Bayesian approach is that it allows us to incorporate available information about
the debugging process to specify prior distributions. Furthermore, predictive distributions of
future failure times as well as posterior distributions of the states of the hidden Markov chain
at any point can be obtained in a straightforward manner via the calculus of probability.

Finally, Ravishanker, Liu and Ray(2008) defined a hidden Markov model governing the pa-
rameters of a nonhomogeneous Poisson process where failures are observed as counts in nonover-
lapping time intervals. The counts are independently Poisson distributed with mean value given
by

θ







i−1
∏

j=1

(1 − ptj)







pti

2

for interval [ti−1, ti) as i = 1, . . . , T , where pti = 1− exp{βSti
(ti − ti−1)

α}. The random quantity
Sti follows a hidden Markov chain with a finite state space, such that βSti

= βj if Sti = j. This
model can be viewed as a nonhomogeneous Poisson Process with Markov switching mean value
function, where the possible switching occurs at a sequence of pre-specified time points. The
paper by Ravishanker et al. (2008) differs from ours in several aspects. First of all, they consider
modeling of failure counts in fixed intervals due to iterative development whereas in our setup
we model failure times by taking into account potential changes in the failure characteristics due
to removal or introduction of bugs. Secondly, our model, unlike Ravishanker et al., makes no
assumption on the number of bugs initially in the software. Furthermore, the MCMC methods
used in the two papers are significantly different especially for model selection. Our approach for
assessing the unknown dimension of the hidden Markov chain is based on the marginal likelihood
and thus is based on Bayes factors whereas Ravishanker et al. use the BIC for this purpose.

In this paper we present a new model motivated by potential introduction of new bugs to the
software during the debugging process. The proposed model, based on a hidden Markov chain,
assumes that times between failures are exponentially distributed with parameters depending
on an unknown latent state variable which, in turn, evolves as a Markov chain. The model,
implicitly, takes into account the possibility of not knowing if a new bug has been added at each
stage. Thus, it can be used not only to model the failure process but also to infer if new bugs are
introduced at different stages of testing. We introduce an extension of the model by assuming
ordering of the failure rates associated with the latent states. We present Bayesian analysis of
both models using Markov chain Monte Carlo methods and discuss implementation issues. We
also develop inference about the unknown dimension of the hidden Markov chain using marginal
likelihoods. The proposed models and their Bayesian analysis as well as the marginal likelihood
based approach for inferring the dimension of the Markov chain represent a contribution to the
state of the art in software reliability analysis.

In Section 2 we present the hidden Markov model and its Bayesian analysis. We consider
estimation of the dimension of the state space of the HMM in Section 3. An alternative choice
of prior distribution, based on ordered failure rates, is discussed in Section 4. The model is
applied to the Jelinski and Moranda’s Naval Tactical data and Musa’s System 1 data in Section
5. Discussion on current research and concluding remarks are presented in Section 6.

2 A hidden Markov model for software failures

During the development phase software goes through stages of testing. After each stage modifi-
cations are made to the software with the hope of removing bugs that are the causes of software
failures. This process which is referred to as debugging is not perfect since it is possible to
introduce new bugs during the process and unintentionally cause an increase in the failure rate.
Since introduction of bugs is not observable, one can only infer it by modeling its effect on the
failure rate over stages of testing.

3

We assume that, during the testing stages, the failure rate of the software is governed by a
latent process Y . Let Yt denote the state of the latent process at time t and, given the state at
time t is i, assume that Xt, the failure time for period t, follows an exponential model given by

Xt|Yt = i ∼ E(λi).

The states of the latent process reflect the effectiveness of the interventions, i.e. the design
changes, to the software prior to the t-th stage of testing. The failure rate of the software
depends on this latent random variable.

We assume that the latent process Y = {Yt : t ≥ 1} is a Markov chain with a transition matrix
P on a finite state space E = {1, . . . , k}. The initial state Y1 is given a uniform distribution on
{1, . . . , k}. Given the latent process, we assume that Xt’s are conditionally independent, that
is,

π(X1,X2, . . . ,Xn|Y) =
n

∏

t=1

π(Xt|Y).

In the Bayesian setup we assume that the transition matrix P and the failure rate λi, for
i = 1, . . . , k, are all unknown quantities. For the components of the transition matrix, it is
assumed that Pi = (Pi1, . . . , Pik), i = 1, . . . , k, i.e. the i-th row of P , follows a Dirichlet
distribution Dir(αi1, . . . , αik), as

π(Pi) ∝

k
∏

j=1

P
αij−1
ij (2)

with parameters αij , i, j = 1, . . . , k, and such that the Pi’s are independent of each other. For
a given state i = 1, . . . , k, we assume a Gamma prior

λi ∼ G(ai, bi),

with independent λi’s.
If software failures are observed for n testing stages, then, given the observed data x(n) =

(x1, x2, . . . , xn), we are interested in the joint posterior distribution of all unknown quantities
Θ =(λ(k), P , Y (n)), where λ(k) = (λ1, . . . , λk), and Y (n) = (Y1, . . . Yn). It is not computationally
feasible to evaluate the joint posterior distribution of Θ in closed form. However, we can use a
Gibbs sampler to draw samples from the joint posterior distribution.

