
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2009-7
June 2, 2009

A VaR Black-Litterman Model for the Construction of
Absolute Return Fund-of-Funds

Miguel A. Lejeune
Department of Decision Sciences

The George Washington University



Noname manuscript No.
(will be inserted by the editor)

A VaR Black-Litterman Model for the Construction of Absolute Return
Fund-of-Funds

Miguel A. Lejeune

Received:

Abstract This research was motivated by our work with the private investment group of an international bank. The ob-
jective is to construct fund-of-funds (FoF) that follow an absolute return strategy and meet the requirements imposed by
the Value-at-Risk (VaR) market risk measure. We propose the VaR-Black Litterman model which accounts for the VaR
and trading (diversification, buy-in threshold, liquidity, currency) requirements. The model takes the form of a proba-
bilistic integer, non-convex optimization problem. We develop a solution method to handle the computational tractability
issues of this problem. We first derive a deterministic reformulation of the probabilistic problem, which, depending on
the information on the probability distribution of the FoF return, is the equivalent or a close approximation of the original
problem. We then show that the continuous relaxation of the reformulated problem is a nonlinear and convex optimiza-
tion problem for a wide range of probability distributions. Finally, we use a specialized nonlinear branch-and-bound
algorithm which implements the new portfolio return branching rule to construct the optimal FoF. The practical rele-
vance of the model and solution method is shown by their use by the private investment group of a financial institution
for the construction of four FoFs that are now traded worldwide. The computational study attests that the proposed algo-
rithmic technique is very efficient, outperforming, in terms of both speed and robustness, three state-of-the-art alternative
solution methods and solvers.

Keywords Portfolio Optimization · Probabilistic Programming · VaR · Funds-of-Funds · Black-Litterman · Absolute
Return · Trading Constraints

1 Introduction

This study consists in the construction of long-only absolute return fund-of-funds (FoF) for the Private Banking Division
of a major financial institution. The project is part of the institution’s recent initiative to enhance its portfolio construction
framework and to equip managers with sophisticated optimization models and tools to deal with the unintended move-
ments of financial markets. More specifically, the fund construction model presented in the paper is used by the Private
Banking division for its new ”Absolute Return” investment program which aims at extending the availability of absolute
return financial products to individual investors.

The portfolio selection discipline goes back to the Markowitz mean-variance portfolio optimization model [31]
which is based on the trade-off between risk and return and in which the diversification principle plays a dominant role.
The mean-variance portfolio selection model is a quadratic optimization problem that defines the proportion of capital
to be invested in each considered asset. Since Markowitz’s work, many other portfolio optimization models have been
proposed. The main motivations have been threefold and relate to

– the mitigation of the impact of the estimation risk [5]: many empirical studies (see, e.g., [11,33]) have shown that the
optimal portfolio is extremely sensitive to the estimation of the inputs, and, in particular, that errors in the estimation
of the expected returns have a much larger impact than those in the estimation of the variances and covariances.
Asset managers would thus rather trade-off some return for a more secure portfolio that performs well under a wider

George Washington University
Washington, DC, 20052
E-mail: mlejeune@gwu.edu



2

set of realizations of the random variables. The need for constructing portfolios that are much less impacted by
inaccuracies in the estimation of the first two moments of the asset return is clear and has fueled the development
of robust optimization [13,15,19,44], stochastic programming [8,43], Bayesian [6,23,25,40] and robust statistics-
based [45] portfolio optimization models which refine the estimation of the parameters and/or effectively consider
them as random variables;

– the accounting of other risk measures which can be symmetric or asymmetric and that can target maximum return
or index tracking objectives [37]. The choice of a risk measure for the construction of a portfolio has been analyzed
under different angles in the literature, including the coherence of risk measures [1,28], convexity properties [14,17]
and computational tractability [30];

– the tackling of practical restrictions. These restrictions can come from trading requirements [8,36], such as the
holding of positions in a minimum (and/or maximum) number of industrial sectors or asset categories (cardinality
constraints), the purchase of shares by large lots (roundlot constraints), the requirement to avoid very small positions
(buy-in threshold constraints), the payment of transaction costs, the impact of a trade on the value of a stock, the
turnover of the portfolio, and from international regulations such as the Basel Accord requirements [2].

These developments have greatly amended the nature of portfolio optimization and have made the formulation of the
portfolio selection model and the finding of its optimal solution much more challenging. In many cases, asset managers
have to choose between solving the actual problem inaccurately and solving an approximation of the problem accurately.
We present below the specifics (pursued strategy, risk measure, financial industry requirements) of the FoF optimization
model proposed in this paper.

Rather than investing in individual securities, a fund-of-fund (FoF) is a fund that invests in other, diversified and
complementary sub-funds. FoF are very attractive to investors since they all constitute unique asset allocation products,
allowing investors to diversify their capital amongst different managers’ styles, while keeping an eye on risk exposure.
FoF are positioned to benefit from both downward and upward market trends and are expected to provide stabler returns
due to their diversification width.

Long-only absolute return fund-of-funds take only long positions, seeking for undervalued securities and limiting
volatility and downside risk by holding cash, fixed income or other basic asset classes. They can use options, futures and
other derivatives to hedge risk and gain exposure for underlying physical investments but not for speculative purposes,
and pursue strategies that are intended to result in positive returns under all market conditions, in stark contrast to other
funds which pursue relative return strategies. A fund following an absolute return strategy is one striving for absolute
return targets: the success of the fund is examined by checking whether the fund is worth more today than at any point
in the past, and not whether its return exceeds that of the benchmarked index.

