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Abstract

Information-theoretic methodologies are increasingly being used in various disciplines. Fre-

quently an information measure is adapted for a problem, yet the perspective of information as

the unifying notion is overlooked. We set forth this perspective through presenting information-

theoretic methodologies for a set of problems in probability and statistics. Our focal measures

are Shannon entropy and Kullback-Leibler information. The background topics for these mea-

sures include notions of uncertainty and information, their axiomatic foundation, interpretations,

properties, and generalizations. Topics with broad methodological applications include discrep-

ancy between distributions, derivation of probability models, dependence between variables,

and Bayesian analysis. More specific methodological topics include model selection, limiting

distributions, optimal prior distribution and design of experiment, modeling duration variables,

order statistics, data disclosure, and relative importance of predictors. Illustrations range from

very basic to highly technical ones that draw attention to subtle points.

Key Words: Bayesian information, Dynamic information, Entropy, Kullback-Leibler in-

formation, Mutual information.

1 Introduction

The information theory offers measures that have axiomatic foundation and are capable of handling

diverse problems in a unified manner. However, the information methodologies are often developed

in isolation, where a particular measure is used without consideration of the larger picture. This

paper takes an integrative approach and draws the common properties of various information

measures. This approach enables us to relate solutions to diverse problems. We present information-

theoretic solutions to several statistical problems, ranging from very basic to highly technical.

The paper is organized into the following parts:

(a) Basic notions and measures of uncertainty and information (Sections 2-4).

(b) Information methodologies for model derivation and selection, measuring dependence, and

Bayesian analysis (Sections 5-7).

(c) Specific areas of applications (Section 8).

The presentations are in terms of random variables and vectors are used only when needed.

The first part of the paper begins with an overview of the foundation literature on concepts

of uncertainty and information in Section 2. From the literature, we decipher that two desirable

properties of uncertainty measures are concavity and attaining global maximum at the uniform

distribution. We illustrate that the variance, although being concave, is not a satisfactory measure

for mapping uncertainty. We also conclude that two desirable properties of information measures

are convexity and non-negativity. Our focal uncertainty and information measures are, respectively,

Shannon entropy (Shannon, 1948) and KL information (Kullback and Leibler, 1951). Sections 3

and 4 present these two key measures, some of their properties, and a few of their generalizations.
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In the second part of the paper, Section 5 presents the maximum entropy (Jaynes, 1957) and

minimum discrimination information criteria (Kullback, 1959) for derivation of probability models

based on moment constraints. This section includes the geometric interpretation (Csiszar, 1975,

1991) and the axiomatic foundation (Shore and Johnson, 1980) of these criteria. This section also

points out the roles of the maximum entropy characterization of probability models in methodologi-

cal problems such as Akaike information criteria (Akaike, 1973) for model selection and the Central

Limit Theorem. Section 6 addresses the problem of information about the stochastic dependence

between variables. Definitions of independence in terms of the conditionals, marginals, and joint

distributions lead to four formulations of dependence information. In terms of Shannon entropy

and KL information, all four formulations give the same measure, known as the mutual information

(Shannon, 1948). But this is not true for the generalizations of Shannon entropy and KL informa-

tion. A simple example illustrates use of the mutual information as a tool to show that lower-order

independence between variables does not imply mutually independence. This example also shows

that the correlation coefficient cannot detect nonlinear dependence. A multivariate normal example

illustrates the mutual information as a function of the correlation parameter. Other examples show

the usefulness of the information measure when the correlation is not defined. The measure of

sample information about parameter introduced by Lindley (1956) has been influential in the de-

velopment of Bayesian concepts and methods. Section 7 presents an overview of Lindley’s measure,

its interpretation as a utility function (Bernardo, 1979a), and its methodological applications, in-

cluding criteria for developing prior distribution, model for likelihood function, optimal design, and

regression diagnostics. This section also includes the criterion for the maximal data information

prior proposed by Zellner (1977). We also note that due to its KL representation, the “information

processing rule” of Zellner (1988, 2002) is endowed with the same axiomatic foundation.

In the final part, Section 8 presents four areas of applications and gives additional references

in statistics and some related fields. The first two areas are duration analysis and order statistics,

where use of information measures are evolving rapidly. For the duration analysis, we present

dynamic information measures which are functions of the age, and dynamic information criteria for

developing probability models subject to hazard rate constraints. For the order statistics we briefly

state some properties. The final two interdisciplinary areas of applications are data disclosure and

relative importance of predictors. Information measures have been used in these areas, which offer

ample opportunities for future research. This part concludes with additional references in statistics,

econometrics, engineering, and computational biology.

2 Notions of Uncertainty and Information

The notions of uncertainty and information are relative and involve comparison of distributions.

Figure 1 illustrates these two concepts through four pairs of probability density functions (pdfs).

We shall specify the parameters of these distributions as we proceed. For the present, we seek

answers to the following questions visually: Which of the two distributions in each pair displays

a set of outcomes that one can predict with a higher probability? By which distribution in each

pair is it less difficult to predict the outcomes? Visually, the answer is the distributions shown

as solid curves. These are more concentrated to great extents on some subsets of outcomes than

their counterparts shown as dashed curves. An uncertainty function, U(f), maps each of these

distributions to a real number such that in each panel U(fs) < U(fd), where s denotes those shown

as solid curves and d denotes their counterparts in the Panels. Such an U(f) enables us to rank

the predictability of all eight distributions in Figure 1. An information discrepancy function maps
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Figure 1: Probability density functions with various levels of concentration.

each pair of these distributions to a nonnegative number, which enables us to evaluate the gain or

loss of using one of the distributions in the pair instead of the other.

2.1 Notion of Uncertainty

The modern information theory is rooted in the work of Shannon (1948). Shannon related the

notion of information provided by a probability distribution for predicting outcomes to uncertainty

and “choice” at a very basic and intuitive level: A source transmits discrete signals S = {x1, · · · , xn}

through a noiseless channel according to a probability distribution f = (f1, · · · , fn), fi = P (xi).

Shannon posed questions such as: “how much information is ‘produced’? . . . how much ‘choice’ is

involved in the selection of the event or how uncertain we are of the outcome?” (Shannon, 1948, pp.

48-49). He listed a set of properties as reasonable requirements of an uncertainty function U(f).

These properties have been refined and restated in various equivalent forms by Khinchin (1957),

Rényi (1961), and others. We state these properties using our notations:

1. Continuity: U(fi, 1− fi) is continuous in fi.

2. Symmetry: U(f) = U(f1, · · · , fn) is invariant under permutations of fi, i = 1, · · · , n.

3. Monotonicity: U(f∗) = U

(
1

n
, · · · ,

1

n

)

, is a monotonically increasing function of n = 1, 2, · · ·.
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4. Partition invariance: If the signals are grouped into disjoint subsets Ej = {xk, k = 1, · · · , nj}

such that S =
⋃J

j=1 Ej, then

U [f(x)] = U(p1, · · · , pJ) +
J∑

j=1

pjU [f(x; Ej)], (1)

where pj = P (Ej) =

nj
∑

k=1

f(xk), and f(x; Ej) =
f(x)

P (Ej)
, x ∈ Ej is the truncated distribution.

We refer to the above properties as Shannon’s axioms; also see Maasoumi (1993). Rényi (1961)

gave an alternative to axiom 4 in terms of invertible functions of U(f), which reduces to (1) when

the function is linear.

Axiom 1 is for mathematical use. The last three axioms have intuitive appeals (Shannon, 1948)

and are adaptable to continuous and countable S, as well. By Axiom 2, U(f) is a function of

the magnitudes of probabilities (hight of density), irrespective of the location. Axiom 3 can be

represented more generally as follows:

3A. U(f∗), where f∗(x) ∝ k, is increasing in the volume (size) of S.

The uniform distribution in 3A is proper, f∗(x) =
1

||S||
, ||S|| < ∞, where ||S|| denotes the volume

of S; otherwise f∗(x) is improper. Axiom 4 can be represented more generally as follows:

4A. For a pair of random variables with joint pdf f(x1, x2),

U [f(x1, x2)] = U [f(x1)] +

∫

S
U [f(x2|x1)]dF (x1), (2)

where dF (x) = f(x)dx for continuous F , otherwise dF (x) = f(x) and the integral is a sum. For X

and Z = (Z1, · · · , ZJ) where Zj = φj(X) is the indicator function of x ∈ Ej, (2) gives (1).

A weaker condition than (2) is the additivity under independence:

4B. U [f(x1)f(x2)] = U [f(x1)] + U [f(x2)].

An uncertainty function is said to be additive if it satisfies 4B. Clearly, (2) implies 4B. Only a few

known families of uncertainty measures are additive (Kapur, 1994). The set of additive measures is

closed under linear combinations which makes the set expansive through simple constructions, e.g.,

if U1(f) and U2(f) are additive, so is U(f) = a1U1(f) + a2U2(f). Some alternatives to additivity

have been proposed in the literature; for example, see the pseudo-additivity defined by (10) in

Section 3.2.

A key property of the measures that satisfy various versions of the above axioms is that the

maximum uncertainty is attained when the distribution is the uniform. This is in accord with

Laplace’s ”Principle of Insufficient Reason”, which in the absence of any information about the

outcomes other than ||S||, assigns equal probabilities to all possible events of equal size or volumes.

This principle implies that the uniform distribution reflects the most unpredictable situation. Any

distribution more concentrated than the uniform distribution is more informative for prediction.

Another key property of the unique solution to Shannon’s axioms is concavity of U(f). Like

uniformity, concavity is not a defining property of Shannon’s measure. However, due to this prop-

erty “any experiment is informative, on the average” (Lindley, 1956). More generally, an important

question in the data analysis is that to what extent the use of a variable X1 affects uncertainty

about predicting the outcomes of another variable X2. DeGroot (1962) asserted that the worst

case scenario is when the outcomes of one variable, on average, have no effect on uncertainty about
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prediction of another variable. He showed that this assertion holds if and only if U(f) is concave

in f . Concavity is also necessary for the solutions to derivation of probability distributions based

on partial information by the maximum entropy method (Jaynes, 1957) to be unique, when they

exist.