The likelihood function is

L(Θ;x(n)) =
n

∏

t=1

λYte
−λYt

xt

and the posterior distribution is given by

π(Θ|x(n)) ∝ λY1
e−λY1

x1

[

n
∏

t=2

PYt−1,Yt λYte
−λYt

xt

] [

k
∏

i=1

π(Pi) [λi]
ai−1 e−biλi

]

,

4

where π(Pi) is given by (2). The implementation of the Gibbs sampler requires draws from the
full conditional distributions of the unknown quantities, that is, the components of Θ. We first
note that, given Y (n), the full conditional distribution of the elements of P can be obtained as

Pi|Y
(n) ∼ Dir{αij +

n
∑

t=1

1(Yt = i, Yt+1 = j); j ∈ E} (3)

where 1(·) is the indicator function and, given Y (n), Pi’s are obtained as independent Dirichlet
vectors. Given Y (n), they are also independent of other components of Θ.

The full conditional posterior distribution of λi’s can be obtained as

λi|Y
(n), x(n) ∼ G(a∗i , b

∗
i) (4)

where

a∗i = ai +
n

∑

t=1

1(Yt = i)

and

b∗i = bi +

n
∑

t=1

1(Yt = i)xt.

Finally, we can show that the full conditional posterior distributions of Yt’s, as t = 2, . . . , n−1
are given by

π(Yt|Y
(−t), λYt , x(n), P) ∝ PYt−1,Yt λYte

−λYt
xtPYt,Yt+1

(5)

where Y (−t) = {Ys; s 6= t}. The full conditional posterior distributions of Y1 and Yn are pro-
portional to λY1

exp{−λY1
x1}PY1,Y2

and PYn−1,YnλYn exp{−λYnxn}, respectively. Note that the
above is a discrete distribution with constant of proportionality given by

∑

j∈E

PYt−1, j λj e−λj xtPj, Yt+1

as t = 2, . . . , n − 1, with obvious adjustments for t = 1 and t = n.
Thus, we can draw a posterior sample from π(Θ|x(n)) by iteratively drawing from the given

full conditional posterior distributions. If we start with an initial value of the states, say, Y
(n)
0 ,

then we can update the probability transition matrix via (3). Then, given the data and Y
(n)
0 ,

we can draw the failure rates independently using (4). Given these values, we can use (5) to
draw a new sample for the states. We can repeat these iterations many times to obtain a joint
posterior sample.

Posterior predictive distribution of Xn+1, after observing x(n), is given by

5

π(Xn+1|x
(n)) =

∑

j∈E

∫

π(Xn+1|λj)PYn,j π(Θ|x(n)) dΘ,

which can be approximated as a Monte Carlo integral via

π(Xn+1|x
(n)) ≈

1

G

G
∑

g=1

∑

j∈E

PY
g
n ,jπ(Xn+1|λ

g
j),

where Y g
n and λg

j are draws from the Gibbs sampler.
We note that as a result of the posterior analysis the hidden states may be ranked according

to their associated failure rates, where smaller failure rates correspond to a more desirable en-
vironment. However, the subscripts of the λi’s are not constrained to match the same ranking,
so that label switching (hence multimodality) may occur while running the Gibbs sampler. But
this is not a concern, given that we focus on summary statistics that are labelling-invariant. An
alternate model where the failure rates are ordered is presented in Section 4.

3 Estimating the dimension of the state space in HMMs

Our development in the previous sections assumed that k, the dimension of the state space of
the Markov chain Y , was known. An important issue in the Bayesian analysis of the HMMs is
the estimation of the dimension of the state space. One approach to dimension selection is to
consider this as a model selection problem in the Bayesian framework.

As pointed out by Kass and Raftery (1995), Bayesian model comparison/selection is made
using Bayes factors which are obtained as the ratio of marginal likelihoods p(D|i) under two
competing models i = 1, 2 where D denotes the observed data. Note that in our case we have
D = x(n) = (x1, x2, . . . , xn). In many problems p(D|i) is not available in an analytical form
and its evaluation using posterior Monte Carlo samples is not a trivial task. Thus, various
alternatives to marginal likelihoods have been suggested for model selection using Monte Carlo
samples; see for example Gelfand (1996).

However, in certain problems where a Gibbs sampler is used and all the full conditional dis-
tributions are known, it is possible to approximate the marginal likelihoods from the posterior
samples using a method introduced by Chib (1995). In what follows we will illustrate how the
approach by Chib (1995) can be extended for the hidden Markov models of the type discussed
here. Our development follows Hock and Soyer (2006) who used the Chib’s approach for hidden
Markov models in signal processing. An alternative approach is that of Green (1995) which is
based on reversible jump Markov chain Monte Carlo methods and provides posterior probabili-
ties for candidate models. Another approach that provides posterior model probabilities using

6

Markov chain Monte Carlo is presented in Carlin and Chib (1995). A comprehensive review of
these and other approaches is given in Han and Carlin (2001).