The risk measure elicited to implement the absolute return strategy is the Value-at-Risk (VaR) criterion [39]. The risk
exposure of the FoF is mitigated by limiting from above the variance of the FoF, and the capital preservation is accounted
for through a Value-at-Risk constraint, which is also one of the conditions imposed by Basel II [2] that promulgated the
VaR criterion [26] as the standard risk measure used by financial organizations.

The following features play a crucial role for the construction of the constrained FoF optimization model. First, in
order to obtain a robust parameter estimation of the assets’ potential, the estimation of their expected value is based on
both quantitative market information and the opinions of experts using the Black-Litterman method [6]. The diversifi-
cation objective is supported by constraints that require to hold positions in certain asset classes and that impose lower-
and upper-bounds on the amount of the positions per asset category, per geographical region, and per currency. The
proportion of detained assets with low liquidity is also constrained. Buy-in threshold constraints [36] effectively limit
the monitoring costs by imposing a lower bound on each individual detained position.

In this study, we develop a new asset allocation model which integrates the above-mentioned diverse and complicated
constraints, and we provide a solution method for the underlying optimization model. The resulting portfolio optimization
model is a probabilistic integer programming problem and is thereafter referred to as the VaR Black-Litterman FoF model.

The paper is organized as follows. Section 2 provides the step-by-step formulation of the model and the description
of the input parameters (especially those used for the implementation of the Black-Litterman model) and their evaluation.
In Section 3, we discuss the amenability of the VaR Black-Litterman model to a deterministic equivalent (or approxima-
tion) formulation that we solve using a mixed-integer nonlinear solution technique. The computational tractability and
efficiency of the solution method is analyzed in Section 4. Section 5 provides concluding remarks.
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2 Formulation of the VaR Black-Litterman FoF Model

2.1 Asset universe

The bank’s financial market specialists have selected the assets that can possibly be included in the FoF. The assets
belong to seven asset classes which are themselves decomposed into subclasses (Table 1). Assets are traded in three
currencies ($US, Euro, Japanese Yen) and have different liquidity levels.

Classes Subclasses
Short-term deposits

Government Bonds
Inflation-Linked Bonds

Investment-Grade Corporate Bonds
Bonds High Yield Corporate Bonds

Structured Credits
Convertible Bonds

Emerging Market Bonds
Europe

Equities North America
Asia

Energy
Commodities Metals

Agricultural
Live Stock

Europe
Real Estate North America

Asia
Euro

Currencies US$
Japanese Yen
Equity Hedge

Specialized Funds Directional Trading
Event Driven
Relative Value

Table 1 Asset/Fund Classes and Subclasses

2.2 Model description

The FoF can include any of the n selected assets which have random returns. A first estimate of the expected return of an
asset is obtained through historical time-series. The objective function of the FoF consists of maximizing the quarterly
expected return of the FoF

max (μ)T x (1)

where x and μ are both n-dimensional vectors and the symbol T refers to the transposed operation. We thereafter refer
to μi as the average return of asset i and to xi as the fraction of the available capital invested in asset i. Note that we
formulate the FoF optimization model here in terms of the expected return estimated through time-series. In Section 2.3
where the Black-Litterman approach is discussed, we shall describe how a refined estimate of the expected return can be
obtained and shall provide the associated reformulation the FoF optimization problem.

The optimization problem is a constrained one subject to the satisfaction of a set of linear, one linear integer, one
probabilistic, and one quadratic constraints. The first subset of linear constraints are the no-short selling constraints (2)
which enforce the long-only feature of the FoF:

x ≥ 0 . (2)

Note that, although the constructed fund is a long fund, it could detain positions in other funds which use short-selling.
The second linear constraint is the budget constraint (3) according to which the entirety of the capital is invested:

n∑
i=1

xi = 1 (3)
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Each asset belongs to a certain asset class and subclass (Table 1) and is traded in a certain currency. Class (4), subclass
(5) and currency (6) diversification constraints impose a lower (bk, bk,s, ck) and an upper (bk, bk,s, ck) bounds on the
quantity of the capital invested per class, subclass and currency. Denoting by Ck the asset class k, by Ck,s the subclass
s within class k, and by Rl the currency l, the class, subclass and currency diversification constraints are formulated as
the linear inequalities (4), (5) and (6):

bk ≤ ∑
j∈Ck

xj ≤ bk, ∀k (4)

bk,s ≤ ∑
j∈Ck,s

xj ≤ bk,s, ∀s ∈ k,∀k . (5)

cl ≤
∑

j∈Rl

xj ≤ cl, ∀l (6)

Liquidity constraints ensure that a minimal proportion of the capital is invested in assets with (strong) weekly or
monthly liquidity. Representing by Lk the liquidity k (k=daily, weekly or monthly), the liquidity constraints read:

lk ≤
∑

j∈Lk

xj , ∀k . (7)

Linear integer constraints take the form of linear inequalities involving integer decision variables and result from
trading requirements. In the problem motivating this study, buy-in threshold constraints (see, e.g., [24,36]) are introduced
in order to prevent the holding of very small active positions. It is known that some portfolio models occasionally return
an optimal portfolio containing very small investments in a (large) number of securities. Such a portfolio has limited
impact on the total performance of the portfolio and involves substantial costs for maintaining it (brokerage fees, bid-ask
spreads, monitoring costs, etc.). Moreover, small positions have very poor liquidity. This motivates the incorporation of
buy-in threshold constraints which impede the holding of an active position representing strictly less than a prescribed
proportion xmin of the available capital. We introduce a binary variable δj ∈ {0, 1}, j = 1, . . . , n for each asset.
Constraints

xj ≤ δj , j = 1, . . . , n (8)

δj ∈ {0, 1} , j = 1, . . . , n (9)

force δj to be equal to 1 if the investor detains shares of asset j (i.e., xj > 0). The addition of

xmin δj ≤ xj , j = 1, . . . n (10)

does not permit the holding of small positions.
The quadratic constraint ensures that the volatility of the portfolio does not exceed a prescribed maximal value s.