The foregoing summary of literature suggests that two desirable properties for an uncertainty

function of a probability distribution F are:

(a) U(f) is a concave scalar function of f ;

(b) U(f) ≤ U(f∗), where f∗ is the uniform,

where f is a pdf relative to a dominating measure.

The property (b), referred to as the uniformity requirement, is a modification of the definition

of uncertainty function of Goel and DeGroot (1981) where concavity is the only requirement. For

example, concavity includes variance (Goel and DeGroot, 1981), but variance is not a general

measure of uncertainty. It applies only when the outcomes are quantitative and the distribution

is univariate. The natural extension of variance to the multivariate case is the dispersion matrix

which cannot be summarized uniquely in terms of a scalar function of f (see Stone, 1959). Under

certain conditions, the variance maps uniformity, but this is not universally true (Ebrahimi, et al.,

1999). For some distributions, variance is not defined and for some others it does not map the

lack of concentration of probabilities. Figure 1 illustrates all these cases. The uncertainty can be

compared by variance for the two Gaussian distributions shown in (a). The variance of Cauchy

distribution shown in (b) is not defined. The exponential and gamma distributions shown in (c)

have the same variance, but clearly display unequal levels of concentrations, hence unequal levels of

difficulty of predictability. The beta distribution shown in (d) is more concentrated but has a larger

variance than the uniform distribution. In this case, variance contradicts lack of concentration of

the distribution. As will be seen in Section 3, a measure U having the uniformity property orders

each pair of the distributions shown in Figure 1.

As a final remark, the distribution F itself can be subject to uncertainty, fully or partially,

e.g., F = Fθ, where θ is an unknown parameter. Then U(f) is also subject to uncertainty. The

uncertainty about F can be mapped by a distribution Φ with its support being a set of distributions

ΩF = {F}. Estimates of U(f) can be found, for example, by the expected values Ũ(f) = EΦ[U(f)].

2.2 Notion of Information

Broadly speaking, information refers to the changes that knowledge induces to the probability dis-

tribution used for inference. In the absence of information, the uniform distribution f∗ is used and

thus it is the global reference distribution for quantifying information in terms of unpredictability.

The information provided by a distribution f for prediction of outcomes is quantified by its dis-

crepancy with the uniform distribution f∗. An example of such information discrepancy measure

is the uncertainty difference,

D(f : f∗) = ∆U(f : f∗) = U(f∗) − U(f) ≥ 0, (3)

where the inequality is implied by the uniformity property of U . By properties (a) and (b), the

equality holds if and only if f(x) = f∗(x) almost everywhere. The information discrepancy D(f : f∗)

is convex in f if and only if the uncertainty function U(f) is concave in f .

Kullback and Leibler (1951) generalized Shannon’s notion of information in terms of discrepancy

between two distributions beyond the finite discrete and Lebesgue measures. They did not begin
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with a set of postulates but showed that their measure has some desirable properties, which were

further explored by Kullback (1954). Among the properties of the information discrepancy are

convexity and non-negativity (Kullback, 1959); see also Burbea and Rao (1982). Following this

line, we conceptualize information provided by f1 relative to a reference distribution f2 as an

information discrepancy function that has the following two desirable properties:

(a) D(f1 : f2) ≥ 0, where the equality holds if and only if f1(x) = f2(x) almost everywhere;

(b) Given f2, D(f1 : f2) is convex in f1.

In general, D(f1 : f2) does not indicate which of the two distributions is more informative for

prediction. When the reference distribution is uniform, f2 = f∗, then D(f1 : f∗) quantifies the

information provided by f1 for prediction.

3 Measures of Uncertainty

This section presents Shannon entropy and two of its generalizations.

3.1 Shannon Entropy

Shannon entropy of a distribution with pdf f(x) is defined by

H(X) ≡ H(f) = −

∫

S
log f(x)dF (x). (4)

For S = {x1, · · · , xn}, the entropy is the unique solution to Axioms 1-4. Rényi (1961) showed the

same result for an incomplete distribution, 0 <
∑n

i=1 f(xi) ≤ 1. For general S, the entropy satisfies

Axiom 4A, which is the defining property of this measure. The entropy is concave and H(f) ≤

log ||S||, where the equality holds if and only if f is uniform (improper when S is unbounded).

Example 3.1 The distributions shown in Figure 1 are ordered by the entropy as follows:

Distribution: Beta Uniform Gamma Exponential Gaussian Gaussian Cauchy

Parameters: (.5,.5) (0,1) (1,1.41) 1 (0,1) (0,4) (0,1)
Entropy: -.242 0 .924 1 1.419 2.112 2.531

Entropy expressions for univariate and multivariate families of distributions are available, e.g., in

Cover and Thomas (1991) and Nadarajah and Zografos (2005).

The conditional entropy of X1 given X2 is defined by

H(Xi|Xj) =

∫

Sj

H(Xi|xj)dF (xj) ≤ H(Xi), i 6= j = 1, 2, (5)

where the inequality is implied by concavity of H(f) and becomes equality if and only if X1 and X2

are independent. The script H is used to emphasize that H(Xi|Xj) is the average of the entropies

of all conditional distributions f(xi|xj) with respect to the distribution of Xj. By (2) and (5), the

entropy is sub-additive, i.e.,

H(X1, X2) = H(X1) + H(X1|X2) ≤ H(X1) + H(X2), (6)

where the equality holds if and only if X1 and X2 are independent.

6



There are some notable differences between entropies in the finite and general cases of S. In

the finite case, H(X) ≥ 0, where the equality holds if and only if f is a degenerate distribution. In

general, −∞ ≤ H(X) ≤ ∞ and H(f) = 0 does not imply F is degenerate. Bound for the entropy

in terms of moments are presented in Section 5.

In the discrete case, in general, transformation decreases entropy (Cover & Thomas, 1991, p.

43), and H(X) is invariant under one-to-one transformations of X . The continuous entropy is not

invariant under all one-to-one transformations of X . Let φ : <d → <d be one-to-one and Y = φ(X).

Then

H(Y ) = H(X) + E[logJφ(Y )], (7)

where Jφ(Y ) =

∣
∣
∣
∣
∣

[

∂φ−1(yi)

∂yk

]∣
∣
∣
∣
∣
, i, k = 1, · · · , d is the Jacobian of transformation; see, e.g., Darbellay

and Vajda (2000). Thus, for the continuous case, H(Y ) can be larger or smaller than, or equal

to H(X) depending on E[logJφ(Y )]. By (7), H(X) is invariant under translation and under

orthonormal transformation, H(AX) = H(X), where A is d× d matrix with determinant |A| = 1.

A useful representation of entropy for the univariate X is the quantile formula given by

H(f) = −

∫ 1

0
log

[
dQ(u)

du

]−1

du,

where Q(u) = F−1(u) = inf{x : F (x) ≥ u} is the quantile function. This representation, first

noted by Vasicek (1976), has played an important role for developing inferences about entropy

and information indices of fit. The quantile representation facilitates approximation of the entropy

when F is absolutely continuous. Consider the quantized entropy

Hm,q(F ) = −
q

∑

k=1

∆F0,k log
∆Fm,k

∆ξm,k
, (8)

where −∞ < ξ1 < · · · < ξq ≤ ∞, ∆ξm,k = ξk+m − ξk−m is spacing of order 2m ∈ {0, 2, 4, · · · , 2q},

∆Fm,k = Fk+m −Fk−m, ∆ξ0,k ≡ ξk − ξk−1, ∆F0,k ≡ F (ξk)−F (ξk−1), ξk−m ≡ ξ0 = sup{x : F (x) =

0} ≥ −∞ for k < m, and ξk+m ≡ ξq for k > q − m. For suitably chosen ξi’s, Hm,q(F )
p
→ H(X).

For m = 0, (8) is a modification of the quantized approximation of the continuous entropy by

the discrete entropy (Cover and Thomas, 1991). The quantized entropy includes several entropy

estimates proposed in the literature; see Mazzuchi, et al. (2008) for details and references.

A useful representation of entropy for reliability analysis is

H(f) = 1 −

∫ ∞

0
f(x) logλ(x)dF (x), (9)

where λ(x) =
f(x)

F̄ (x)
is the failure (hazard) rate (Teitler, et al., 1986) and F̄ (x) = 1−F (x) denotes

the survival function. The hazard rate representation has led to some results in reliability analysis.

For example, (9) is used in Ebrahimi (1996) for developing several results.

3.2 Generalizations

The entropy of order α of a distribution (Rényi, 1961) is defined as

HR,α(X) ≡ HR,α(f) =
1

1 − α
log

∫

S
fα(x)dν(x),
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where dν(x) = dx for the continuous, dν(x) = 1 for discrete cases, and α > 0, α 6= 1. It is well

known that HR,1(f) = limα→1 HR,α(f) = H(f). Rényi entropy expressions for many univariate,

bivariate, and multivariate distributions are given in Nadarajah and Zografos (2003, 2005) and

Zografos and Nadarajah (2005).

Rényi (1961) showed that for S = {x1, · · · , xn}, HR,α(X) satisfies Shannon’s Axioms 1-3 and

a weaker condition than Axiom 4 which he formulated as an alternative. However, HR,α(X) is

additive for independent random variables. For α ≤ 1, HR,α(X) is concave when f(x) ≤ 1, ∀x ∈ S,

e.g., the discrete case. Otherwise, HR,α(X) is neither concave, nor convex. The conditional Rényi

entropy HR,α(X1|X2) is defined similarly as in (5), where the inequality holds only for α ≤ 1 and

f(x) ≤ 1, ∀x ∈ S. Rényi entropy satisfies a weaker property than (5) formulated by Jizba and

Arimitsu (2004) in terms of conditioning on events. Moreover, there is no useful transformation

formula like (7) for HR,α(X).