Note that, suppressing dependence on model i, the marginal likelihood for a particular model
is expressed as

p(D) =
p(D|Θ)p(Θ)

p(Θ|D)
, (6)

where Θ is a vector of parameters. As pointed out by Chib (1995) the above holds for any
value of Θ, say Θ∗, and the value of posterior density p(Θ∗|D) can be estimated by p̂(Θ∗|D)
using Monte Carlo samples. Since p(D|Θ∗) and p(Θ∗) can be evaluated at Θ∗, the log marginal
likelihood can be estimated as

ln p̂(D) = ln p(D|Θ∗) + ln p(Θ∗) − ln p̂(Θ∗|D). (7)

In evaluating the above, the only term which is not readily available is p̂(Θ∗|D), but as
shown in Chib (1995) this can be obtained using the outputs from the Gibbs sampler. In our
case, we also have the latent variables Y

(n) as a part of the unknown parameter vector. Thus,
we can write p(D) = p(x(n)) as

p(x(n)) =
p(x(n)|λ(k))p(λ(k)|Y (n))p(Y (n)|P) p(P)

p(λ(k), P , Y
(n)|x(n))

, (8)

where all the terms in the numerator of (8) can be evaluated at (λ(k), P , Y
(n)) =(λ∗(k), P

∗,
Y

∗(n)). We note that (8) holds for any value of (λ(k), P , Y
(n)), but, as pointed out in Chib

(1995), it can be more accurately approximated by evaluating it at a high density point. Thus,
the posterior modes, that can be easily approximated from the Gibbs output, will be used for
(λ∗(k), P

∗, Y
∗(n)). In Section 5 we give details on which modes are actually needed and on how

we overcome the label switching problem. To approximate p(x(n)) we need to obtain p(λ∗(k),
P

∗, Y
∗(n)|x(n))which is not immediately available. Using the multiplication rule we can write

p(λ∗(k), P
∗, Y

∗(n)|x(n)) = p(λ∗(k)|Y ∗(n), x(n))p(P ∗|Y ∗(n))p(Y ∗(n)|x(n)) (9)

where p(λ∗(k)|Y (n), x(n)) is the product of independent gamma densities and p(P ∗|Y ∗(n)) is
the product of independent Dirichlet densities. Thus, the only term we need to evaluate is
p(Y ∗(n)|x(n)).

Again using the multiplication rule we write

p(Y ∗(n)|x(n)) = p(Y ∗
1 |x

(n)) p(Y ∗
2 |Y

∗
1 , x(n)) · · · p(Y ∗

t |Y
∗(t−1),x(n)) · · · p(Y ∗

n |Y
∗(n−1),x(n))

where Y
(t−1) = (Y1, . . . , Yt−1). Note that the first term p(Y ∗

1 |x
(n)) can be estimated from the

draws available from the Gibbs sampler as

7

p(Y ∗
1 |x

(n)) ≈
1

G

G
∑

g=1

p(Y ∗
1 |(λ

(k))(g), (Y −1)(g), P (g),x(n)). (10)

Evaluation of the remaining densities requires additional sampling. For a general term
p(Y ∗

t |Y
∗(t−1),x(n)) which is given by

p(Y ∗
t |Y

∗(t−1), x(n)) =

∫

p(Y ∗
t |λ

(k),P , Y (s>t), Y ∗(t−1), x(n))

p(λ(k), P ,Y (s>t)|Y ∗(t−1),x(n))dλ
(k) dP dY

(s>t), (11)

where Y
(s>t) = (Yt+1, . . . , Yn), we need to continue sampling from full conditionals of (λ(k),P ,Y (s>t))

given (Y ∗(t−1),x(n)). In other words, additional sampling will use the full conditional dis-
tributions: p(λ(k)|Yt, Y

(s>t), Y
∗(t−1),x(n)), p(P |Yt, Y

(s>t), Y
∗(t−1)), p(Yt|λ

(k), P ,Y (s>t),
Y

∗(t−1),x(n)) and p(Yh|λ
(k), P ,Yt,Y

(−h, s>t), Y
∗(t−1),x(n)) for h = t+1, . . . , n where Y

(−h, s>t) =
{Ys; s > t and s 6= h}.

Thus, (11) can be evaluated as

p(Y ∗
t |Y

∗(t−1),x(n)) ≈
1

G′

G′

∑

g=1

p(Y ∗
t | (λ

(k))(g),P (g),(Y (s>t))(g), Y ∗(t−1), x(n))

where ((λ(k))(g),P (g),(Y (s>t))(g)) represents samples from p(λ(k),P , Y
(s>t)|Y ∗(t−1),x(n)). This

completes all the terms needed to compute (9) and to approximate the marginal likelihood (8).
We note that for each given model, which may represent a specific dimension k , the marginal
likelihood (8) can be approximated and these are compared to find the model which is the most
supported by the data.

