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Abstract: Lifetime prediction of manufactured items often requires performing a life test and
analyzing observed times to failure. A natural question arising in life testing is, “During the conduct
of the test do we want to observe more failures or more survivals?” Many engineers probably will

say more failures, because intuitively speaking, failures are presumed to provide more information
about the parameters of a failure model. It has been pointed out in the literature that this is not

always true for the exponential model and that it depends on the particular parameterization that
is chosen to model failure times. Our goal is to show that the existing results for the exponential

model are general and hold for many lifetime models. We provide results that enable us to compare
the information provided by failure and survival times. We give sufficient conditions for observing

failures to be more (or less) informative than survivals about the lifetime prediction. Shannon
entropy is used as the measure of information.

Index terms: Bayesian predictive distribution, entropy, Lindley’s information, prior dis-
tribution, posterior distribution.

Notations:
Y Lifetime of an item

Θ unknown parameter which may be scalar or vector
θ a given value of Θ

f(y|θ) the conditional probability density function of Y given θ
f(θ) prior distribution of θ

H(Θ) the Shannon entropy of Θ = −

∫

f(θ) log f(θ)dθ

S(y|θ) the conditional survival function of Y given θ

λ(y|θ) the conditional failure rate of Y given θ,=
f(y|θ)

S(y|θ)
h(θ)

∏n
i=k+1 λ(yi|θ)

φ(y) one-to-one transformation of Y with exponential distribution having the
parameter θ

Y1, Y2, · · · a sequence of identical lifetimes and independent conditional on θ
Y Y = (Y1, · · · , Yn) consists of lifetimes of n items to be tested

y y = (y1, · · · , yn) consists of all failure times
f(y|θ) the conditional probability density function of Y given θ,

=

∫

f(θ)
n

∏

i=1

f(yi|θ)dθ

f(y) marginal distribution of y, =

∫

f(y|θ)f(θ)dθ

f(θ|y) the posterior probability density function of θ given y

H(Θ|y) −

∫

f(θ|y) logf(θ|y)dθ
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tn sufficient statistic for θ
y∗ y∗ = (y1, · · · , yk, y

∗
k+1, · · · , y

∗
n consist of k failure times y1, · · · , yk, k < n

and n− k survival times y∗k+1, · · · , y
∗
n such that yi = y∗i , k = k + 1, · · ·n

f(y∗|θ) the conditional probability density function of Y given θ,

=
∏k

i=1 f(yi|θ)
∏n

i=k+1 S(yi|θ)

f(y∗) marginal distribution of y∗, =

∫

f(θ)f(y∗|θ)dθ

f(θ|y∗) the posterior probability density function of θ given y∗

H(Θ|y∗) −

∫

f(θ|y∗) logf(θ|y∗)dθ

Yν Lifetime of an untested item

f(yν) prior predictive distribution of Yν =

∫

f(yν |θ)f(θ)dθ

f(yν |y) posterior predictive distribution of Yν =

∫

f(yν |θ)f(θ|y)dθ

H(Yν) the Shannon entropy of Yν = −

∫

f(yν) log f(yν)dyν

H(Yν|y) −

∫

f(yν |y) log f(yν|y)dyν

G(α, β) Gamma distribution with parameters α and β,=
βα

Γ(α)
θα−1 exp(−βθ)

ψ(α) digamma function = ψ(α) =
Γ′(α)

Γ(α)
HG(α) the entropy of Gamma distribution with parameters α and β = 1,

= log Γ(α) − (α− 1)ψ(α) + α

TTE the time transformed exponential S(y|θ) = exp(−θ logS0(y))
and S0(y) is a survival function

IFR increasing failure rate
DFR decreasing failure rate

1 Introduction

Accurate prediction of life times of new items requires performing a life test. This is often accom-

plished by getting more information about the parameters of a failure model. Information refers to

changes in probability distributions of parameters and prediction as a result of data obtained from

a life test. The predictive inference is considered a distinguishing feature of Bayesian analysis. But

one cannot obtain the predictive distribution without estimation, that is, without obtaining the

posterior distribution of the parameters.