Denoting by σi the standard deviation of the return of asset i and by ρij the correlation between funds i and j, the
variance of the portfolio is V ar[x] = xT Σx with Σ being the variance-covariance matrix, and the volatility constraint is

xT Σx ≤ s . (11)

Each element Σij = ρijσiσj of Σ represents the covariance between i and j.
The capital preservation objective is ensured through a Value-at-Risk (VaR) constraint that limits the magnitude of

the loss to happen with a specified probability level 1 − p (e.g., 95%) over a certain period of time (e.g., one year) and
that takes the form of a probabilistic constraint [27]. Denoting by Y the random variable representing the loss on the
fund value and by K the initial value of the fund, the value-at-risk p-VaR of the fund loss at the p% probability level is:

V aRp(Y ) = min{γ : P (Y ≥ γ) ≤ 1 − p} , (12)

and the corresponding VaR constraint is written:

P (Y ≤ V aRp(Y )) ≥ p

where P refers to a probability measure.
In our case, the VaR constraint is defined as the requirement for the probability of the FOF’s loses exceeding 5% (or

respectively 10%) of the capital invested in the FoF to be at most equal to 5% and therefore reads:

P (Y ≤ β · K) ≥ 0.95 (13)
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where β = 0.05 or 0.1.
Following the Basel Accord, the VaR criterion has become the standard risk measure to define the market risk

exposure of a financial position. The introduction of the VaR constraint specified as indicated above is in accordance
with the BASEL II credit risk requirements imposed by the Basel Bank of International Settlements [2]. Second, we note
that the diversification constraints can compensate for a structural limit of the VaR criterion. It is well known that VaR
does not have the sub-additivity property, which is one of the four properties to be satisfied to qualify as a coherent risk
measure [1]. Therefore, VaR does not respect the axiom according to which diversification reduces risk. A consequence
of this is that portfolios or funds constructed by using the VaR market risk criterion are sometimes concentrated in a few
positions. The diversification constraints can remedy to this issue.

2.3 Revision of expected return estimate

As aforementioned, investment professionals criticize optimal mean-variance portfolios for they are sometimes counter-
intuitive: a small change in the problem inputs (predominantly, the estimate of the expected returns and their variances
and covariances) significantly alter the composition of the optimal portfolio. In order to alleviate the impact of errors due
to this so-called estimation risk, we use in this paper more robust estimates of the expected returns by combining quanti-
tative return data and the opinions of experts. This is achieved by using the Black-Litterman framework [6] which inte-
grates the investor’s economic reasoning and overcomes the problems of unintuitive, highly-concentrated portfolios and
input-sensitivity [18,42]. Instead of solely relying on historical numbers to predict future returns, the Black-Litterman
approach uses a Bayesian approach to combine the subjective views of an expert regarding the relative or absolute fu-
ture performances of specific assets or asset classes with the market equilibrium vector of expected returns (the prior
distribution) to form a new, mixed estimate of expected returns. The outcome is a revised vector of expected returns
which is obtained by tilting the prior, market equilibrium-based estimate of the returns in the direction of assets favored
in the views expressed by the investor. The extent of deviation from equilibrium depends on the degree of confidence
the investor has in each view. While in a standard portfolio optimization problem, the necessary inputs are the expected
returns μ of the n different assets and the covariances among them, the Black-Litterman approach requires more inputs
as described below.

The Black-Litterman first requires the computation of a vector of neutral positions wi which represent the standard
investment behavior of a standard investor. Usually, in the Black-Litterman context, each position is set equal to the
relative market capitalization weight xcap of the corresponding asset. In market equilibrium, this weighting scheme
implies a corresponding vector of expected returns, the so-called vector π of market equilibrium expected returns which
is defined as the one that would clear the market were all investors having identical views [6] and whose value, as
explained below, is obtained through a reverse optimization procedure.

In the portfolio selection literature, the optimal investment policy x∗ of a risk-neutral investor with quadratic utility
function, or assuming Gaussian returns π, is defined as the optimal solution of the unconstrained maximization problem

max
x

xT π − xT Σx

2
.

This establishes the relationship between the optimal positions x∗ and the implied vector of expected returns π

x∗ = Σ−1π .

The expression Σ−1 refers to the inverse of the matrix Σ.
In the Black-Litterman context, we set x∗ = xcap and we proceed backward to find the implied vector of market

equilibrium expected returns:
π = Σxcap .

The approach is linked to the capital asset pricing model (CAPM) according to which prices adjust until, in market
equilibrium, the expected returns are such that the demand for these assets exactly matches the available supply.

The Black-Litterman approach does not consider that the vector of market equilibrium return is known but instead
assumes that it is a random variable following a multivariate normal distribution with mean π and variance τΣ. The
Black-Litterman approach posits that the covariance matrix of expected returns is proportional to the one of historical
returns, rescaled only by a shrinkage factor τ which is strictly positive and lower than 1 since the uncertainty of the mean
is lower than that of the returns themselves. Different approaches have been proposed to set the value τ . Following [7],
we interpret τΣ here as the standard error of estimate of the vector of implied equilibrium returns, and, therefore, set the
value of τ equal to 1 divided by the number of observations (i.e., realizations of past returns).