In a recent paper, Früwirth-Schnatter (2004) showed that the marginal likelihood for Markov
switching models obtained through Chib’s method was biased due to potential multimodality
induced by relabelling. For example, if the modes are so well separated that the Gibbs sampler
visits only one mode, then one actually is sampling from a constrained space and therefore the full
conditionals that are being averaged should be the full conditional on this space and not on the
full space. However, this does not apply to our case, because p(Y ∗

t | (λ
(k))(g),P (g),(Y (s>t))(g),Y ∗(t−1),x(n))

does not change if we impose an ordering constraint on the rates.
We will see in Section 5 that label switching never occurs with k = 2, but it may happen for

larger values. In the former case, we are precisely in the situation just described. In the latter
case, one cannot anticipate how many modes will be visited, but relative distribution values are
represented correctly by the empirical distribution derived from the sampler. In this case the
full conditional being averaged is also invariant under relabelling and thus no bias is induced by
Chib’s scheme in our model.

8

4 An alternative model for failure rates

Our development in Section 3 assumed the a priori independence of failure rates given the latent
states. This conditional independence was also preserved a posteriori. Often, it is reasonable
to expect that failure rates under different environments will be ordered implying that certain
environments will be less failure prone than others. Such an expectation and thus, the implied
dependence can be incorporated into the prior of the failure rates.

Such a prior can be obtained as an extension of McKay’s bivariate gamma distribution
(see Kotz et al. (2000)). More specifically, in the McKay’s bivariate distribution we have
λ1 ∼ Gamma(a1, β) and λ2|λ1 ∼ Gamma(a2, β) over (λ1,∞). Thus,

π(λ1, λ2) =
βa1

Γ(a1)
λa1−1

1 e−βλ1
βa2

Γ(a2)
(λ2 − λ1)

a2−1 e−β(λ2−λ1)

where 0 < λ1 < λ2 < ∞. The above can be written as

π(λ1, λ2) =
βa1+a2

Γ(a1)Γ(a2)
λa1−1

1 (λ2 − λ1)
a2−1 e−βλ2 .

We can obtain the marginal of λ2 as

λ2 ∼ Gamma(a1 + a2, β) and λ1|λ2 ∼ Beta(a1, a2; 0, λ2).

The above can be easily extended to k random variables λ1,λ2,. . .,λk such that

λ1 < λ2 < · · · < λk

by assuming that λ1 ∼ Gamma(a1, β), λ2|λ1 ∼ Gamma(a2, β) over (λ1,∞), . . . , λk|λk−1 ∼
Gamma(ak, β) over over (λk−1,∞). Thus, the joint distribution of λ1,λ2,. . .,λk is given by

k
∏

i=1

βai

Γ(ai)
(λi − λi−1)

ai−1 e−β(λi−λi−1), (6)

where λ0 = 0. We can write (6) as

π(λ1, . . . ,λk) = β
∑k

j=1
aj e−βλk

k
∏

i=1

(λi − λi−1)
ai−1

Γ(ai)
.

The above prior implies gamma marginals for λi’s as

λi ∼ Gamma(

i
∑

j=1

aj , β)

9

and conditional for λi, i < k is a truncated beta such as

λi|λ(−i) ∼ Beta(ai, ai+1;λi−1, λi+1)

where λ(−i) = {λj |j 6= i} .
Except for the update step of rates, the MCMC sampling scheme with this different prior

remains the same. A straightforward strategy (see Erkanli, Mazzuchi and Soyer, 1998) is to run
rejection sampling to obtain a random variate from the full conditional distribution of λi, for
each i, where the candidate value λi is repeatedly drawn from a Beta(ai, ai+1;λi−1, λi+1) until
a uniform random variate is lower than

(

λi

zi

)ni

e−si(λi−zi)

where ni =
∑n

t=1 1(Yt = i) and si =
∑n

t=1 xi1(Yt = i) and

zi =











λi−1 if ni

si
≤ λi−1

ni

si
if λi−1 < ni

si
< λi+1

λi+1 if ni

si
≥ λi+1

.

When i = k, λk+1 = +∞, and therefore only the first two conditions are applicable.
We note that in the above scheme, the candidate value is drawn from the prior, whereas the

acceptance ratio is a likelihood ratio. In general it is not a good idea to use the prior distribution
as a proposal distribution to get Monte Carlo samples from the posterior, but in our case the
support of our proposal conveys information from the observed data.

5 Analysis of software reliability data

We next illustrate the use of the HMM by applying it to two well known datasets, the Jelinski
and Moranda’s Naval Tactical data and Musa’s System 1 data. We also present analysis of some
simulated data to discuss implementation issues.