Consider a situation in which we are testing n non-repairable items taken randomly from a

population. In the typical life-test scenario, we have a fixed time T (time truncation) to run the

items to see if they survive or fail. The data obtained are called type I censored data. Another,

though much less common, way to test is to decide in advance that we want exactly r failures (item

censorship) and then test until they occur. This is called type II censored data. It is clear that

both scenarios deprive us the opportunity of observing life history of all n items in the test. In
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view of this curtailment, many articles quantifying loss of information due to “censorship” have

appeared in the literature, see Brooks (1982) and Ebrahimi and Soofi (1990).

In this paper, our focus is not on how much to censor or truncate, but on what we would rather

observe, a failure or survival, given a certain amount of fixed or random test time. Clearly, if the an-

swer is the former, then one may choose to induce failures through an accelerated test. Accelerated

life-testing involves acceleration of failures with the purpose of assessment of life characteristics

of the item at normal use conditions. Of course, many engineers prefer to observe failures over

survivals. The intuition for choosing failure over survival is that a failure tells us all we need to

know about the item’s survival characteristic. Surprisingly, the answer to our question depends on

the characteristic life which we wish to learn about, as well as on the model for the lifetime f(y|θ)

that we use and the prior distribution that we have about the parameter f(θ). In fact, Abel and

Singpurwalla (1994) studied the problem for the exponential model for f(y|θ) and gamma model for

prior f(θ). They compared information about the exponential failure rate and mean failure time
1

θ
.

They concluded that survival is more informative than failure for estimating θ. However, failure is

more informative than survival for estimating
1

θ
. We address this problem at a more general level

and present sufficient conditions for failures to be more or less informative than survivals about

parameters and prediction of a lifetime.

Lindley (1956) formulated the problem of measuring sample information about the parameters

in terms of Shannon entropy and mutual information. Throughout this paper we also use these

measures. Evans (1969) discussed usefulness of entropy as a measure of information at a conceptual

level. El-Sayyad (1969) used entropy to quantify the amount of information contained in exponential

samples about various functions of the exponential parameter. Ebrahimi and Soofi (2004) and

Singpurwalla (2006) provide overviews and applications.

This paper is organized as follows. Section 2 presents the measures of information provided

by the sample about an unknown quantity. This section also shows comparisons of the informa-

tion about the model parameter provided by samples of all failures with samples containing both

failures and survivals. Section 3 gives results on the comparison of information for prediction of

a new lifetime provided by samples of all failures and samples that include both failures and sur-

vivals. Section 4 shows applications to several lifetime models. Section 5 gives concluding remarks.

Throughout this paper increasing means “nondecreasing” and decreasing means “non-increasing”.
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2 Information Measures

Let Q denote the unknown quantity of interest with a prior distribution f(q), q ∈ Q. In our case

Q can be Θ or Yν . Information provided by the life test data D refers to a measure that quantifies

changes from f(q) to the posterior distribution f(q|D). We measure information provided by D

about Q in terms of Shannon’s (1948) entropy. Shannon entropy of the posterior distribution is

defined by

H(Q|D) = H [f(Q|D)] = −

∫

Q
f(q|D) logf(q|D)dq,

provided that the integral is finite. If Q is discrete, the integral changes to the sum over all

values of Q. The entropy measures closeness of f(q|D) to the uniform distribution over Q. The

uniform distribution is the least concentrated distribution, which reflects the most unpredictable

(non-informative) situation. As a measure of closeness to uniformity, H(Q|D) is a measure of lack

of concentration measuring uncertainty in the sense of unpredictability of the outcomes of Q based

on f(q|D).

2.1 Comparison of Survival and Failure

We consider the following two scenarios for D:

1. Failure scenario, D = y = (y1, · · · , yn) consist of all failure times.

2. Survival scenario, D = y∗ = (y1, · · · , yk, y
∗
k+1

, · · · , y∗n) consist of k failure times y1, · · · , yk,

k < n and n − k survival times y∗k+1
, · · · , y∗n, such that y∗i = yi, i = k + 1, ·, n.