6

If the investor does not hold a view about expected returns, he or she should simply hold the market portfolio.
However, given the economic situation, an investor or expert generally has expectations about short-term returns that
differ from those implied by the current market clearing conditions. The Black-Litterman model gives the possibility to
integrate experts’ opinions in the derivation of the optimal investment strategy. One of the more challenging aspects of
the Black-Litterman approach is to transform the stated views and the degree of confidence the expert has in them into
the inputs used in the Black-Litterman formula.

Let k be the number of views expressed as linear combinations of the expected returns of the assets. The matrix
notation for the views is given by

P μ̃ = q − ε (14)

where P is a [k × n] matrix, μ̃ is the n-dimensional revised vector of expected returns, and q and e are k-dimensional
vectors. The first view is represented as a linear combination of expected returns in the first row of P . The value of this
first view is given by the first element of q, plus an error term ε1 which represents the degree of uncertainty about the
first view. The error term vector ε is a normally distributed random vector with mean 0 and variance Ω. The standard
Black-Litterman model considers that all views are independently drawn from the future return distribution; therefore,
Ω is a diagonal matrix: ωij = 0, ∀i �= j.

Note that views can be expressed as absolute return expectations for individual assets or as relative return expecta-
tions comparing the returns of several assets or aggregates of assets. To illustrate this, we consider:

– the relative view stating that, at a 90% confidence level, the Dow Jones’ return will exceed that of the S&P’s 500
index by 1% to 3%, and

– the absolute view stating that the return of the NASDAQ Composite Index will be, at a confidence level of 95%,
between 12% and 15%.

Denoting by π1 (resp., π2, π3) the expected return of the Dow Jones (resp., S&P’s 500, NASDAQ), and assuming
that the return spread is normally distributed on the interval for both views, the standard deviation

√
ω11 of the error

term ε1 pertaining to the first view is equal to:
√

ω11 = 0.61% = 0.02
1.64∗2 . This is obtained by interpreting the relative

view statement as a 90% confidence interval with a width of 2% and centered on 2%, and by considering symmetric
confidence bands around normally distributed returns (Figure 1).

0.02
0.030.01

2*1.64*σ

Fig. 1 Variance of Views

We proceed similarly to obtain the value of
√

ω22 = 0.765% = 0.03
1.96∗2 . Evidently, the higher (lower) the degree of

confidence in a view i, the smaller (larger) the value of ω11 and the more (less) the expected returns of the asset returns
will be revised in the direction of the view.

In matrix notations, we have:

P =

[
1 −1 0

0 0 1

]
, q =

[
0.02

0.135

]
, Ω =

[
(0.0061)2 0

0 (0.00765)2

]
.

The revised vector of expected returns is obtained by taking into account two probabilistic sources of information,
i.e., the vector of market equilibrium expected returns and the views of experts, which are both expressed as multi-
variate normal probability distributions. The mechanism quantifies the impact of a second source of information, i.e.,
the posterior (experts’ views) on one’s a priori belief (market equilibrium returns). The output is the updated vector of
expected returns which is itself a multivariate normal random variable. Figure 2 summarizes the different steps of the
Black-Litterman approach.
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Prior Source of 
Information

Posterior Source of 
Information

Market Capitalization      
of Assets

Experts' Views:         
Linear Combinations of 

Expected Returns

Market Capitalization   
Weights    

Confidence Level in 
Experts' Views

Implied Market Equilibrium 
Return

Variance of Implied    
Market Equilibrium Return

Revised Estimate of Expected Returns

Reverse 
Optimization

Fig. 2 Black-Litterman Flow Chart

We distinguish the two following cases for the computation of the revised vector of expected returns.

1. Proposition 1 If the experts have 100% confidence level in their views and not all of them are absolute ones, then

μ̃ = E[μ|views] = π + τΣP T [PτΣP T ]−1[q − Pπ] . (15)

Proof : The optimal value of the revised vector μ̃ of expected returns is the one that minimizes its variance with
respect to the market equilibrium returns subject to the set of constraints: P μ̃ = q. The omission of ε in the above
constraint results from the certainty in the views, which implies that the diagonal elements of the variance-covariance
matrix Ω of the error term ε are all equal to 0.
This can be formulated as the following nonlinear optimization programming problem:

min [μ̃ − π]T · (τΣ)−1 · [μ̃ − π]

subject to P μ̃ = q

μ̃ ∈ Rn

(16)

whose Lagrangian is

L = [μ̃ − π]T · (τΣ)−1 · [μ̃ − π] − λ(P μ̃ − q)

where λ is the Lagrangian multiplier.
From the first-order conditions of optimality, we have:

∂L

∂μ̃
= 0 = 2(τΣ)−1(μ̃ − π) − λP (17)

∂L

∂λ
= 0 = P μ̃ − q (18)
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From (17), we obtain

μ̃ = π +
(τΣ)Pλ

2

and, substituting this value for μ̃ in (18), we have

λ = 2(q − Pπ)(PT (τΣ)P )−1 .