Tsallis (1988) defined an entropy measure which can be represented as

HT,α(X) ≡ HT,α(f) = −

∫

S
fα(x)Lα (f(x)) dν(x)

=
1

1 − α

∫

S
[fα(x) − 1] dν(x),

where dν(x) is defined as above, and

Lα(z) =







z1−α − 1

α − 1
, α 6= 1,

log z, α = 1

is referred to as a generalized logarithm function and limα→1 Lα(z) = log z. HT,α(f) is also known

as Tsallis-Havrda-Charvat (THC) entropy and Lα(·) is pseudo-additive defined as:

Lα(x1, x2) = Lα(x1) + Lα(x2) + (1 − α)Lα(x1)Lα(x2). (10)

This property directly applies to THC for independent random variables X1 and X2, where Lα(·)

is replaced with HT,α(·) in (10). Like Shannon entropy, HT,α(f) is concave, so (5) holds, where the

conditional THC entropy HT,α(X1|x2) is defined similarly.

A list of several generalizations of Shannon entropy is given in Esteban and Morales (1995).

4 Measures of Information

This section presents KL information, its symmetric versions, and three of its generalizations.

4.1 KL Information

The KL discrimination information between two probability distributions Fk, k = 1, 2 with pdfs

fk is defined by

K(f1 : f2) =

∫

S
log

f1(x)

f2(x)
dF1(x), (11)

provided that F1 is absolutely continuous with respect to F2, denoted as F1 � F2. This condition

is necessary, but not sufficient, for finiteness of K(f1 : f2); see Example 4.1. The term information,

in addition to its historical background mentioned in Section 2, is reflective of the facts that

K(f1 : f2) is a generalization of (4) and that K(f1 : f2) is the expected log-odds in favor of F1
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given by the Bayes rule (Kullback, 1959). Rényi (1961) showed that for S = {x1, · · · , xn}, K(f1 :

f2) uniquely satisfies a set of properties which are analogous to Axioms 1-4. (Rényi considered

incomplete distributions and included another axiom which for complete probability distributions
∑n

i=1 fk(xi) = 1, k = 1, 2 is equivalent to the non-negativity of information discrepancy).

The relationship (3) holds for Shannon entropy and the KL information:

D(f : f∗) = K(f : f∗) = H(f∗) − H(f).

The quantity

I(f) = −H(f) = Ef [log f(X)] (12)

is the average log-height of the pdf f and is referred to as Shannon information in statistics literature

(Lindley, 1956, Zellner, 1971). A useful representation of KL is

K(f1 : f2) = Hf1
(f2) − H(f1) = I(f1) − If1

(f2), (13)

where

Ig(f) = Eg([logf(X)] (14)

is known as Fraser information. This measure is motivated by Fraser (1965) and used by Kent (1982,

1983) and others in terms of the “information gain” about a parameter, Ig[f(x|θ)] = −Hg[f(x|θ)],

where f(x|θ) is a parametric model and g(x) is “true” density. Clearly, If(f) = I(f). Note that

I(f) and Ig(f) are convex in f , but can be negative.

Properties of K(f1 : f2) are the same for distributions with all types of S. We will present

a few properties. See Kullback (1959), Soofi and Retzer (2002), and Ebrahimi and Soofi (2004)

for other properties and more interpretations. K(f1 : f2) ≥ 0, where equality holds if and only if

f1(x) = f2(x) almost everywhere. It is an information discrepancy, also referred to as cross-entropy,

relative entropy, and directed divergence between f1 and f2, but it is not a distance function (see

Kullback, 1987). For example, K(f1 : f2) is not symmetric.

For two random variables X1 and X2, the additive decomposition is

K[f1(x1, x2) : f2(x1, x2)] = K[f1(x1) : f2(x1)] + E1 {K[f1(x2|x1) : f2(x2|x1)]} . (15)

Thus, (11) is additive for independent random variables.

In general, transformation reduces information. Let φ(·) be a function, W = φ(X) and gk(w)

denote the pdf induced by fk(x), k = 1, 2. Then K(g1 : g2) ≤ K(f1 : f2), where the equality holds

if and only if φ(·) is sufficient for discrimination:
g1(y)

g2(y)
=

f1(x)

f2(x)
, almost everywhere. Examples

includes sufficient statistics when fk = fk(x|θ) and when φ is a one-to-one transformation of X .

Let Z = φ(X) be a vector of indicator functions Z = (Z1, · · · , Zn) of the partition of S and

pk = (pk1, · · · , pkn), pki = Pk(Ei) =
∫

Ei
dFk(x) > 0, k = 1, 2. Application of (15) gives

K(f1 : f2) = K(p1 : p2) +
n∑

i=1

P1(Ei)K(f1 : f2; Ei) ≥ K(p1 : p2), (16)

where K(f1 : f2; Ei) is the discrimination information between the truncated distributions fk(x; Ei) =
fk(x)

Pk(Ei)
. The inequality in (16) illustrates that grouping leads to loss of information unless it is

sufficient for discrimination:
f1(x)

f2(x)
=

P1(Ei)

P2(Ei)
for all x ∈ Ei and for all i = 1, · · ·n. When n = 2, the
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inequality in (16) gives the calibration measure proposed by McCulloch (1989) which is interpreted

in terms of discrimination information between the flips of a fair coin and a biased coin.

It should be noted that the lack of symmetry is not of a concern if either F1 or F2 is an ideal

distribution (e.g., the true data-generating distribution) or an initial distribution to be updated in

light of data. Then K(f1 : f2) measures loss of information in using the other distribution instead of

the ideal one and gain of information by use of the enhanced distribution; see Section 5. However,

in some applications, the lack of symmetry can be an issue.

A symmetric version, referred to as Jeffreys divergence (Jeffreys 1946) measure, is given by

J(f1, f2) = K(f1 : f2) + K(f2 : f1).

This measure requires F1 � F2 and F2 � F1, which is more stringent than the requirement for

K(f1 : f2). Bernardo and Rueda (2002) defined the intrinsic information measure as

δ(f1, f2) = min{K(f1 : f2), K(f2 : f1)}.

This symmetric measure bypasses the absolute continuity requirement. If F1 � F2 does not hold,

we have K(f1 : f2) = ∞ and δ(f1, f2) = K(f2 : f1). The following example illustrates these

information measures.

Example 4.1 Let fs and fd be the pdfs shown as solid and dashed curves in Figure 1, respectively.

The information discrepancy measures for each pair are as follows:

Panel: (a) (b) (c) (d)
K(fs : fd): 1.011 (3.103, 3.603) .645 .145

K(fd : fs): .807 ∞ .530 .242
J(fs, fd): 1.818 ∞ .387 1.175

δ(fs, fd): .807 (3.103, 3.603) .530 .145

Two KL measures are computed for distributions in Panels (a), (c), and (d). For Panel (b),

K(fs : fd) = K0 +
1

2
Efs[log(1 + X2)], where K0 =

3

2
log π +

1

2
log 2 = 3.103. Noting that 0 <

log(1 + x2) ≤ x2, we have K0 < K(fs : fd) ≤ K0 +
1

2
Efs(X

2) = K0 +
1

2
. The Cauchy and normal

distributions are absolutely continuous with respect to each other, but K(fd : fs) is not finite.

Computation of K(fd : fs) requires Efd
(X2) which is not finite. Consequently, Jeffreys divergence

measure cannot be computed for Panel (b). The intrinsic information measures are computed for

all four panels. The case of Panel (b) illustrates usefulness of δ(f1, f2) when the absolute continuity

holds in both directions.

4.2 Generalizations

Rényi (1961) information divergence of order α between two distributions is defined by

KR,α(f1 : f2) =
1

α − 1
log

∫

S
fα
1 (x)f1−α

2 (x)dν(x), α 6= 1.

It is well known that KR,1(f1 : f2) = limα→1 KR,α(f1 : f2) = K(f1 : f2). Only for α ≥ 1 the

absolute continuity F1 � F2 is needed. Like (11), KR,α(f1 : f2) is nonnegative, invariant under

one-to-one transformations of X , and additive for independent random variables X1 and X2, but

general additive decomposition (15) does not hold for KR,α(f1 : f2).
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Tsallis (1998) defined a generalization of KL information for probability vectors which can be

represented more generally as

KT,α(f1 : f2) =

∫

S
f1(x)Lα

(
f1(x)

f2(x)

)

dν(x) ≥ 0 (17)

=
1

α − 1

∫

S

[

fα
1 (x)f1−α

2 (x) − 1
]

dν(x), α 6= 1.

The equality holds if and only if f1(x) = f2(x) almost everywhere, and KT,1(f1 : f2) = limα→1 KT,α(f1 :

f2) = K(f1 : f2). Like (11), KT,α(f1 : f2) is nonnegative and invariant under one-to-one transfor-

mations of X . For two independent X1 and X2, (17) is pseudo-additive as defined in (10).

Cressie and Read (1984) defined a measure of divergence for multinomial distributions which

can be represented as

KC,α(f1 : f2) =
1

α
KT,α(f1 : f2), α 6= 0, 1. (18)

It is well known that limα→0 KC,α(f1 : f2) = limα→1 KC,α(f1 : f2) = K(f1 : f2). Cressie and Read

(1984) used the discrete version of this measure for multinomial estimation. Imben, et al. (1998)

proposed an information theoretic approach to the generalized method of moments based on (18).