5.1 Jelinski-Moranda data

The data, presented in Jelinski and Moranda (1972), consists of 34 failure times (in days) of
a large military system, and is referred to as the Naval Tactical Data System (NTDS). In the
analysis of the NTDS data, we consider two possible states for Yt initially, i.e. E = {1, 2} and
assume uniform distributions for the rows Pi, i = 1, 2, of the transition matrix. We describe
uncertainty about the λ’s, by considering diffuse priors λi ∼ G(0.01, 0.01), i = 1, 2. Gibbs
sampler was run for 5000 iterations and no convergence problems were observed. In what

10

Posterior Distribution of Lambda[1]

Lambda[1]

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

Posterior Distribution of Lambda[2]

Lambda[2]

0.0 0.02 0.04 0.06 0.08 0.10

0
20

40
60

Figure 1: Posterior distributions of λ1 and λ2.

follows we present the posterior results for major quantities of interest as illustrated by plots
and tables.

In Figure 1 we present the posterior distributions of λ1 and λ2. As can be seen from Figure 1,
the posterior distribution of λ1 is concentrated at higher values than that of λ2 implying that
environment 1 is the less desirable of the two environments. In other words, it represents the
environment with higher failure rates and smaller expected time to failures.

Posterior distributions of transition probabilities are presented in Figure 2. We can see from
Figure 2 that the process Yt tends to stay in environment 1 (compared to environment 2) from
one testing stage to the next one. This is implied by the posterior distribution of P11 which is
concentrated around values that are higher than 0.6, whereas the posterior distribution of P22

is more dispersed.
Both Figures 1 and 2 are label-dependent, but they are valid, because label switching never

occurred during our implementation of the Gibbs sampler, given that λ2 is one order of magni-
tude smaller than λ1.

Posterior predictive distribution of the next time to failure, that is, the distribution of X35

is shown in Figure 3. As we can see from the predictive density, the next time to failure is
expected within few days. Table 1 presents the posterior distributions of the environment 1 for
time periods, t = 1, . . . , 34 as well as the observed time to failures for the periods. As we can see
from the table the posterior probability of the “bad” environment (i.e. environment 1) decreases
as we observe longer failure times.

The specified number of environments, that is k = 2, is supported by the the marginal
likelihood, computed via Chib’s method as illustrated in Section 3. As k ranges from 1 to 4,

11

Posterior Distribution of P[1,1]

P[1,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior Distribution of P[1,2]

P[1,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior Distribution of P[2,1]

P[2,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior Distribution of P[2,2]

P[2,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Figure 2: Posterior distributions of transition probabilities.

the logarithm of the marginal likelihood p(D|k) takes the following values: −148.92, −139.81,
−142.43, −144.63. With the selected hyperparameters, expression (8) has quite a simple form:

p(D|k) =
k

∏

i=1

Γ(a∗i)

Γ(ai)

bai

i

b
∗a∗

i

i

×
Γ(k)k

k

k
∏

i=1

∏k
j=1 Γ(1 + mij)

Γ(k + mi)
×

1

p(Y ∗(n)|D)
(12)

where mij =
∑

t 1(Yt = i, Yt+1 = j) and mi =
∑

j mij. We observe that factors depending on

λ
∗(k) and on P

∗ cancel out and we only need to provide Y
∗(n).

For k = 2 we may let Y ∗
t be the modal value in the sequence {Y g

t }g≥1 for every t, because
label switching never occurs during the Gibbs sampling. When k > 2, label switching does
occur and such an operation is meaningless, but we can retain information which is consistent
throughout iterations, that is, the rank of λg

Y
g
t

within the vector of sorted rates (λg

(1), . . . , λ
g

(k)).

Then we build a table of frequencies for the sequence of ranks of {λg

Y
g
t

}g≥1, where every rank

ranges from 1 to k. The relative frequency of, say, rank 2 is the sample average estimate of the
posterior probability that the environment is the second best at epoch t. Finally, we let Y ∗

t be
the rank with the highest frequency.

5.2 Musa’s System 1 data

We next consider the System 1 data of Musa (1979) which consists of 136 software failure
times. As in the case of the Jelinski-Moranda data, we consider only two states for Yt, and
assume uniform distributions for the row vectors Pi of the transition matrix, and the same

12

Posterior Predictive Density of X[35]

x[35]

0 50 100 150 200

0.0
0.0

1
0.0

2
0.0

3
0.0

4
0.0

5
0.0

6

Figure 3: Predictive distribution of 35-th observation.

diffuse gamma distributions for the λ’s. As before 5000 iterations of the Gibbs sampler was run
and this led to convergence for all the quantities, with no occurrences of label switching. The
posterior analysis for the major quantities of interest will be presented in the sequel using few
plots.