Substituting the above value of λ in (17) returns (15) which was set out to prove. �

2. Proposition 2 If the experts do not have 100% confidence level in their views, then

μ̃ = E[π|views] = π + τΣP T [PτΣP T + Ω]−1[q − Pπ] . (19)

Proof : From the a priori, market equilibrium-based estimate (defined as a stochastic variable following a normal
distribution with mean π and variance τΣ ) of the vector of expected returns, we have

π = μ̃ + v (20)

with v � N(0, τΣ), and, from the experts’ estimate of the vector of expected returns, we have (14) where ε �
N(0, Ω).
Using the notations

Y =

[
π

q

]
, X =

[
I

PT

]
, W =

[
τΣ 0

0 Ω

]

with I referring to the identity matrix of appropriate dimension, we can rewrite

π = μ̃ + v

q = P μ̃ + ε

as
Y = Xμ̃ + d

where d� N(0, W ).
The generalized least square estimator of μ̃ is given by:

μ̃ = (XT W−1X)−1 XT W−1Y

which can be successively transformed as:

μ̃ =

[[
I PT

] [ τΣ 0

0 Ω

]−1 [
I

P

] ]−1

×
[[

I PT
] [ τΣ 0

0 Ω

]−1 [
π

q

] ]

=

[[
(τΣ)−1 PT Ω−1

] [ I

P

]]−1

×
[[

(τΣ)−1 PT Ω−1
] [ π

q

]]

=
[
(τΣ)−1 + PT Ω−1P

]−1
×
[
(τΣ)−1 π + PT Ω−1q

]
.

(21)

Using the Woodbury matrix identity [46,20] stating that

[A + UCV ]−1 = A−1 − A−1U
[
C−1 + V A−1U

]−1
V A−1

where A, C, U and V are matrices of appropriate dimensionality, we have[
(τΣ)−1 + PT Ω−1P

]−1
= τΣ − τΣPT

[
Ω + PτΣP T

]−1
PτΣ ,

and, thus, [
(τΣ)−1 + PT Ω−1P

]−1
×
[
(τΣ)−1 π + PT Ω−1q

]
= π + τPT ΣΩ−1q − τΣPT

[
Ω + PτΣP T

]−1
Pπ − τΣPT

[
Ω + PτΣP T

]−1
PτΣP T Ω−1q

= π − τΣP T
[
Ω + PτΣP T

]−1
Pπ + τΣPT

[
Ω−1 −

[
Ω + PτΣP T

]−1
PτΣP T Ω−1

]
q . (22)
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Using the equality below

Ω−1 −
[
Ω + PτΣP T

]−1
PτΣP T Ω−1 =

Ω−1
[
Ω + PτΣP T

]
− PτΣP T Ω−1[

Ω + PτΣP T
] =

[
Ω + PτΣP T

]−1

to replace the right-hand side term in (22), we obtain (19). �

It can be seen that the error term vector ε does not directly enter the Black-Litterman formula. However, the variance
of each error term does. We use the revised vector of expected returns in the optimization problem, and the objective
function (1) of the VaR Black-Litterman model thus becomes max μ̃T x. Evidently, if the investor has no opinion about
the future return behavior of assets, then μ̃ = π.

2.4 Model formulation and features

Below, we provide the complete formulation of the VaR Black-Litterman FoF optimization model:

max μ̃T x

subject to
n∑

i=1

xi = 1

bk ≤
∑

j∈Ck

xj ≤ bk, ∀k

bk,s ≤
∑

j∈Ck,s

xj ≤ bk,s, ∀s ∈ k,∀k

cl ≤
∑
j∈Rl

xj ≤ cl, ∀l

lk ≤
∑

j∈Lk

xj , ∀k

xj ≤ δj , j = 1, . . . , n

xmin δj ≤ xj , j = 1, . . . n

xT Σx ≤ s

P (Y ≤ β · K) ≥ 0.95

δ ∈ {0, 1}n

Y ∈ R
x ∈ Rn

+

. (23)

The probabilistic integer problem above is non-convex. The derivation of a solution method enabling to solve it to
optimality poses a very challenging computational problem, especially if the asset universe comprises a moderate to
large number of assets.

3 Solution Method

The solution method involves two steps. The first one consists in the reformulation of the VaR constraint and in the
derivation of a deterministic equivalent or approximation for the stochastic VaR Black-Litterman optimization problem
(23). We study the computational tractability and the convexity properties of the reformulated deterministic problem.
The second step is devoted to the development of a specialized branch-and-bound algorithm, called portfolio return
branch-and-bound algorithm, allowing for the numerical solution of the reformulated deterministic problem.
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3.1 Derivation of Deterministic Equivalent or Approximation

The VaR constraint (13) that forces the loss to not exceed β (i.e., β = 5% or 10%) of the FoF’s initial value with a
probability at least equal to p = 95% can be restated as the insurance that the FoF will have a return larger than or equal
to -β% with a probability larger than or equal to 95%. Therefore, (13) is equivalent to:

P (ξT x ≥ −β) ≥ p (24)

where β is a fixed parameter taking value 0.1 or 0.05, ξ is the n-dimensional vector of stochastic returns and ξT x is the
random return generated by the FoF.

Let F(x) be the cumulative probability distribution of an n-variate standard normal variable ξT x−μT x
xT Σx

representing
the normalized return of the FoF. Note that F(x) is the probability distribution of a random variable (i.e., the normalized
portfolio return) with mean 0 and standard deviation 1 regardless of the holdings of the portfolio, but, as indicated by the
subscript (x) in the notation F(x), the form of the probability distribution depends on the holdings and the probability
distribution of their returns.