The case of α =
1

2
is of particular interest since KR,1/2(f1 : f2), KT,1/2(f1 : f2), and KC,1/2(f1 :

f2) are all symmetric in f1 and f2. Furthermore,

KT,1/2(f1 : f2) = KT,1/2(f2 : f1)

=

∫

S

[

f
1/2
1 (x) − f

1/2
2 (x)

]2
dν(x) (19)

= 2

[

1 −

∫

S
f

1/2
1 (x)f

1/2
2 (x)dν(x)

]

.

The first integral is a Hellinger distance and the second integral is known as Bhattacharya distance.

5 Information Criteria

Maximum entropy information criteria (MEIC) develops probability models which are most non-

committal to information other than that explicitly taken into account. The MEIC extends

Laplace’s principle of insufficient reason. The minimum discrimination information criteria (MDIC),

also known as the minimum cross-entropy principle, generalizes the MEIC by developing noncom-

mittal models with reference to any given measure instead of the uniform reference.

5.1 MDIC and MEIC

Given f2, K(f1 : f2) is convex in f1. Therefore, for a class of distributions K(f1 : f2) can be

minimized with respect to f1. Consider the moment class of distributions:

Ωθ = {f(x|θ) : Ef [Tj(X)|θ] = θj, j = 1, · · · , J} , (20)

where Tj(X) are integrable with respect to dF (x) and θ = (θ1, · · · , θJ).

Definition 1 The MDI model in Ωθ reference to f0 is f∗ = argminf∈Ω
θ

K(f : f0).

11



The MDI model f∗ ∈ Ωθ is unique and is in the form of

f∗(x, f0|θ) = C0(λ)f0(x)e−λ1T1(x)−···−λJTJ(x), (21)

where λ = (λ1, · · · , λJ), θj =
∂

∂λj
log C0(λ), is the vector of Lagrange multipliers, provided that

the normalizing factor C0(λ) is strictly positive and finite. For all f ∈ Ωθ,

K(f : f0|θ) ≥ K(f∗ : f0|θ) = log C0(λ) − λ′θ. (22)

These results also hold when Ωθ in (20) is defined by Ef [Tj(X)|θ] ≥ θj; see Appendix in Kullback

(1959, reprinted in 1968) and Shore and Johnson (1980).

The MEIC proposed by Jaynes (1957, 1968) gives the following criterion.

Definition 2 The ME model in Ωθ defined in (20) is f∗ = argmaxf∈Ω
θ

H [f(x)].

When f0 in (21) is uniform (proper or improper), the MDIC and MEIC are equivalent.

If (21) exists when f0 is a constant, then (21) gives the unique ME model

f∗(x|θ) = C(λ)e−λ1T1(x)−···−λJTJ(x), (23)

and for all f ∈ Ωθ,

H [f(X |θ)] ≤ H [f∗(x|θ)] = − logC(λ) + λ′θ. (24)

In particular, when Ωθ =
{

f(x|θ) : E[X |k = θ
}

, (24) gives the entropy-moment inequality:

H(X) ≤
1

k
log

2keΓk(1/k)E|X |k

kk−1
, (25)

where the equality is attained by the ME model in Ωθ. The well-known examples are the exponential

distribution for k = 1, x ≥ 0, double-exponential (Laplace) distribution for k = 1, x ∈ < and

normal (Gaussian) distribution for k = 2. By (25), the entropy of distributions with a finite

variance is finite. But the converse is not true. Bound for the entropy of discrete distribution in

terms of the entropy of a continuous distribution with given variance is presented in Cover and

Thomas, 1991, pp. 235-236). By (24) and (25), their procedure can be used to obtain bounds for

the entropy of distributions based on various moments.

For any f ∈ Ωθ and f∗ ∈ Ωθ, we have the information distinguishability (ID) relationship

K(f : f∗|θ) = H(f∗|θ) − H(f |θ), (26)

where H(f∗|θ) = H(f |θ) if and only if f(x|θ) = f∗(x|θ) almost everywhere (Soofi, et al. 1995,

Ebrahimi, et al. 2008). Comparison of (26) with (13) reveals that for f, f∗ ∈ Ωθ, Fraser information

is negative Shannon entropy, If(f∗) = I(f∗). The ID relationship (26) is a simple but sufficiently

general result which plays the key role in some information methods. Next, we briefly mention a

few. Application to model selection will be presented in Section 5.4.

Application of (26) simplifies the ME characterization problem to identifying the information

moment set by (23). Ebrahimi, et al. (2008) showed that any distribution with a pdf in the form of

(23) is the unique ME model in the moment class of distributions (20) generated by the information

moment set TX = {Tj(X), j = 1, · · · , J} shown in the exponent of the pdf in (23). For a parametric

model, one may easily identify the moment class Ωθ by writing the pdf in the exponential form

12



(23). Many known univariate and multivariate parametric families of distributions are in the form

of (23) and therefore are ME subject to specific forms of moment constraints.

The ID relationship (26) also facilitates derivations of limiting distributions. Barron (1986)

proved the Central Limit Theorem (CLT) for given variance. In the CLT case (26) is applicable

and convergence in entropy is equivalent with K(f1 : f2) → 0. Convergence in discrimination

information K(f1 : f2) → 0 implies convergence in distribution due to the results available based

on L1-norm and the inequality ||f1 − f2||
2 ≤ 2K(f1 : f2), see Barron (1986) for references. In

problems such as convergence to an extreme value distribution, the limiting distribution is not the

ME model in the class of models that contains the sequence Ω = {Fn}, thus (26) does not apply,

and convergence in entropy does not imply K(f1 : f2) → 0.

Successive application of (26) to the moment constraints in (20) gives

K(f : f∗|θ) =
J∑

j=1

K(f∗|θj−1, f
∗|θj) =

J∑

j=1

∆H(f∗|θj , f
∗|θj−1), (27)

where f∗(x|θ0) = f(x|θ) and f∗(x|θj) = f(x|θ1, · · · , θj), provided that their entropies are fi-

nite. Applications of (27) include the “analysis of information” for categorical data (Gokhale and

Kullback, 1978) and information indices of predictors in logit models defined by the normalized

information differences (Soofi, 1992, 1994).

Example 5.1 (Location-scale family) A pdf f(x; µ, Σ) is said to be in the multivariate location-

scale family of distributions ΩLS with location vector µ and scale matrix Σ if

f(x; 0, Id) = |Σ|1/2f
(

Σ−1/2(x − µ)
)

, (28)

where 0 is the vector of zeros and Id is the identity matrix. The best known example in the family

(28) is the multivariate normal distribution with pdf

f∗(x) =
1

(2π)d/2|Σ|1/2
e
−

1

2
(x − µ)′Σ−1(x − µ)

, x ∈ <d.

This pdf is in the form of (23) with T1(X) = X and T2(X) = (X − µ)(X − µ)′. Thus, f∗(x)

is ME in Ωθ = {f : Ef = µ, Ef [(X − µ)(X − µ)′] = Σ}. Note that Ωθ ⊂ ΩLS, since mean and

covariance for some f ∈ ΩLS are not defined (e.g., Cauchy). For any f ∈ ΩLS with a finite entropy,

H(X; Σ) = H(X; Id) +
1

2
log |Σ| ≤ H(X∗; Σ),

where H(X; Id) is a function of parameters of f(x; 0, Id) and the dimension d and

H(X∗; Σ) = H(f∗) =
d

2
+

d

2
log(2π) +

1

2
log |Σ| (29)

is the normal entropy. If Ωθ0
⊂ ΩLS where, Σ = Σ0 = Diag[σ2

1, · · · , σ
2
d], then the ME model

f∗
0 (x) ∈ Ωθ0

is the independent normal distribution. Since Ωθ ⊆ Ωθ0
, the ID relationship (26) is

applicable and the entropy reduction due to the additional off-diagonal constraints in Ωθ is

g(R) = K(f∗ : f∗
0 ) = H(X∗; Σ0) − H(X∗; Σ) = −

1

2
log |R| ≥ 0,

where R is the correlation matrix of f∗. Thus, g(R) is an example of the ID relationship (26).
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5.2 Geometric Interpretation

The MDIC (MEIC) seeks the distribution that is closest to the reference distribution f0 (uniform

distribution) and satisfies the moment conditions that define Ωθ. A geometric interpretation of the

MDI model as the information projection of f0 on Ωθ is given by the following Pythagorean type

equality. If Ωθ ⊆ Ω0 where Ω0 is a linear set of probability vectors, then

K(f : f0) = K(f : f∗) + K(f∗ : f0); (30)

Csiszar (1975). Later, Csiszar (1991) developed an axiomatic foundation for the geometric interpre-

tation of MDIC and MEIC for probability vectors, analogous to the Euclidean geometry of the least

squares. The relationship (30) is the basis of the MDI tests for information analysis of categorical

data (Gokhale and Kullback, 1978) and the information indices of logit models.

A geometric interpretation analogous to (30) can be obtained when Ωθ is not a set of probability

vectors. If there exists a pdf f0 /∈ Ωθ with finite entropy such that H(f∗|θ) ≤ H(f0), then

K[f(x|θ) : f0(x)] = K[f(x|θ) : f∗(x|θ)] + K[f∗(x|θ) : f0(x)]. (31)

This relationship is obtained by noting that f0 is the ME model in Ω0 = Ωθ ∪ {f0} and applying

(26) to (31). Examples include: (a) Ωθ = {f(x|θ), 0 < x < 1 : E(logX) = θ} and f0(x) = 1;

(b) Ωθ = {f(x|θ), x > 0 : E(X) = θ1, E(logX) = θ2} and f0 is an exponential pdf with mean

greater than or equal to θ1; and (c) Ωθ =
{

f(x|θ),−∞ < x < ∞ : E(X2) = θ
}

and f0 is a pdf

with H(f0) > .5 log(2πeθ). Statistical applications of (31) include explication of the projection and

decomposition developed by Hastie (1987) for the estimates of KL information measures in terms

of the likelihood quantities of the exponential family regression; for the normal model it gives the

least squares projection and the sums of squares decomposition of the linear models.