The assumption of each survival time in the second scenario is equal to a failure time in the first

scenario, y∗i = yi, ensures that the comparison is about the types, but not the magnitudes, of the

observations. These scenarios depict, for example, two experiments which include two identical

sets of n − 1 failure records, but the nth record yn = t is a failure for one experiment and is a

survival y∗n = t for the other experiment. Are these two experiments different in information that

they provide for inferences about the parameter and prediction?

The sample of all failures D = y and the sample of some failures and some survivals D = y∗

provide two different posterior distributions f(q|y) and f(q|y∗). Since the prior is common in both

cases, the two types of life tests can be compared according to the informativeness of the respective

posterior distributions. The sample of all failures y is more informative about Q than the sample

of some failures and some survivals y∗ whenever

H(Q|y∗) > H(Q|y), (1)
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irrespective of the prior distribution f(θ). That is, y is more informative if it produces a more

concentrated posterior than y∗. The comparison (1) is well-defined for improper priors such as

Jeffreys’ prior, as long as the posterior density functions f(q|y) and f(q|y∗) are proper.

The comparison of the two scenarios according to the observed sample information measures can

be extended to the comparions according to the expected sample information measures by viewing

the entropies in (1) as functions of y and y∗ and averaging each posterior entropy with respect to

the respective marginal distribution of the data. The average posterior entropy is referred to in

general terms as the conditional entropy. For the sample of all failures, the conditional entropy is

given by

H(Q|Y ) = Ey{H(Q|y)} =

∫

H(Q|y)f(y)dy,

where Ey denotes averaging with respect to f(y). The conditional entropy for y∗ is defined

similarly. On average, y is more informative about Q than y∗ if

H(Q|Y ∗) > H(Q|Y ). (2)

This inequality is also well-defined for improper priors, if in addition to the posterior density

functions f(q|y) and f(q|y∗), the marginal distributions f(y) and f(y∗) are proper.

When f(θ) is a proper prior distribution, we can compute the observed sample information

provided by each sample about Q defined by the change in entropy due to a revision of f(q) to its

posterior distribution. The observed information provided by the sample of all failures is

∆H(y;Q) = H(Q)−H(Q|y).

The observed information provided by y∗ is computed similarly. Thus, (1) can be equivalently

stated as: y is more informative about Q than y∗ whenever

∆H(y;Q) > ∆H(y∗;Q).

With a proper f(θ), we can also compute the expected entropy difference, known in general

terms as the mutual information. For the sample of all failures, the mutual information is given by

M(Y ;Q) = Ey{∆H(y;Q)} = H(Q)−H(Q|Y ) ≥ 0, (3)

the equality holds if an only if Q and Y are independent. The expected sample information is

invariant under one-to-one transformations of Q and Y . The expected sample information measure

for y∗ is defined similarly. Thus, (2) can be equivalently stated as: on average the sample of all
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failures y is more informative about Q than the sample of some failures and some survivals y∗

whenever

M(Y ;Q) > M(Y ∗;Q).

The expected sample information about the parameter, M(Y ; Θ) is known as Lindley’s measure

(Lindley 1956) and is referred to as the parameter information. The expected information in

the data for prediction M(Y ; Yν) is referred to as the predictive information (San Martini and

Spezzaferri 1984, Amaral and Dunsmore 1985).

2.2 Parameter Information

Comparison study of information between survival and failure data was initiated by Abel and

Singpurwalla (1994). They considered the exponential model f(y|θ) = θe−θy and compared the

information provided by an observed data point D = y and D = y∗ about Q = θ and Q = µ(θ) =

θ−1. To compute ∆H(y; Θ), they used the gamma prior G(α, β) with density function

f(θ) =
βα

Γ(α)
θα−1e−βθ. (4)

This prior induces the inverted gamma prior for µ(θ) = θ−1.