The probability P (ξT x ≥ −β) in the VaR constraint above (24) can be successively rewritten as:

P(ξT x ≥ −β)

= P
(

ξT x − μT x

xT Σx
≥ −β − μT x√

xT Σx

)

=1 − F(x)

(
−β − μT x√

xT Σx

) (25)

and the VaR constraint (24) reads:

1 − F(x)

(
−β − μT x√

xT Σx

)
≥ 0.95

⇔ F(x)

(
−β − μT x√

xT Σx

)
≤ 0.05

⇔ −β − μT x√
xT Σx

≤ F−1
(x) (0.05)

⇔ μT x + F−1
(x) (0.05)

√
xT Σx ≥ −β (26)

where F−1
(x)

(0.05) is the 5th-quantile of the distribution F . Clearly, (26) is the deterministic equivalent of the VaR con-
straint and is fully defined upon the determination of a single parameter, i.e. the quantile of the probability distribution.
We provide below the deterministic equivalent formulation of the problem (23):

max μ̃T x

subject to Ax ≤ b

xj ≤ δj j = 1, . . . , n

xmin δj ≤ xj j = 1, . . . , n

xT Σx ≤ s

μT x + F−1
(x) (0.05)

√
xT Σx ≥ −β

δ ∈ {0, 1}n

x ∈ Rn
+

(27)

where Ax ≤ b is a compact representation of the set of linear constraints (3)-(7).
It is straightforward to see that the value of quantile determines the convexity nature of the optimization problem,

which has a tremendous impact on the computational tractability of the problem at hand. In fact, the left-hand side of
the constraint (26) is a concave function if F−1

(x)
(0.05) is negative. If this condition is verified, the feasibility set of the

continuous relaxation of (27) is convex. Note that this is the case for a wide range of probability distributions: Bonami
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and Lejeune [8] have shown that the quantile of F−1
(x)

(1− β) is negative for any symmetric and right-skewed probability
distribution for any value of p > 0.5. Typically, the enforced probability level is high, ranging between [0.7, 0.99].

Note also that, under the assumption that each asset has a normal probability distribution for its return, the probability
distribution of the portfolio return is also Gaussian, and the exact numerical value of the quantile can be easily obtained.
However, for most markets, the normal assumption is too strong in view of the prevalence of fat-tailed return, skewness
and larger than normal dependence among extreme return events [34].

If the exact form of the probability distribution of the portfolio return is unknown, one cannot derive a deterministic
equivalent for the probabilistic constraint (24), but can resort to well-known probability inequalities to derive surrogate
deterministic constraints which closely approximate the original stochastic one (24).

Proposition 3 The VaR constraint

P (ξT x ≥ −β) ≥ p

is implied by the inequality

μT x −
√

p

1 − p

√
xT Σx ≥ −β . (28)

Proof : Consider the random vector Y such that YT x has the same mean (μT x) and variance (xT Σx) as ξT x. This is
obtained by setting Y T x = (2 μT − ξT )x. It follows that:

P
(
Y T x − μT x > μT x + β

)
= P

(
ξT x − μT x < −β − μT x

)
= 1 − P

(
ξT x − μT x ≥ −β − μT x

)
.

Cantelli’s inequality [10] (also known as the one-sided Chebychev’s inequality) states that:

P (Y T x − μT x ≥ t) ≤ xT Σx

xT Σx + t2
. (29)

Setting t = β + μT x, we have

P (Y T x − μT x ≥ μT x + β) ≤ xT Σx

xT Σx + (β + μT x)2
, (30)

and

1 −P
(
ξT x − μT x ≥ −β − μT x

)
≤ xT Σx

xT Σx + (β + μT x)2
. (31)

Therefore, the deterministic inequality

1 − xT Σx

xT Σx + (β + μT x)2
≥ p.

which can be rewritten as

μT x −
√

p

1 − p

√
xT Σx ≥ −β

implies the VaR constraint P (ξT x ≥ −β) ≥ p, which was set out to prove. �

The deterministic inequality is an approximation of and enforces stricter requirements than the VaR constraint.
Tighter approximations can be derived if additional knowledge about the features of the probability distribution of the
portfolio return is available.

Proposition 4 If the probability distribution of the portfolio return can be assumed to be symmetric, then the VaR
constraint

P (ξT x ≥ −β) ≥ p

is implied by the inequality

μT x −
√

1

2(1 − p)

√
xT Σx ≥ −β . (32)
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Proof : This result is obtained by using the symmetric version of the Chebychev’s inequality which states that:

P (Y T x − μT x ≥ t) ≤ xT Σx

2t2
. (33)

The proof is derived the same way as in Proposition 1.

Proposition 5 If the probability distribution of the portfolio return can be assumed to be symmetric and unimodal,
then the VaR constraint

P (ξT x ≥ −β) ≥ p

is implied by the inequality

μT x −
√

2

9(1 − p)

√
xT Σx ≥ −β . (34)

Proof : This result is obtained by using the Camp-Meidell’s inequality [9,32] which states that:

P (Y T x − μT x ≥ t) ≤ 2xT Σx

9t2
. (35)

The proof is derived the same way as in Proposition 1.

The three deterministic approximations of the Var constraint are second-order cone constraints and the associated
feasibility set is therefore convex. The results derived above in this section show that the continuous relaxation of the
absolute return VaR Black-Litterman optimization problem is convex for a wide range of probability distributions, and
that for any portfolio, and thus for any portfolio return distribution with finite first and second moments, a convex
approximation can be obtained.