5.3 Axiomatic foundation

Shore and Johnson (1980) provided an axiomatic foundation for the MDIC and MEIC in a general

inductive inference framework. In this framework, f0(x) is viewed as the distribution that reflects

the state of knowledge for inference about X before the new information in terms of the moment

constraints in (20) was available. They formulated four “consistency” axioms for updating f0 in

light of the new information and showed that the optimal learning model is equivalent to the

MDIC. They also showed that MEIC is the optimal learning model for the discrete case when f0

is uniform. The mathematical formulation of the axioms and the proofs are rather involved. The

axioms, stated informally are as follows:

1. Uniqueness: The inferential distribution should be unique.

2. Invariance: The inferential distribution should not depend on the choice of coordinate system.

3. System Independence: The inference based on different densities obtained separately from

independent information about independent systems should be the same as that obtained

jointly in terms of a joint density.

4. Subset Independence: The inference based on treating an independent subset of system states

in terms of a separate conditional density should be the same as that in terms of the full

system density.

The underpinning principle of these axioms is that “if a problem can be solved in more than one

way, the result should be consistent”. Thus, the MDIC and MEIC “are not only well behaved in

a statistical sense but prove to be inferentially sound” (Gabriele, 1999). The proof is deep and
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“rests primarily on the subset independence property” (Shore and Johnson, 1980). Without this

property, a generalization in terms of

∫

[f(x)/f0(x)]α dF (x) can be obtained which gives MDIC

for α = 1 (Karbelkar, 1986), but for α 6= 1 there is no known explicit solution such as (21).

The MDIC and MEIC are learning models in statistics when θj, j = 1, · · · , J are computed from

the data. Examples include the internal constraints problems (Gokhale and Kullback, 1978), ME

and MDI logit models (Soofi, 1992, 1994, Golan, et al., 1996), ME model for the regression function

(Ryu, 1993), the Bayesian method of moments (Zellner, 1996, 1997) where post data distributions

are developed for parameters and prediction, and ME model fitting based on (26) discussed next.

5.4 Model Selection

In the information theoretic model selection, alternative models fk(x|θj) are compared with the

unknown f(x) according to an information discrepancy measure D[f(x) : fk(x|θj)]. The subscripts

emphasize that the models can be in different families and the parameter space can be different.

The issue of models being in the same or separate families often arises in statistics. Cox (1961)

addressed this issue in testing, which also known as the problem of nested or non-nested hypotheses.

Pesaran (1987) operationalized the concept of nested and non-nested hypotheses in terms of the

discrimination information in a very precise manner.

Application of (11) in the estimation problem where f(x) is assumed to be in a parametric

family f(x) = f(x|θ) is known as the entropy loss (see, e.g., James and Stein, 1961 and Haff,

1980). The objective is to compute an estimate f(x|θ̃), where θ̃ is referred to as the minimum

discrimination information or minimum entropy loss estimate.

Akaike (1973) noted that for model selection (13) gives

K[f(x) : fk(x|θj)] = I [f(x)]− If [fk(x|θj)], (32)

where If [fk(x|θj)] is defined in (14). Since I [f(x)] is free from fk(x|θj), the first term in (32)

is ignored in the derivation of the AIC criteria for model selection. The AIC type measures are

derived by minimizing various estimates of the second term in (32); Akaike information criteria

(AIC) uses the sample average of the log-likelihood function for the estimate. Consequently, the

AIC type measures do not provide information diagnostics about the model fit. These measures

provide criteria for model comparison, irrespective of whether or not the fit of models are satis-

factory. Assessing whether the unknown f(x) can be satisfactorily approximated by a parametric

model requires estimation of the information discrepancy between the unknown data-generating

distribution and the model, K[f(x) : fk(x|θj)]. In general, estimation of the minimum discrimina-

tion information function (32) when the data-generating distribution f(x) is unknown constitutes

a difficult problem.

Application of (26) alleviates estimation of (32). Let f(x|θ) denote a class of models indexed by

θ for approximating f ∈ Ωθ as defined in (20) and f∗(x|θ) be the ME model in Ωθ. Using f∗(x|θ)

for the parametric model in (32), the second term in (32) becomes H [f∗(x|θ)] and (32) becomes

the ID relation (26). This reduces the problem of estimating K[f(x) : fk(x|θj)] to the problem of

estimating the two entropies shown in (26). Then (32) can be estimated by

K̃[f(x) : fk(x|θj)] = H [f∗(x|θ̃)]− H̃[f(x)], (33)

where θ̃ is an estimate of θ obtained by the moments of the distribution whose entropy is H̃ [f(x)],

which is an entropy estimate such as (8). With these moments, K̃[f(x) : fk(x|θj)] ≥ 0 and
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provides ID criteria for estimating closeness of the ME model f∗(x|θ̃) to f(x). Unlike AIC which

provides criteria for model comparison purposes only, the ID statistic (33) provides distributional

diagnostics for model comparison as well as for the goodness-of-fit. Mazzuchi, et al. (2008) provide

applications where H̃[f(x)] is estimated by the posterior mean of the quantile entropy (8), and give

many references. The deviance measure widely used in the exponential family regression is an ID

statistic; see, e.g., Hastie (1997) and Spigelhalter et al (2002).

6 Information Measures of Dependence

6.1 Notions of Dependence Information

Two random variables X1 and X2 are independent if and only if f(xi|xj) = f(xi) for all xi, xj, i 6=

j = 1, 2. Thus for the independent case, for any uncertainty function, U [f(xi|xj)] = U [f(xi)], i 6=

j = 1, 2 for all xj , and for any information discrepancy function D[f(xi|xj) : f(xi)] = 0, i 6= j = 1, 2

for all xj. The condition of for all xj is sufficient, but not necessary. Since f(xi) = Exj
[f(xi|xj)],

for any concave uncertainty function U we have by Jensen inequality U [f(xi)] ≥ Exj
{U [f(xi|xj)]}

where the equality holds if and only the two variables are independent. This leads to the following

two measures of information dependence:

D1(X1, X2) = U [f(x2)]− Ex1
{U [f(x2|x1)] ≥ 0 (34)

D2(X1, X2) = U [f(x1)] − Ex2
{U [f(x1|x2)] ≥ 0, (35)

where in each case the equality holds if and only the two variables are independent.

Alternatively, two random variables X1 and X2 are independent if and only if f(xi, xj) =

f(xi)f(xj) for all xi, xj, i 6= j = 1, 2. Thus in the independent case, for any information discrepancy

function D[f(xi, xj) : f(xi)f(xj)] = 0, i 6= j = 1, 2 for all xj . This leads to the following measure

of information dependence:

D3(X1, X2) = D[f(x1, x2) : f(x1)f(x2)] ≥ 0, (36)

where the equality holds if and only the two variables are independent. Furthermore, if U(·) is

an additive uncertainty measure, then Axiom 4B provides the following measure of information

dependence:

C(X1, X2) = U [f(x1)] + U [f(x2)] − U [f(x1, x2)], (37)

The measures (36) and (37) are symmetric in X1 and X2, but in general (37) can be positive or

negative, so it is not an information discrepancy function between f(x1, x2) and f(x1)f(x2). If

C(X, Y ) ≥ 0, the uncertainty function U(·) is referred to as sub-additive, and then (37) is an infor-

mation discrepancy function, C(X1, X2) = D4(X1, X2). In general, the four dependence information

measures (34)-(37) are not equal. For example, Kent (1983) defined measures of dependence in

terms of Fraser information (14), which can be related to (34), (35), and (37) where U(f) = −Ig(f).

These measures are equal for the bivariate normal case, but not in general; see Kent (1983) and

Inaba and Shirahata (1986) for details and examples. Also see, Example 6.3.

The measures (34) and (35) quantify the expected information provided by each variable about

the other. The observed information provided by a given Xj = xj for predicting outcomes of

Xi, i 6= j is measured by the uncertainty difference

∆U [f(xi|xj) : f(xi)] = U [f(xi|xj)] − U [f(xi)], i 6= j = 1, 2. (38)
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For a particular xj , this measure can be positive, negative, or zero, depending on which one of

the two is closer or farther to the uniform distribution. An observation xj can reduce or increase

uncertainty or leave it unchanged; an increase of uncertainty is referred to as “surprise” (Lindley,

1956). In general, ∆U [f(xi|xj) : f(xi)] = 0 for some xj, neither implies that the two distributions

are identical, nor implies that X1 and X2 are independent. The information discrepancy D[f(xi|xj) :

f(xi)] ≥ 0, i 6= j = 1, 2 is also a measure of observed information. For this measure, the equality

holds if and only if f(xi|xj) = f(xi) for almost all xi, but it does not imply the X1 and X2 are

independent.

6.2 Mutual Information

In terms of Shannon entropy and KL function all four dependence information (34)-(37) are equal

and the unique measure is known as the mutual information between two random variables:

M(X1, X2) = D1(X1 : X2) = D2(X1 : X2) = D3(X1, X2) = D4(X1, X2) ≥ 0. (39)

It is clear from D3(X1 : X2) = K[f(x1, x2) : f(x1)f(x2)] ≥ 0 that the last equality in (39)

holds if and only if X1 and X2 are independent, see Cover and Thomas (1991) and Joe (1989).

Furthermore, the absolute continuity F (x1, x2) � F (x1)F (x2) is necessary; see Ebrahimi, et al.

(2007) for details. The shared information representation D4(X1, X2) facilitates computation of

the mutual information by entropy expressions for many well-known families of distributions.

Mutual information between more than two random variables is defined similarly. For example,

the mutual information between all d components of X = (X1, · · · , Xd) is given by

M(X) = K[f(x) : f1(x1) · · ·fd(xd)] =
d∑

i=1

H(Xi) − H(X) ≥ 0, (40)

where the equality holds if and only if all components are mutually independent. Thus, M(X)

provides a measure of complexity of a multivariate distribution in terms of dependence between its

components, where the simplest multivariate distribution has mutually independent components.