From Figure 4, we can see that the times between failures tend to increase over time implying
an overall reliability growth. The posterior distributions of λ1 and λ2 are presented in Figure 5.
We can see from Figure 5 that the posterior distribution of λ1 is concentrated around lower
values than that of λ2. Thus environment 1 is the more desirable of the two environments, that
is, it represents the environment with smaller failure rates and larger expected time to failures.
In Figure 6 we present the posterior distributions of transition probabilities. We can see from
the figure that the process Yt tends to stay in the same state from one testing stage to the next
one. Posterior predictive distribution of the next time to failure, that is, the distribution of X137

is shown in Figure 7. As can be seen from the figure, the time to the next failure in this case
has more variability than the one in the Jelinski-Moranda data shown in Figure 3.

In Figure 8 we present the posterior probabilities P (Yt = 1|D) for the ”good” environment,
that is, for environment 1, for time periods t = 1, . . . , 136. As we can see from the figure, the
posterior probability is rather low for most of the first 80 testing stages implying that modi-
fications which are made to the software during these stages have not improved the reliability
from one period to the next. On the other hand, the posterior probabilities for environment 1
wander around values higher than 0.85 for most of the stages implying the improvement in the
reliability achieved during the later stages. We note that as in the case of the Jelinski-Moranda
data, the higher posterior probabilities in Figure 8 are associated with longer failure times shown

13

Table 1: Posterior probabilities of state 1 over time.

t Xt P (Yt = 1|D) t Xt P (Yt = 1|D) t Xt P (Yt = 1|D)

1 9 0.8486 2 12 0.8846 3 11 0.9272

4 4 0.9740 5 7 0.9792 6 2 0.9874

7 5 0.9810 8 8 0.9706 9 5 0.9790

10 7 0.9790 11 1 0.9868 12 6 0.9812

13 1 0.9872 14 9 0.9696 15 4 0.9850

16 1 0.9900 17 3 0.9886 18 3 0.9858

19 6 0.9714 20 1 0.9584 21 11 0.7100

22 33 0.2036 23 7 0.3318 24 91 0.0018

25 2 0.6012 26 1 0.6104 27 87 0.0020

28 47 0.0202 29 12 0.2788 30 9 0.2994

31 135 0.0006 32 258 0.0002 33 16 0.1464

34 35 0.0794

in Figure 4.
The analysis with two environments is again justified by the values of the marginal like-

lihood. The estimators of the reduced conditional ordinates found by Chib’s method are less
well separated than those of the Jelinski-Moranda data, thus we did five independent repeated
runs for each value of k. In Figure 9 we plotted the marginal likelihoods along with Student’s
confidence intervals. For comparison, we plotted also the marginals of Jelinski-Moranda data.

The marginal likelihood is highest at k = 3. However a run of the Gibbs sampler with three
hidden states produces identical posterior distributions for the two smallest rates, whereas a
third hidden state is included only to capture three null failure times at epochs 33, 61 and 104,
with an associated rate averaging at 267.80. The time series plot of posterior probability that
Y (t) = 1 is substituted by the time series plot of posterior probability that Y (t) occupies a
hidden state associated with the lowest failure rate, and this is also unchanged except for deeper
valleys at the epochs of the null failure times.

5.3 Simulated data

By the analysis done so far, one may get the impression that few states are often enough to
describe software reliability improvement. As a matter of fact we are assigning diffuse priors
to rates, thus any hidden state allows for a substantial variability of failure times. However, if
different environments have well-separated rates, then one can end up with more hidden states.
Table 2 shows summaries from repeated runs for a simulated dataset of 60 failure times, where
they are divided into three groups: twenty failure times have rate 0.01, the second twenty failure

14

Time Series Plot of Failure Times

Period

0 20 40 60 80 100 120 140

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 4: Failure times.

times have rate 0.001, and the remaining ones have rate 0.0001. The marginal likelihood is
highest with three hidden states, as expected.

Table 2: Marginal likelihoods for a simulated dataset

k avg. of lnp̂(D|k) no. of runs st. dev.

1 −562.921 0 (exact) 0

2 −516.6426 5 0.09

3 −514.5183 5 0.04

4 −518.2889 5 0.20

Another undesirable situation is overfitting, but with diffuse priors on rates this is unlikely.
An analysis of a simulated dataset of 38 failure times with rate 0.0001, gives log-marginal
likelihoods −391.8237, −394.0936, −396.2610 for 1, 2 and 3 hidden states respectively.

5.4 Constrained model

We repeated the above data analyses with prior (6), which required running the Gibbs sampler
where the updating of the rates were done through rejection sampling. The hyperparameters
were set to ai = 1 for all i’s and β = k/10, so that the largest rate has mean 10 and variance 100/k
and λi has mean (i/k)10 and variance (i/k2)100. To calculate also the marginal likelihood, one

15

Posterior Distribution of Lambda[1]

Lambda[1]

0.0004 0.0008 0.0012 0.0016

0
50

0
10

00
15

00
20

00
25

00
30

00

Posterior Distribution of Lambda[2]

Lambda[2]

0.0 0.005 0.010 0.015 0.020

0
10

0
20

0
30

0

Figure 5: Posterior distributions of λ1 and λ2.