3.2 Portfolio return branching strategy

The deterministic equivalent of the absolute return VaR Black-Litterman optimization problem is solved using a spe-
cialized non-linear branch-and-bound algorithm which is based on a new branching strategy called portfolio return. We
use the open-source mixed-integer non-linear programming (MINLP) solver Bonmin [4] in which the new branching
rule is implemented. At each node of the branch-and-bound tree, the interior-point solver Ipopt [3] is used to solve the
nonlinear continuous relaxations of the integer problems. We refer the reader to [41] for a detailed description of non-
linear branch-and-bound algorithms and to [8] for an application of this technique to the solution of a particular type of
stochastic portfolio optimization problems accounting for trading restrictions.

Using the interior-point solver Ipopt, the algorithm first solves the continuous relaxation of the VaR Black-Litterman
optimization problem in which all integrality constraints are removed. Let (x∗, δ∗) be the optimal solution of the con-
tinuous relaxation. If all δ∗ are integer valued, (x∗, δ∗) is the optimal solution and the problem is solved. Otherwise,
i.e., if at least one of the integer variables (δi) has a fractional value (δ∗i �∈ Z) in the optimal solution, one (δ̂i) of them
is selected for branching, and two nodes are created where the upper and lower bounds on δ̂i are set to 	δ∗

î

 and �δ∗

î
�,

respectively, and the two corresponding sub-problems are put in a list of open nodes. We obtain the following disjunctive
problem with one second-order cone and one quadratic constraints

max μ̃T x

subject to Ax ≤ b

xj ≤ δj j = 1, . . . , n

xmin δj ≤ xj j = 1, . . . , n

xT Σx ≤ s

μT x + F−1
(x) (0.05)

√
xT Σx ≥ −β

(δî = 0) ∨ (δî = 1)

x ≥ 0

(36)

to which correspond the following two nodes
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max μ̃T x
subject to Ax ≤ b

xj ≤ δj , j = 1, . . . , n
xmin δj ≤ xj, j = 1, . . . , n

xT Σx ≤ s

μT x + F−1
(x) (0.05)

√
xT Σx ≥ −β

0 ≥ xî
δ ≥ 0
δ ≤ 1
x ≥ 0

(37) and

max μ̃T x
subject to Ax ≤ b

xj ≤ δj , j = 1, . . . , n
xmin δj ≤ xj, j = 1, . . . , n

xT Σx ≤ s

μT x + F−1
(x) (0.05)

√
xT Σx ≥ −β

xî ≤ xmin

δ ≥ 0
δ ≤ 1
x ≥ 0

(38)

The above formulations of the two sub-problems result from the mapping between integer variables δ[i] and assets i

(and positions xi), and the definition of the buy-in threshold constraint (10) which makes the enforcement of 0 ≥ xi and
xi ≤ xmin equivalent to imposing 0 ≥ δi and δi ≤ 1 (in (36)).

The choice of the variable to branch on strongly impacts the computational efficiency of the branch-and-bound
algorithm. The default rule is to branch with respect to the variable which has the largest fractional part, but this rule
often turns out to be very moderately efficient. In this paper, the branch on variable is determined by the portfolio
return branching strategy, which is dynamic, (since it iteratively, i.e., at each node, revises the branching priorities), and
integrated (since their update accounts for the structure of the portfolio at the current node in the tree). The definition of
the branching priorities is carried out by associating a number πi to each integer decision, and the solver, at each node,
branches with respect to the integer variable having the largest priority. Within the portfolio return branching strategy, we
assess how the restoration of the integrality condition alters the value of the objective function (i.e., the portfolio return).
The variable whose integer feasibility restoration has the largest impact on the portfolio return receives the highest
priority, and is the one with respect to which we branch. More precisely, denoting by z∗, z∗1 and z∗2 the optimal value of
the continuous relaxation of the VaR Black-Litterman problem, (37) and (38) respectively, we calculate πi for the integer
variables that have a fractional value in the optimal solution of the continuous relaxation of the VaR Black-Litterman
problem as follows:

πi =
∣∣z∗ − z∗1

∣∣ + ∣∣z∗ − z∗2
∣∣ , (39)

and the branch on variable δ̂i is the one having the largest πi.
At each node, a sub-problem is chosen according to the process described above from the list of open ones, and the

continuous relaxation of the current node is solved, thus providing a lower bound. The enumeration at the current node
is stopped if any of the three following conditions happen: (i) the continuous relaxation is infeasible; (ii) the optimal
solution of the continuous relaxation is not better than the value of the best integer feasible solution found so far; (iii) the
optimal solution of the continuous relaxation is integer feasible. By iterating the process a search tree is created and the
algorithm continues until the list of open sub-problems is empty.

4 Computational Efficiency

The computational framework is the following. The optimization models are coded using the AMPL programming lan-
guage [16]. The portfolio return solution method is implemented using the COmputational INfrastructure for Operations
Research (COINOR) open source optimization environment: the source code of the COINOR solvers is available to
users under the Common Public License, which allows users to read, modify, or improve and redistribute the software.
We implement the branching rule within the MINLP solver Bonmin [4] and we solve the continuous relaxations of the
successive integer programming problems with the Ipopt [3] solver. From a computational point of view, the fact that
Bonmin and Ipopt are both open-source publicly available solvers is very interesting: it allowed the implementation of
the new portfolio return branching strategy. Data related to the returns and the market capitalization of the assets were
collected from the Bloomberg platform.