The mutual information measures possess all the properties of (11). For a decomposition similar

to (15), let M(X1, X2|X3) = E3 {M(X1, X2|X3)}, which measures the conditional dependence and

is referred to as the conditional mutual information between X1 and X2 given X3. Successive

applications give a chain rule for the mutual information between a random variable Y and a

random vector X :

M(Y, X) =
d∑

i=1

M(Y, Xi|X1, · · · , Xi−1), (41)

where M(Y, Xi|X2, · · · , Xi−1) is the partial mutual information and M(Y, X1|X1) = M(Y, X1).

Let (W1, W2) = [φ1(X1), φ2(X2)], where φi is one-to-one for all i = 1, 2. Then M(W1, W2) =

M(X1, X2). For any copula transformation C(X1, X2), the marginal distributions Ui = Ci(Xi) =

Fi(X), i = 1, 2 are uniform over the unit interval, so the marginal entropies are H(Ui) = 0, i = 1, 2.

By the shared information representation, M(X1, X2) = −H(U1, U2).

Letting f1 = f(x1, x2) and f2 = f(x1)f(x2) in (19), Rényi and Tsallis divergence measures with

α = 1/2 provide symmetric measures of dependence. Hirschberg, et al. (1991) used KT,1/2[f(x1, x2) :

f(x1)f(x2)] for clustering time series and Granger, et al. (2004) defined a measure in terms of

KT,1/2[f(x1, x2) : f(x1)f(x2)] for detecting non-linear serial dependence of variables. The equiv-

alence of Tsallis divergence KT,1/2[f(x1, x2) : f(x1)f(x2)] with the Hellinger distance and Bhat-

tacharya distance (19) is appealing. However, unlike the case of Shannon entropy and KL function,
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for the generalized entropies and divergence measures, the four dependence information (36) and

(37) are not necessarily equal.

Example 6.1 Consider the following distribution

f(x1, x2, x3) =
1

4
, for (x1, x2, x3) = (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0).

This distribution is the classic example for illustrating that pairwise independence does not imply

independence. The information method is simple and easily generalizable to higher dimensions.

The entropies are H(Xi) = log 2, H(Xi, Xj) = 2 log 2, j 6= i = 1, 2, 3, and H(X1, X2, X3) = 2 log 2.

The shared information formula gives M(Xi, Xj) = D4(Xi, Xj) = 0, so the variables are pairwise

independent. The complexity formula (40) gives M(X1, X2, X3) = log 2, so the variables are not

mutually independent. The chain rule formula (41) gives M [Xi, (Xj, Xk)] = log 2, so Xi is not

independent of (Xj, Xk). Let Yij = aiXi + ajXj, i 6= j = 1, 2, 3, then M(Yij, Xk) = log 2, k 6=

i, j. Thus, Yij and Xk are not independent, but they are uncorrelated, due to the fact that the

dependence is not linear. By the information method we can easily show this concept more generally

with f(x1, · · · , xn) =
1

2n−1
for n − 1 points and k-dimensional marginals f(x1, · · · , xk) =

1

2k
, k ≤

n − 1, where H(Xi) = log 2, H(Xi, Xj) = 2 log2, · · ·, and H(X1, · · · , Xn) = (n − 1) log2.

Example 6.2 (Location-scale family) Using shared information representation in (39), we find

the mutual information between components of a multivariate scale family:

M(X; Σ) = M(X∗; R) + M(X; Id) ≥ M(X∗; R), (42)

where

M(X∗; R) = g(R) = −
1

2
log |R| = −

1

2

d∑

k=1

logλk ≥ 0

is the multivariate normal mutual information and λi, i = 1, · · · , d are the eigenvalues of Σ.

Thus, the mutual information (42) decomposes into a measure of linear dependency M(X∗; R)

and nonlinear dependency M(X ; Ip). Among all distributions in the multivariate location-scale

family having the same scale matrix Σ, the multivariate normal model has the minimal dependence

structure; it is the least complex distribution. In the family, the multivariate normal with the

uncorrelated components attains the global minimum, M(X∗; Id) = 0, mapping the independence.

In each family, the distribution with orthogonal components is the least complex. For example,

another member of the location-scale family is the multivariate Cauchy distribution with location

µ and scale Σ. Thus, M(X; Id) < M(X; Σ) < M(X∗; Σ); see Abe and Rajagopal (2001) for an

application. The marginal distributions of subvectors Xa and Xb of the multivariate Cauchy are

also Cauchy. The mutual information between two disjoint subvectors of the standard multivariate

Cauchy variable can be easily computed using representation M(Xa, Xb; Id) = D4(Xa, Xb; Id).

Since the traditional measures (variance and correlation coefficient) are not defined for the Cauchy

distribution, the entropy and mutual information are particularly useful.

Rényi entropy of the d-dimensional normal distribution with covariance Σ is given by

HR,α(X) =
d

2
log 2π +

d logα

2(α − 1)
+

1

2
log |Σ|.
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Rényi normal entropy is sub-additive. For example, for bivariate normal with correlation ρ,

Dj(X1, X2; α) = M(X1, X2) = −
1

2
log(1− ρ2) ≥ 0, j = 1, 2, 4, ∀α > 0

is free from α. Rényi dependence information divergence measure for the bivariate normal distri-

bution depends on α and is defined only when α ≤ 1 +
1

ρ
. The following example shows the more

general case where Dj(X1, X2; α), j = 1, 2, 3, 4, α 6= 1 all depend on α, are different, and Rényi

entropy is not sub-additive.

Example 6.3 (Gamma-Pareto) Consider the bivariate distribution with density function

f(x1, x2) =
1

Γ(β)
xβ

1e−x1−x1x2, x1, x2 ≥ 0, β > 0. (43)

Singpurwalla (2006) referred to (43) as Gamma-Pareto distribution. Darbellay and Vajda (2000)

referred to this distribution as Gamma-Exponential and computed Shannon entropy and mutual

information for (43). Nadarajah and Zografos (2005) computed its Rényi entropy. The marginal

distribution of X1 is gamma Ga(β, 1) with density function

f(x1) =
1

Γ(β)
xβ−1

1 e−x1, x1 > 0, β > 0

and the marginal distribution of X2 is Pareto distribution with pdf (47) in Section 8.1. The

conditional distribution of X2|x1 is exponential with rate x1, and the conditional f(x1|x2) = Ga(β+

1, x2 + 1). The KL information can also be easily computed. The information measures are

particularly useful since for β ≤ 2, the variance of Pareto and correlation coefficient of (43) are

not defined. Using formulas for Rényi entropies of (43), gamma and Pareto distributions, we find

D2(Xi, Xj; α), D3(Xi, Xj; α), and C4(Xi, Xj; α). Figure 2 shows the plots of these measures against

α. These measures are different for α 6= 1 and C(Xi, Xj; α) < 0 for α ≥ 1.39, thus Rényi entropy

of (43) is not subadditive.

7 Bayesian Information Measures

For the Bayesian information measures, X1 and X2 of previous sections assume specific interpreta-

tions in terms of a vector of observable quantities Y = (Y1, Y2, · · · , Yn), an unobservable parameter

Θ which can be a scalar or vector, and a quantity to be predicted which we denote by Yn+1. The

prior and posterior distributions of Θ are f(θ) and f(θ|y). The predictive prior and posterior

distributions of Yn+1 are given by

f(yn+1) =

∫

f(yn+1|θ)dF (θ)

f(yn+1|y) =

∫

f(yn+1|θ)dF (θ|y). (44)

Applications of the entropy, KL information, and the mutual information to the prior and poste-

rior distributions of the parameter, and to the predictive distributions produce Bayesian information

measures about the parameter Θ and for prediction of Yn+1. Developing prior distributions and

model for the likelihood function according to the MEIC and MDIC are well-known.
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Figure 2: Rényi dependence information measures D2(Xi, Xj; α), D3(Xi, Xj; α), and C(Xi, Xj; α)
for Gamma-Pareto distribution

The difference (38) between the prior and posterior entropies ∆H [f(θ|y), f(θ)] gives the infor-

mation provided by the observed sample y about the parameter. Abel and Singpurwalla (1994)

utilized the lack of invariance of the observed information for an interesting application. Sample

information is also measured in terms of K[f(θ|y) : f(θ)], which only detects the change between

the prior and the posterior, without indicating which of the two distributions is more informative.

The KL information involving predictive distributions have been used by Aitchison (1975, 1990),

Johnson and Geisser (1983), Amaral and Dunsmore (1985), Geisser (1993), and Keyes and Levy

(1996), among others.

The mutual information M(Y ; Θ) measures the expected sample information about the param-

eter (Lindley, 1956), and is known as Lindley’s measure. Lindley (1961) showed that ignorance be-

tween two neighboring values θ and ∆θ in the parameter space implies that M(Y ; Θ) ≈ 2(∆θ)2F (θ)

where F (θ) is Fisher information. A similar result is given by Kullback and Leibler (1951):

K(fθ : fθ+∆θ) ≈ 2(∆θ)2F (θ). Polson (1992) developed an approximation of M(Y ; Θ) in the

context of nonlinear models. Carota, et al. (1996) in the context of “model elaboration” developed

a linearized approximation of M(Y ; Θ) in terms of the Savage density ratio and the score function.

Bernardo (1979a) explicated M(Y ; Θ) as the expected utility when the decision problem is

to report a probability distribution fp(·) from the space of all distributions P about θ when y is

observed. He showed that the logarithmic utility (score) function

u[fp(·), θ] = A log fp(θ) + B(θ),

where A is a constant and B(·) is an arbitrary function, leads to M(Y ; Θ) = Eθ|y {u[fp(·), θ]} and

thus f(θ|y) as the information optimal distribution for inference about θ. This logarithmic utility

function is a member of a large class of utility functions discussed by Good (1971) and others which

lead to the posterior distribution given by the Bayes rule as the optimal distribution. Abbas (2004)

proposed developing ME and MDI utility functions when partial information about the preference

is available.