We consider models in the exponential family that provide likelihood functions in the form of

L(θ) ∝ θnae−θtn , θ > 0, (5)

where tn = tn(y) is a sufficient statistic for θ and a is a constant assumed to be known. This

family is very broad and includes many well-known parametric families. Several members of this

family and their sufficient statistics are shown in Table 1. The lognormal model is also in this

family. An important class of models whose likelihood functions are in the form of (5) with a =

1, is the time-transformed exponential (TTE) models defined by the survival function S(y|θ) =

exp{−θ logS0(y)}, y ≥ 0 where θ is the “proportional hazard” (Barlow and Hsiung 1983). Members

of TTE family in Table 1 are the exponential, Pareto, Weibull, and the linear failure rate. The

family (5) also includes the gamma distribution and all of its one-to-one transformations such as

the Half-normal and generalized gamma models shown in Table 1.

The gamma prior (4) is conjugate for the family (5). The posterior distribution based on the

sample of all failures y is f(θ|y) = G(α+ na, β + tn). The limiting case of (4) is the Jeffreys prior

f(θ) ∝
1

θ
, which is improper. However, the posterior distribution is f(θ|y) = G(na, tn) which is

proper. The posterior distribution based on y∗ is f(θ|y∗) = G(α+k, t∗n +β) , where t∗n = tn due to
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Table 1. Examples of Models for Applications of the Family (5) and Theorems 1 and 2.

Sufficient statistic More informative outcome
for parameter for prediction

Model Density and Support Family (5) Theorem 1 Theorem 2

Exponential (θ) f(y|θ) = θe−θy, y ≥ 0
∑

yi Failure

Pareto Type I (a, θ) f(y|a, θ) =
aθ

yθ+1
, y ≥ a > 0

∑

log(yi/a) Failure

Pareto Type II (θ) f(y|θ) =
1

(1 + y)θ+1
, y ≥ 0

∑

log(1 + yi) Failure

Half-normal (θ) f(y|θ) =

√

2θ

π
e−

θ

2
y2

, y ≥ 0 1
2

∑

y2
i Failure

Exponential Power f(y|a, θ) = aθya−1e1+θya
−exp(θya), y ≥ 0 N/A Failure

Gamma (a, θ) f(y|a, θ) =
θa

Γ(a)
ya−1e−θy, y ≥ 0

∑

yi a ≤ 1, Failure a > 1, Survival

Weibull (b, θ) f(y|b, θ) = bθyb−1e−θyb

, y ≥ 0
∑

yb
i b ≤ 1, Failure b > 1, Survival

Generalized gamma f(y|a, b, θ) =
bθa

Γ(a)
yab−1e−θyb

, y ≥ 0
∑

yb
i ab ≤ 1, Failure ab > 1, Survival

(a, b, θ)

Power (θ) f(y|θ) = θyθ−1 , 0 < y ≤ 1
∑

log yi

{

θ < 1, Failure
θ > 1, Survival

Linear Failure Rate f(y|a, θ) = 2aθ(1 + ay)e−θ(1+ay)2 , y ≥ 0
∑

(1 + ayi)
2 θ ≥ 2a, Failure Survival

(a, θ)

Extreme Value f(y|a, θ) = aeaθe(a/θ)[1−exp(θy)], y ≥ 0 N/A θ ≤ a, Failure Survival

the assumption that the survival and failure times are assumed identical under the two scenarios.

The posterior entropies for the samples under the two scenarios are given by

H(Θ|tn) = HG(α+ nsa) − log(β + tn), α, β ≥ 0, ns = k, n. (6)

The difference between the information about the scale parameter provided by the observed

sample under the two scenarios is

HG(α+ ka) < HG(α+ na), k < n, α ≥ 0. (7)

Since the gamma entropyHG is increasingly ordered by the shape parameter (Ebrahimi et al. 1999),

observing survival is always more informative than observing failure about the scale parameter for

all distributions in the family (5).
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Recall that (7) is not invariant under nonlinear transformations, so the observed information

ranks the two scenarios differently for different functions of the θ. For example, for comparing

information provided by sample in the two scenarios about the mean of the exponential model

µ(θ) =
1

θ
or about the variance of the Half-normal model σ2(θ) ∝

1

θ
, the entropies in (6) change to

the entropies of the inverse-gamma distributions and the inequality in (7) reverses due to ordering

of the inverted gamma distribution shown in Ebrahimi et al. (1999).