should implement the more general method of Chib and Jeliazkov (2001), because the model is
nonconjugate and not all the full conditional distributions are available in closed form. However
this proved unnecessary, because, as expected, the summary plots match the old ones not only
in the obvious way for k = 2 (since label switching never occurs), but also for k = 3. As far as
the rates are concerned, the posterior density of, say, λ2 for the unordered case is derived from
the sample sequence {λg

(2)}; the posterior probability that Y (t) = 1 is estimated by the relative

frequency of λg

Y (t) being the smallest rate in the unordered case, and no differences are observed
with respect to the ordered case. One could also produce a meaningful plot of the density of a
transition probability in the unordered case, by just collecting, say, the number of transitions
from the state with the second smaller rate to the state with the third smaller rate to get an
equivalent of P23 in the ordered case.

A visual confirmation of this equivalence comes from the comparison, in Figure 10, of the
traces of the rates for the Jelinski-Moranda dataset with k = 3, for which we set ai = i and
bi = 3/10, to have the same marginal means and variances of the ordered case. Actually, the
rates for the unordered case appear also to be less autocorrelated.

There are also some disadvantages in using the constrained model. The first one lies in the less
straightforward sampling scheme: the rejection sampling used for the rates can be inefficient for
some hyperparameter choices or some datasets. For example, the vectors of mean and standard
deviation of the number of replicates needed to obtain a valid value of λ(k), with k = 3, are
(13, 8, 24) and (15, 26, 42), respectively, for the Jelinski-Moranda dataset. These values are
acceptable, but the same statistics for the Musa dataset are (19, 7036, 269) and (19, 10163, 318).
The efficiency of the sampler for the two datasets compares in a similar way also for k = 2.

16

Posterior Distribution of P[1,1]

P[1,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Posterior Distribution of P[1,2]

P[1,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Posterior Distribution of P[2,1]

P[2,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Posterior Distribution of P[2,2]

P[2,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 6: Posterior distributions of transition probabilities.

The second disadvantage is specific to the Musa dataset, which has three failure times that are
exactly zero. Any sampling scheme that depends on the maximum likelihood estimate of the
rate, for a group of observations associated with the same hidden state, fails when the three
zero failure times form a separate group. In fact the maximum likelihood estimate would be
+∞, and this is precisely what happens for k = 3 with s3 being occasionally zero, whereby the
rejection sampling scheme fails.

6 Concluding remarks

This paper presents a Bayesian approach to describe possible introduction of bugs during soft-
ware debugging. The choice of a hidden Markov model is justified not only by the nature of the
problem, (that is, the introduction of bugs is not observed directly but only through its effects
on reliability) but also by the need to provide a flexible model for the dependency between
subsequent interfailure times. Implementation of the MCMC algorithm, estimates and forecasts
based on samples from the posteriors are quite straightforward. The unknown states of the
hidden Markov chain are treated as parameters within the MCMC. Their posterior distributions
are helpful to describe the evolution of the reliability status of the software over time. The more
challenging part of the MCMC implementation is for inferring the unknown dimension (number
of hidden states) of the hidden Markov chain. Through a careful factorization of the involved
probabilities it has been possible to perform successful model selection for both simulated and
actual data.

There are other issues that can be addressed by considering extensions of our models. As

17

Posterior Predictive Density of X[137]

x[137]

0 1000 2000 3000 4000 5000

0.0
0.0

00
2

0.0
00

4
0.0

00
6

0.0
00

8
0.0

01
0

0.0
01

2

Figure 7: Predictive distribution of 137-th observation.

discussed both in Durand and Gaudoin (2005) and Ravishanker et al. (2008), transitions between
states at each epoch could be constrained, e.g. allowing only for transitions to the closest, more
and less reliable, states from the current one. Software metrics, e.g. number of code lines, as
discussed in Wiper and Rodriguez Bernal (2001), could be used as covariates, possibly in the prior
distributions of either the λ’s parameters or the transition probabilities. The number of bugs
is somehow related to the number of code lines; in fact, according to the Software Engineering
Institute, even experienced programmers inject about one defect into every 10 lines of code.
The current paper deals with interfailure times modelled through exponential distributions.
In a forthcoming paper, we are considering a self-exciting point process to describe imperfect
debugging phase.

References

[1] Basu, S., and Ebrahimi, N. (2003), ”Bayesian Software Reliability Models Based on Mar-
tingale Processes”, Technometrics, 45, 150–158.

[2] Carlin, B., and Chib, S. (1995), ”Bayesian Model Choice by Markov Chain Monte Carlo”,
Journal the Royal Statistical Society, Ser. B, 57, 473–884.

[3] Chib, S., and Jeliazkov, I. (2001), ”Marginal Likelihood from the Metropolis-Hastings Out-
put”, Journal of the American Statistical Association, 96, 270–281.

18

Time Series Plot of Posterior Probabilities of Y(t)=1

Period

0 20 40 60 80 100 120 140

0.0
0.2

0.4
0.6

0.8
1.0

Figure 8: Posterior probability of Yt = 1.