Zellner (1988) defined an Information Processing Rule (IPR) based on four information measures

and derived Bayes rule as the optimal solution. He considered f(θ) and f(y|θ) as two ante data
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distributions for inputs into an information processing which provides two post data distributions

fp(θ|y) and fp(y) as outputs. Then Zellner’s IPR is defined as:

IPR[fp(θ|y)] =

Output information
︷ ︸︸ ︷
{

Ifp [fp(θ|y)] + Ifp [fp(y)]
}

−

Input information
︷ ︸︸ ︷
{

Ifp [f(θ)] + Ifp [f(y|θ)]
}

(45)

where Ifp [·] is the information measure defined in (14). Zellner (1988) used calculus of variations and

showed that the Bayes rule is the most efficient IPR in the following sense: IPR[fp(θ|y)] = 0, if and

only if fp(θ|y) = f(θ|y) is the posterior distribution given by the Bayes rule. Jaynes (discussion of

Zellner, 1988) articulated the efficiency of Bayes rule as follows: “An acceptable inference procedure

should have the property that it neither ignores any of the input information nor injects any false

information; if this requirement already determines Bayes’s theorem, the issue seem to be settled.”

Kullback (discussion of Zellner, 1988) noted that

IPR[fp(θ|y)] = K[fp(θ|y) : f(θ|y)] ≥ 0, (46)

and the equality gives fp(θ|y) = f(θ|y) almost everywhere. (This representation also has been

noted by others, see Zellner (Reply 1988) for references). We note that, by the KL representation

(46), Zellner’s IPR is endowed with the axiomatic foundations of the MDIC. Zellner (Reply 1988)

pointed out the possibility of giving different weights to the input components of the IPR and later

presented an example of (45) where fα1
(θ) ∝ fα1(θ) and fα2

(y|θ) ∝ fα2(y|θ), αj > 0, j = 1, 2;

see, Zellner (1997, 2002). Zellner (personal communication, 2010) indicated that the weights αj’s

“were introduced by others in the literature to adjust for the quality of the informational inputs

. . . they were not my invention”. The weighted version of IPR also admits a KL representation

similar to (46). Zellner (2002) discussed inclusion of side conditions for θ in terms of moments

or differential equations which give fp(θ|y) in the form of the MDI model (21) with reference

distribution f0(θ) = f(θ).

Ibrahim, et al. (2003) developed posterior for θ which minimizes

K(f) = αK[f(θ|y) : f1(θ|y)] + (1− α)K[f(θ|y) : f0(θ|y0)], 0 ≤ α ≤ 1,

where f0(θ|y0) ∝ f0(θ)f(y0|θ) is the posterior which updated the prior f0(θ) based on “historic”

data y0 before the current data y, and f1(θ|y) ∝ f0(y0|θ)f(y|θ). They showed that the optimal

posterior is given by f∗(θ|y) ∝ f0(θ)f
α
0 (y0|θ)f(y|θ), and f(θ) ∝ f0(θ)f

α
0 (y0|θ) is referred to as the

power prior. They also included a third component Ifp [f
α3(y0|θ)] to the inputs in the weighted

version of IPR (45) and showed that f∗(θ|y) is optimal with weights (α1, α2, α3) = (1, 1, α).

Bernardo (1979b) proposed developing reference prior that maximizes M(Y ; Θ). In general,

the solution does not have a closed form. Lindley’s approximation of M(Y ; Θ) in terms of Fisher

information implies that Jeffreys’ prior is an approximation to the density maximizing M(Y ; Θ).

Bernardo (2004) extended the reference analysis to the symmetric intrinsic information measure

δ(Θ, y) = min{K[f(θ, y) : f(θ)f(y)], K[f(θ)f(y) : f(θ, y)]}. Yuan and Clarke (1999) proposed

developing models for the likelihood function that maximize M(Y ; Θ) subject to a constraint in

terms of the Bayes risk Eθ|y {L(θ, y)} ≤ L0, where L(θ, y) is the loss of using the model f(y|θ) to

learn about the parameter. The optimal solution is the MDI model (21) with T (y) = L(θ, y).

Lindley’s measure has been used by several authors in design problems, both in the context of

the normal linear models as well as other models. Stone (1959) was the first to apply M(Y ; Θ) to

design of experiments in the context of normal linear models. Following Bernardo (1979a), several

authors have presented selection of the optimal design in terms of M(Y ; Θ) as a Bayesian decision
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problem; Chaloner and Verdinelli (1995) provide an extensive review and include many references;

see also Barlow and Hsiung (1983) and Polson (1993). Briefly, the optimal design problem is

cast as a two-stage decision problem where at the first stage a specific design, X ∈ X , is chosen

and data y is observed. Given y, the decision at the second stage is which probability density

fr ∈ P to report for Θ. Using the logarithmic utility function, maximization of the pre-posterior

expected utility Ey|X

[

supfr∈P Eθ|y,X {u[θ, fr(·)]}
]

, where y is the data observed from a specific

design (experiment) X , gives the same result as Bernardo’s (1979a) formulation (Polson, 1993).

Verdinelli, et al. (1993) also proposed optimal design in terms of the predictive mutual information

M(Y ; Yn+1); this measure was used by San Martini and Spezzaferri (1984) for model selection and

studied by Amaral and Dunsmore (1985).

An alternative to Lindley’s measure for developing priors is the maximal data information

prior (MDIP) criterion proposed by Zellner (1977). This measure is the difference between á priori

average information in the model for data distribution and the information in the prior distribution:

Z(Θ) = Eθ[I(Y |θ)]− I(Θ),

where I(Y |θ) = −H(Y |θ). The MDIP maximizes Z(Θ) and the solution is in the form of f(θ) ∝

eI(Y |θ). For a bounded parameter space, the MDIP provides a proper prior distribution, but for an

unbounded parameter space the prior can be improper (see Zellner 1997 for details and examples).

Next, we illustrate applications of Bayesian information measures in the regression; details and

various other applications of information measures to regression are given in Soofi (1990, 1997).

Example 7.1 Consider the linear model y = Xθ+ε, where y is an n×1 vector of observed values,

X is the n × p design matrix, θ is the p × 1 parameter vector, and ε is n × 1 vector of random

errors. The ME model for likelihood function is obtained using a variation constraint on the error

term. Under the square error constraint E(ε2i ) ≤ σ2, the ME model is independent multivariate

normal f∗
ε|σ2 = N (0, σ2In). The prior is obtained by the ME model in the location-scale family

Σθ = σ2
0C0, which is the multivariate normal f∗(θ) = N (µ0, σ

2
0C0).

The optimal design problem involves the choice of design matrix X. Lindley’s information is

M(Y , Θ|X) = ∆H [f(θ|y), f(θ)] =
1

2
log

∣
∣
∣η−1C0X

′X + Ip

∣
∣
∣ ,

where η = σ2/σ2
0. Thus, the information optimal design is X∗ = argmaxX∈X M(Y ; Θ|X). If

C0 = Ip, the optimal design X∗ is orthogonal, which is D−optimal in the classical design literature.

The classical D−optimality is also obtained when the prior is weak, σ2
0 → ∞. In the limit, the prior

is uniform and M(Y , Θ|X) is not defined. In this case, f(θ|y, X, σ2) = N
(
b, (X′X)−1σ2

)
, where

b = (X ′X)−1X ′y is the least squares estimate and the posterior information about the parameter

is given by the negative multivariate normal entropy (29), so I(Θ|y) ∝ log |X ′X|−1.

Measures of information loss due to collinearity compare the posterior distribution based on the

actual regression matrix X and the posterior distribution for the optimal design X∗ (Soofi, 1990).

In terms of choice of prior, the maximum sample information is attained when C0 ∝ (X ′X)−1,

which is the case of some noninformative priors such as the reference prior, and Zellner’s g prior.

With such priors, the posterior covariance structure remains the same and leads to unreliable

inference when the collinearity is severe. Informative priors compensate for the collinearity effects.

Influence diagnostics are obtained by information discrepancy between inferential distributions

based on all observations and based on deletion of some. Let X−i and y−i denote the data with

the ith observation deleted. For example, under noninformative prior, the change in the amount
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of uncertainty in predicting a value of θ due to the presence and absence of the ith observation is

given by the posterior entropy difference

∆H [f(θ|y), f(θ|y−i)] = − log
(

|X ′X|−1|X ′
−iX−i|

)

= −
1

2
log(1− hii) ≥ 0,

where hii is the ith diagonal element of the projection matrix X(X ′X)−1X. For influence infor-

mation measures about the parameter using (11), see Soofi (1997).

Johnson and Geisser (1983) developed influence diagnostics for predictive distribution of n new

observations ynew to be taken at the regression matrix X. For example, the predictive influence of

an observation is measured by the following discrimination information functions of the predictive

densities: K[f(ynew|y−i) : f(ynew|y)] or K[f(ynew|y) : f(ynew |y−i)]. Carlin and Polson (1991)

developed influence diagnostics using Lindley’s measure.

8 Four Application Areas

8.1 Duration Analysis

Study of duration is a subject of interest common to reliability, survival analysis, actuary, economics,

business, and many other fields. Information theoretic methods for duration analysis are mainly

developed in the context of reliability; see Ebrahimi and Soofi (2004), Singpurwalla (2006), and

references therein. This section focuses on the dynamic information measures, where the current

“age” becomes a parameter of the model. When the subject of duration study is other than lifetime

(e.g., search time, unemployment period) the present time point plays the role of “age”.

Let X be a non-negative random variable representing the lifetime of an item and t ≥ 0 denote

its current age. At age t, the pdf of the residual lifetime of the item is f(x; t) =
f(x)

F̄ (t)
, x > t.