We also should note that the proper prior (4) is needed for computing the observed and expected

information about the parameter based on the two scenario. The information in the observed

samples are given by subtracting (6) from the prior entropy HG(α) − logβ. Thus, unlike the

comparison of the two scenario which only depends on the sample size n and the number of survivals

k, the observed information measure depends on sufficient statistic tn. Similarly, the expected

information in the samples depend on the prior entropy and the expected value of tn.

3 Predictive Information

In this section we develop results for comparison information provided by y and y∗ about prediction

of the lifetime of a new item Q = yν . We use the following definitions.

Definition 1

(a) The random variable X with survival function S1(x) is said to be stochastically less than or

equal to random variable Y with survival function S2(y), denoted by X
ST
≤ Y , if S1(v) ≤ S2(v)

for all v.

(b) The distribution F of a random variable X is said to be increasing (decreasing) failure rate,

(IFR (DFR)) if the failure rate λ(x) is increasing (decreasing) in x ≥ 0.

The next result gives a sufficient condition for the entropy ordering under stochastic ordering.

Lemma 1 Let X and Y be two random variables with stochastic order X
st
≤ Y . If the density

function of Y is decreasing (increasing), then H(X) ≤ (≥)H(Y ).

Proof. We show the proof for the decreasing case. The proof the increasing case is similar. Let

F1 and F2 be the distribution of X and Y , respectively.

−H(X) =

∫

f1(u) log f1(u)du

≥

∫

f1(u) log f2(u)du
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≥

∫

f2(u) log f2(u)du = −H(Y ),

where f1 and f2 are the probability density functions of X and Y respectively. The first inequality

is implied by Kullback-Leibler information

K(f1 : f2) =

∫

f1(x) log
f1(x)

f2(x)
dx ≥ 0, (8)

and the second inequality is implied by the assumption that f2(y) is a decreasing function.

This result is the univariate version of a result in Asadi et al. (2010). The condition of monotone

univariate density function in Lemma 1 replaces a complicated functional assumption about the

multivariate density function.

Theorem 1 Let yi, i = 1, · · · , k denote data points representing failure and y∗i , i = k + 1, · · · , n

denote data points representing either failure or survival. If the predictive density function f(yν |y)

is decreasing (increasing), then a survival at y∗i is less (more) informative than a failure about the

prediction of Yν , if and only if cov (S(y|Θ), h(Θ)|y∗) < 0.

Proof. Let y∗ = (y1, · · · , yk, y
∗
k+1, · · · , y

∗
n). Then,

f(θ|y∗) =
f(y∗, θ)

f(y∗)
,

where

f(y∗, θ) = f(θ)
k

∏

i=1

f(yi|θ)
n

∏

i=k+1

S(yi|θ),

and f(y∗) =

∫

Θ

f(y∗, θ)dθ. The posterior distribution based on the sample with all failures y is

given by

f(θ|y) =
f(y, θ)

f(y)
=
f(y∗, θ)h(θ)

f(y)
. (9)

The second equality in (9) is obtained by noting that f(y|θ) = S(y|θ)λ(y|θ), so

f(y, θ) = f(θ)
n

∏

i=1

(yi|θ)

= f(θ)
k

∏

i=1

f(yi|θ)
n

∏

i=k+1

S(yi|θ)λ(yi|θ)

= f(y∗, θ)
n

∏

i=k+1

λ(yi|θ).