[4] Chib, S. (1995), ”Marginal Likelihood from the Gibbs Output”, Journal of the American

Statistical Association, 90, 1313–1321.

[5] Durand, J.B., and Gaudoin, O. (2005), ”Software Reliability Modelling and Prediction with
Hidden Markov Chains”, Statistical Modelling, 5, 75–93.

[6] Erkanli, A., Mazzuchi, T.A., and Soyer, R. (1998), ”Bayesian Computation for a Class of
Reliability Growth Models”, Technometrics, 40, 14–23.

[7] Früwirth-Schnatter, S. (2004), ”Estimating Marginal Likelihoods for Mixture and Markov
Switching Models Using Bridge Sampling Techniques, Econometrics Journal, 7, 143–167.

[8] Gaudoin, O. (1999) ”Software Reliability Models with Two Debugging Rates”, International

Journal of Reliability, Quality and Safety,6, 31–42.

[9] Gaudoin, O., Lavergne, C., and Soler, J.L (1994), ”A Generalized Geometric De-
eutrophication Software-Reliability Model, IEEE Transactions on Reliability, R-44, 536–
541.

[10] Gelfand, A.E. (1996), ”Model Determination Using Sampling-based Methods”, in Markov

Chain Monte Carlo in Practice, eds. W.R. Gilks, S. Richardson and D.J. Spiegelhalter,
London: Chapman and Hall, pp.145–161.

[11] Green, P.J. (1995), ”Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination”, Biometrika, 82, 711–732.

19

2.0 3.0 4.0 5.0

−
99

8
−

99
4

−
99

0

k

m
ar

gi
na

l l
ik

el
ih

oo
d

Musa system 1

1.0 2.0 3.0 4.0

−
14

8
−

14
4

−
14

0

k

m
ar

gi
na

l l
ik

el
ih

oo
d

Jelinski−Moranda

Figure 9: Plot of marginal likelihood against the number of hidden states.

[12] Han, C., and Carlin, B. (2001), ”MCMC Methods for Computing Bayes Factors: A Com-
parative Review”, Journal of the American Statistical Association, 96, 1122–1132.

[13] Hock, M., and Soyer, R. (2006), ”A Bayesian Approach to Signal Analysis of Pulse Trains”,
in Bayesian Monitoring, Control and Optimization, eds. B.M. Colosimo and E. del Castillo,
London: Chapman and Hall, pp. 215–243.

[14] Jelinski, Z., and Moranda, P. (1972), ”Software Reliability Research”, in Statistical Com-

puter Performance Evaluation, ed. W. Freiberger, New York: Academy Press, pp. 465–497.

[15] Kass, R.E., and Raftery, A.E. (1995), ”Bayes Factors”, Journal of the American Statistical

Association, 90, 773–795.

[16] Kremer, W. (1983), ”Birth-Death and Bug Counting”, IEEE Transactions on Reliability,
R-32, 37–46.

[17] Kotz, S., Johnson, N.L, and Balakrishnan, N. (2000), Continuous Multivariate Distribu-

tions: Models and Applications, Chichester: John Wiley and Sons.

[18] Musa, J.D. (1979), ”Software Reliability Data”, Technical Report, Rome Air Development
Center.

[19] Musa, J.D., and Okumoto, K. (1984), ”A Logarithmic Poisson Execution Time Model for
Software Reliability Measurement”, Proceedings of the seventh International Conference on

Software Engineering, pp. 230–237.

[20] Ravishanker, N., Liu, Z., and Ray, B.K. (2008), ”NHPP Models with Markov Switching for
Software Reliability, Computational Statistics and Data Analysis, 52, 3988–3999.

20

0 1000 2000 3000 4000 5000

−
6

−
2

0
2

4

iteration

lo
g(

La
m

bd
a)

(a)

0 1000 2000 3000 4000 5000

−
6

−
2

0
2

iteration

lo
g(

La
m

bd
a)

(b)

Figure 10: Trace plots of the log-rates for the Jelinski-Moranda dataset: unconstrained model
(a) and constrained model (b)

21

[21] Singpurwalla, N.D., and Wilson, S. (1999), Statistical Methods in Software Engineering,
New York: Springer Verlag.

[22] Wiper, M.P. (2007), ”Software Reliability: Bayesian Analysis”, in The Encyclopedia of

Statistics in Quality and Reliability, eds. F. Ruggeri, R.S. Kenett and F.W. Faltin, Chich-
ester: John Wiley and Sons, vol. 4, pp. 1859–1863.

[23] Wiper, M.P., and Rodriguez Bernal, M.T. (2001), ”Bayesian Inference for a Software Relia-
bility Model Using Metrics Information, in Safety and Reliability: Towards a Safer World,,
eds. E. Zio, M. Demichela, and N. Piccinini), Torino: Politecnico di Torino, pp. 1999-2006.

22