The residual entropy is given by H(X ; t) = H [f(x; t)]. Let f∗ denote the uniform pdf on [0, β].

Then conditional (truncated) distribution of X , given X > t is also uniform over (t, β]. Thus,

H [f(x; t)] is the measure of uncertainty of the residual distribution with pdf f(x; t). Considering

St = {x : x > t} as an index set, H(X ; t) is a dynamic uncertainty measure ranging over St.

Dynamic discrimination information K(f1 : f2; t) = K[f1(x; t) : f2(x; t)] and dynamic mutual

information M(X1, X2; t1, t2) are defined similarly. These measures can be used for discrimination

and study of dependence between the remaining lifetimes of the components of a system when

they have already survived to times t1, t2. They are local measures that can be used, for example,

to study early/late time dependence. Dynamic information measures for the past lifetime with

support S[t] = {x : x ≤ t} are defined similarly. The partitioning transformation (1) is applicable

to the S = St ∪ S[t]. Consideration of the age has led to some important insights about lifetime

models; see Ebrahimi (1996), Ebrahimi and Kirmani (1996), Di Crescenzo and Longobardi (2002,

2004), Ebrahimi, et al. (2007), and references therein.

The dynamic extensions of the MDIC and MEIC are in terms of dynamic information measures

K(f : f0; t) and H(f ; t). It is natural to think of the dynamic constraints on the residual moments

and hazard rate. However, the mean residual and hazard rate equality constraints uniquely deter-

mine the distribution. Asadi, et al. (2004, 2005) considered ΩQ = {f} where f is subject to the

inequality or differential inequality constraints for the hazard rate or inequality constraints on the

mean residual. The dynamic information optimal models are defined as follows.

Definition 3 The MDDI model in ΩQ reference to f0 is f∗ = argminf∈ΩQ
K(f : f0; t), ∀t ≥ 0.
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Definition 4 The MDE model in ΩQ is f∗ = arg maxf∈ΩQ
H(f ; t), ∀t ≥ 0.

That is, the MDDI (MDE) model f∗ ∈ ΩQ is the one that its residual pdf f∗(x; t) retains the MDI

(ME) property among all the residual distributions f(x; t) induced by all f ∈ ΩQ for all t ≥ 0.

The MDDI and MDE models are found by orderings of the dynamic information functions.

Thus, the optimal models are boundary solutions. Many distributions are characterized as MDDI

and MDE models by applying the facts that hazard ordering implies entropy ordering if f is mono-

tone and likelihood ratio ordering implies dynamic discrimination ordering if
f(x)

f0(x)
is monotone.

Next example illustrates the ME, MDE, and MDDI characterizations of a Pareto distribution.

Example 8.1 Consider the Pareto distribution pdf

f(x) = β(1 + x)−(β+1), x ≥ 0, β > 0. (47)

This pdf can be written in the form of (23) with T1(x) = log(1+ x), so it is the ME model in Ωθ =

{f(x|θ) : Ef [log(1+x)] = θ}. The pdf (47) is the MDE model in the class of distributions with haz-

ard rate constraints Ω1 =

{

f :
λ′

f(t)

λf(t)
≥ −

1

β
λf(t), λf(0) = β

}

. It is also the MDDI model relative

to the exponential reference f0(x) = λe−λx in Ω2 =

{

f :
λ′

f (t)

λf (t)
≤ −

λf (t)

β
, λf(0) = β, 1 ≤ β ≤ λ − 1

}

.

More details and examples are given in Asadi, et al. (2004, 2005).

8.2 Order Statistics

Order statistics are used in a wide range of problems in statistics, reliability analysis, quality control,

economics, engineering, among others; see (Arnold, 1992). Following, Wong and Chen (1990) and

Park (1995), Ebrahimi, et al. (2004) explored information properties of order statistics. Several

authors have followed suit. In this section we list a few information properties of order statistics.

Let Y1 ≤ · · · ≤ Yn denote the order statistics of random variables X1, · · · , Xn which have

identical distribution f(x|θ) and given θ, are independent. By the probability integral transfor-

mation, Ui = F (Xi|θ), i = 1, · · ·n are samples from the uniform distribution over [0, 1]. Then

Wi = F (Yi|θ), i = 1, · · ·n are order statistics of the uniform sample and have beta distributions

gi = Beta(i, n − i + 1).

(a) The transformation is one-to-one, thus by (7) the entropy of order statistics is given by

H(Yi) = Hn(Wi)− Egi

[

log f
(

F−1(Wi)|θ
)]

,

where Hn(Wi) denotes the entropy of the beta distribution.

(b) The discrimination information between the distribution of order statistics f(yi|θ) and the

parent distribution f(x|θ) is distribution free, and is given by Kn[f(yi|θ) : f(x|θ)] = −Hn(Wi).

The median has the closest distribution to the parent distribution.

(c) For any pair of order statistics Kn[f(yi|θ) : f(yj|θ)] and Mn(Yi; Yj|θ) are also distribution free.

Mn(Yr; Yr+1|θ) measures the Markovian dependence between order statistics of the independent

sample conditional on θ. Mn(Yr ; Yr+1|θ) is increasing in n, and for a given n, the information

is symmetric in r and n − r, and attains its maximum at the median.
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8.3 Data Disclosure

The data disclosure problem is one aspect of the general problem of preserving confidentiality in

data analysis. It comes about because in certain societies, notably the U.S., data that is gathered

using taxpayer resources has to be made available to the public, but under the caveat that the

released data does not betray public trust by compromising confidentiality. As a consequence,

government agencies strike a balance by “masking” the data prior to its release, but in a manner

that endeavors to preserve the essential information that the data contains.

Karr, et al. (2006) compared data utility in terms of the KL divergence between the empiri-

cal distributions of the original and the released data. Keller-McNulty, et al. (2005) proposed a

decision-theoretic framework by looking at the problem from the perspective of a data-collection

agency. The data-collection agency’s utility function consists of balancing the disclosure risk and

data utility. The intruder’s utility represents the disclosure risk and this is reflected by a func-

tion of the entropy of the distribution of the released data. In a similar manner, the legitimate

user’s utility represents the data utility which is reflected by a function of the entropy difference

between the distributions of the released and the original data. Polettini (2003) describes a maxi-

mum entropy-based approach for finding a distribution from which the data to be released can be

simulated. These developments can be integrated in a comprehensive information theoretic frame-

work for data disclosure. Challenging problems include (a) a general algorithm for computing the

parameters of (23) based on multivariate moments of the actual data; (b) application of (33) for

testing the compatibility of the ME distribution with a nonparametric multivariate distribution;

(c) methods for simulating new data from the ME model (23) for disclosure; and (d) methods to

assess preservation of the dependence structure of the actual data in the released data.

8.4 Importance of Predictor Variables

Relative importance measures refer to quantities that compare the contributions of individual

explanatory variables to a response variable. A study of scientific literature by Kruskal and Majors

(1989) revealed widespread interest in assigning relative importance to explanatory variables in

most fields. However the authors concluded that:

“We were depressed by the frequency of use of statistical significance as a measure of

relative importance. Even though we had half expected that misuse, it was sad to see

significance testing so often and inappropriately employed” (Kruskal and Majors 1989).

The interpretation of statistical significance in terms of importance which is also seen in some

statistics textbooks is unfounded. Statistical significance maps one’s strength of confidence about

an inference, whereas relative importance measures are magnitudes of some functions of the pa-

rameters. The may be known (e.g., population data, simulation study), so inference is irrelevant,

but they are usually unknown and are subject to inference. Soofi, et al. (2000) summarized the

relative importance literature and concluded that additivity of the predictors’ joint importance in

terms of their individual shares, and order-independence are two desirable properties.

Theil and Chung (1988) introduced the normal mutual information measure in the relative

importance literature, and justified it in terms of the additive decomposition (41). Soofi (1992)

defined importance of predictors for logit model in terms of the maximum entropy difference (27).

Retzer, et al. (2009) conceptualized importance in terms of the information provided by a predic-

tor for reducing uncertainty about predicting the outcomes. The mutual information is used for

stochastic predictors and (27) is used for nonstochastic predictors. Distributions with densities in

the exponential family having finite entropies are ME models (Ebrahimi, et al., 2008). For the
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exponential family regression, the deviance gives an estimate of the entropy reduction and provides

a measure of the information importance of predictors. Retzer, et al. (2009) provided algorithms

for Bayesian inference about the information measures of normal regression, contingency tables,

and general logit analysis, and many references. The stage is now set for measuring information

importance in terms of the Bayesian predictive distribution (44) and developing algorithms for

information importance of predictors for other exponential family models, time series, and so on.

8.5 Additional References

This paper provided an overview of several information measures and applications of Shannon

entropy and KL information to an assortment of probability and statistics problems in a unified

manner. The paper is not exhaustive due to the breadth of the topic. Other papers and books

include unification of various models and methods in actuarial science (Brockett, 1991), marketing

(Brockett, et al., 1995), regression analysis (Soofi, 1997), process control (Alwan, et al., 1998),

model selection (Burnham and Anderson, 1998), and time series (Pourahmadi and Soofi, 2000).

Books and special issues of econometric journals are devoted to information theoretic methods

include Theil (1967), Theil and Fiebig (1984), Golan, et al. (1996), Fomby and Hill (1997), Journal

of Econometrics (2002, 2007), Econometric Reviews (2008), and Golan (2006). Bozdogan (1994),

Cover and Thomas (1991) and Kapur (1989) present many engineering applications and provide

details about information measures. A high potential area of application is system design where the

problem is formulated in terms of utility functions (Singpurwalla, 1992), so information measures

can be used as the utility functions. Other high potential areas of applications include genetics and

computational biology where information measures are already in use (Ewens and Grants, 2005).
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