The difference between the posterior densities under the two scenarios is

f(θ|y) − f(θ|y∗) =

[

f(y∗)

f(y)
h(θ) − 1

]

f(θ|y∗). (10)
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The difference between the two posterior predictive survival functions is

S(yν|y) − S(yν|y
∗) =

∫ ∞

y

∫

Θ

f(u|θ)[f(θ|y)− f(θ|y∗)]dθdu

=

∫

Θ

S(yν|θ)

[

f(y∗)

f(y)
h(θ) − 1

]

f(θ|y∗)dθ

=
f(y∗)

f(y)
cov (S(yν|Θ), h(Θ)|y∗) ,

where the second equality is from changing the order of integration and using (10), and the last

equality is due to the linear property of the covariance and by (10), Eθ|y∗

[

f(y∗)

f(y)
h(θ) − 1

]

= 0.

Thus, S(yν|y) − S(yν|y
∗) < 0 if and only if cov (S(yν|Θ), h(Θ)|y∗) < 0, and we obtain the results

by Lemma 1.

We should note that all DFR distributions have decreasing density functions and mixtures of

DFR distributions are also DFR. Thus, if the model f(y|θ) is DFR, then the predictive density is

also DFR, and the decreasing condition in Theorem 1 can be replaced with the stronger condition

that f(y|θ) is DFR. However, this cannot be said for the IFR distributions. Next, we give results

for IFR predictive distributions.

Lemma 2 Let X and Y be two random variables with stochastic order X
st
≤ Y . If Y has an IFR

distribution, then H(X) ≥ H(Y ).

Proof. Let F1 and F2 be the distribution of X and Y , respectively. By (8),

−H(Y ) =

∫

f1(u) logf1(u)du ≥

∫

f1(u) logf2(u)du.

Now,

∫

f1(u) logf2(u)du =

∫

f1(u) logλ2(u)du+

∫

f1(u) logS2(u)du

≥

∫

f1(u) logλ2(u)du+

∫

f1(u) logS1(u)du

≥

∫

f2(u) logλ2(u)du+

∫

f2(u) logS2(u)du = −H(X).

This first inequality is from the stochastic order assumption and the last inequality is due to the

IFR property and the fact that

∫

fi(u) logSi(u)du = −1, i = 1, 2.

Theorem 2 Let yi, i = 1, · · · , k denote data points representing failure and y∗i , i = k + 1, · · · , n

denote data points representing either failure or survival. If the predictive density function f(yν |y)

is IFR, then a survival at y∗i is more informative than a failure about the prediction of Yν , if and

only if cov (S(y|Θ), h(Θ)|y∗) < 0.
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Proof. . Using Lemma 2 and following the steps in the proof of Theorem 1 give the result.

Some remarks are in order.

(a) It is clear that by Theorem 1 a survival at y∗i is more (less) informative than a failure about the

prediction of Yν , if and only if cov (S(y|Θ), h(Θ)|y∗) > 0.

(b) Theorems 1 and 2 give sufficient conditions.

(c) Since Theorems 1 and 2 hold for each outcome of type y and y∗, the results hold for the com-

parison according to the expected information 2, provided that the marginal density functions

f(y) and f(y∗) are proper.

4 Applications

In applications, verification of cov (S(y|Θ), h(Θ)|y∗) < 0 can be difficult. A more restrictive,

but easy to check condition is as follows. If θ orders the failure rate λ(y|θ) for all y, then it

orders S(y|θ) = exp

{

−

∫ y

0

λ(u|θ)du

}

in reverse, and hence cov (S(y|Θ), h(Θ)|y∗) < 0. Ta-

ble 1 shows examples of distributions where θ orders the failure rate, thus satisfy the condition

cov (S(y|Θ), h(Θ)|y∗) < 0.

Among the distributions listed in Table 1, the density functions of exponential, Pareto, Half-

normal, and power exponential models are decreasing in y. For a ≤ 1 (b ≤ 1), the gamma (Weibull)

density function is deceasing in y. The same result holds for the generalized gamma model with

ab ≤ 1. These models satisfy conditions of Theorem 1 without any restriction on θ. Thus, for these

models under any prior distribution for θ, the predictive density is decreasing in y, and by Theorem

1, survival is less informative than the failure about prediction.

The density function of the power family is decreasing in y for 0 < θ ≤ 1 and increasing in y for

θ ≥ 1. Thus, under any prior distribution such that P (Θ ≤ 1) = 1, by Theorem 1, survival is less

informative than failure about prediction of the lifetime. However, under any prior distribution such

that P (Θ ≥ 1) = 1, survival is more informative than failure about prediction of the lifetime. The

density functions of the linear failure rate and extreme value models are decreasing in y for θ ≥ 2a

and θ ≥ a, respectively. Thus, for the linear failure rate model, under any prior distribution such

that P (Θ ≥ 2a) = 1, by Theorem 1, survival is less informative than failure about prediction of the

lifetime. The same result holds for the extreme value model with P (Θ ≤ a) = 1. Theorem 1 is also

applicable to the gamma and Weibull models when θ is given, but the shape parameters a and b are
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unknown, and are dustributed according to priors such that P (A ≤ 1) = 1(P (B ≤ 1) = 1). Since

the failure rate is ordered by a(b), we have cov (S(y|a), h(a)|y∗) < 0 (cov (S(y|b), h(b)|y∗) < 0).

Thus, under any prior for the shape parameter a(b) such that P (A ≤ 1) = 1(P (B ≤ 1) = 1),

the conditions of Theorem 1 are satisfied and a failure is more informative than a survival about

prediction.

The last column of Table 1 indicates application of Theorem 2 to the models whose density

functions are not always monotone, so Theorem 1 is not always applicable. For these models we

use results from Lynch (1999) who showed that the mixture of IFR distributions with log concave

survival functions in the parameter is closed under mixing with distributions that are also IFR or

have log concave densities. By this result, Theorem 2 is applicable to the IFR distributions with

log concave survival functions in the parameter under any prior distribution which is also IFR or

the prior density is log concave. The survival functions of the IFR distributions shown in Table 1

are not log concave in θ. However, Block et al. (2003) showed that the survival functions of the

Extreme value (Gompertz) and the IFR Gamma are log concave in ξ =
1

θ
, and the IFR Weibull

and IFR Generalized Gamma survival functions are log concave in ξ =
1

θb−1
. Similarly, it can be

shown that the the survival functions of the linear failure rate model is log concave in ξ =
1

θ
. Thus

with these reparameterizations, using any prior distribution for ξ which is IFR or the prior density

f(ξ) is log concave, Theorem 2 is applicable to the IFR models shown in Table 1. For example, the

result is applicable for the uniform prior over the parameter space Ξ = {ξ : 0 < ξ ≤ ξ0}. Under

such priors, we can conclude that for these models, survival is more informative than failure about

prediction.

5 Conclusion

Abel and Singpurwalla (1994) posed the interesting and important question of which observation,

a failure at a given time point or a survival at the same time point is more informative about a

parameter of the lifetime distribution of an item. Their parameters of interest were the mean and

failure rate of the exponential model, and they used proper priors for the parameters. We extended

their findings to the parameter of a broad class of models in the exponential family and to the

samples of n observations, using a formulation that allows proper as well as improper prior for the

parameter.

Our main results pertain to the comparison of the informativeness of survival and failure ob-

servations about prediction of the lifetime of a new item. We provided solutions for the question of

which of types of outcomes, failures or survivals are more informative about prediction of a lifetime,
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without assuming any specific model for the data or prior distribution for the parameter. A result

on entropy ordering under stochastic dominance led to identifying some sufficient conditions in

terms of monotonicity of the predictive density function. Depending on the general analytic of the

model a failure can be more or less informative than a survival about prediction of a lifetime. If the

lifetime model has a decreasing (increasing) density function and the model parameter orders the

failure rate, then the failure is more (less) informative than survival about the prediction of the life-

time of a new item. Another result on entropy ordering led to identifying some sufficient conditions

in terms of IFR for the predictive distribution and similar condition for the prior density function.

For the IFR distributions where the identified conditions hold, survival is more informative than

failure about the prediction of the lifetime of a new item.

We illustrated that our results are applicable to many distributions actually used as lifetime

models for comparing the informativeness of survival and failure observations about the model

parameter and about predicting a the lifetime of a new item.
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