To evaluate the computational contribution of our solution method, we compare its results with those obtained with:

– the standard branch-and-bound algorithm of the Bonmin solver,
– the MINLPBB solver [35] (which is another MINLP solver),
– the CPLEX 11 [22] solver.

The computational tests were performed on an IBM IntellistationZ Pro with an Intel Xeon 3.2GHz CPU, 2 gigabytes
of RAM and running Linux Fedora Core 3. We have tested our algorithm on two sets of 12 problem instances. In the first
set, β is set equal to 10% while, in the other, it is equal to 5%. Within a set, the problem instances differ in terms of the
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expressed views, the value of the authorized variance s, the bounds on the diversification and the liquidity constraints,
and the type of approximation used for the VaR constraint.

To compare the performance and reliability of the proposed solution with the four algorithms we use as benchmarks,
we draw the performance profile [38] of each of them. The curve associated with a solution method, say PR, indicates
the proportion of problem instances solved to optimality using S1 within a factor m of the time required by the fastest
solution method. Denoting by t∗(P ) the time needed by the fastest algorithm to solve problem P , P is solved within
a factor m by all solution approaches requiring less than m t∗(P ). It follows that, at m = 1, the plotted point for S1
returns the fraction of problem instances on which PR is the fastest. The plotted point for BC1 at m = 20 represents the
proportion of problems that could be solved using up to 20 times more time than the fastest of the three solution methods.
In Figures 3, 4 and 5, we use the acronyms PR, BN, BB and CP to respectively refer to the portfolio return branching
strategy, Bonmin’s standard branch-and-bound algorithm, the MINLPBB solver and the CPLEX solver.

Figures 3 and 4 clearly show that the portfolio return solution technique strictly dominates the three other solution
methods. The portfolio return solution technique solves to optimality all problem instances and is the fastest on all
instances. For the problems in which β = 10% (Figure 3), the portfolio return solution technique is:

1. 5 times faster than BN (resp., BB and CP) in 91.67% (resp., 91.67%, 100%) of the instances;
2. 10 times faster than BN (resp., BB and CP) in 33.33% (resp., 41.67%, 33.33%) of the instances;
3. 20 times faster than BN (resp., BB and CP) in 8.33% (resp., 16.67%, 8.33%) of the instances;
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Fig. 3 Performance Profile I

The results are almost identical for the problems in which the VaR is equal to 95% (Figure 4). For those instances,
the portfolio return branching rule is

1. 5 times faster than BN (resp., BB and CP) in 91.67% (resp., 91.67%, 83.67%) of the instances;
2. 10 times faster than BN (resp., BB and CP) in 33.33% (resp., 33.33%, 41.67%) of the instances;
3. 20 times faster than BN (resp., BB and CP) in 8.33% (resp., 8.33%, 16.67%) of the instances;
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Fig. 4 Performance Profile II

Figure 5 shows that the gain in computational time of the portfolio return branching rule must be associated with the
fact that it requires the solution of a much smaller number of subproblems (nodes), as compared to the BN (resp,, BB
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and CP) solution methods. Clearly, the search initiated by the portfolio return method allows a much faster convergence
towards the optimal solution, and, on average, permits to divide the number of nodes to be processed by more than:

1. 10 (resp., 7) for p = 90% (resp., p = 95%), as compared to the average number of nodes required by BN;
2. 27 (resp., 15) for p = 90% (resp., p = 95%), as compared to the average number of nodes required by BB;
3. 6 (resp., 4) for p = 90% (resp., p = 95%), as compared to the average number of nodes required by CP.
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5 Conclusion

This research was initiated by our collaboration with a financial institution whose objective was the construction of fund-
of-funds responding to specific industry requirements. The first contribution of this paper is the derivation of the new VaR
Black-Litterman FoF model for the construction of fund-of-funds targeting an absolute return strategy. In order to cir-
cumvent or at least alleviate the problems associated with the estimation risk, the asset returns are approximated through
the combination of the market equilibrium based returns and the opinions of experts by using the Black-Litterman ap-
proach. Moreover, the resulting vector of estimated returns is implicitly assumed to be stochastic by the VaR constraint,
which prescribes the construction of a FoF having an expected return not falling below -5 or -10%, with a probability at
least equal to 95%. The model also accounts for the handling of specific trading constraints and takes the form of a very
complex stochastic integer programming problem.

The second contribution is the derivation of deterministic equivalent or approximations for the VaR Black-Litterman
model. We further show that, for a wide range of probability distributions, those deterministic reformulations are convex,
which is critical for the computational tractability, the numerical solution of the problem, and for the use of the proposed
model to asset universe comprising a large number of possible investment vehicles. The approximations of the determin-
istic equivalents are obtained through the use of the Cantelli, the one-sided symmetric Chebychev, and the Camp-Meidell
probability inequalities, and their tightness depends on the assumed properties of the probability distribution of the fund-
of-funds return.

Our third contribution is the development of a solution methodology that proves to be:

– robust : it allows the finding of the optimal portfolio for all the considered instances. To appraise the significance of
this result, we refer the reader to [29]. In this very recent paper, an heuristic method is proposed to solve numerically
portfolio optimization problems containing non-linear convex constraints and integer decision variables. The method
proposed in [29] allows the finding of near-optimal solutions for optimization models in which the number of assets
does not exceed 100;

– fast and computationally tractable: it is much faster than the three state-of-the-art tested algorithmic methods;
– adaptability: it is based on open-source optimization solver and can therefore be easily adapted to and/or supple-

mented by recent algorithmic developments;
– relevant for and responding to the standards of the industry: the proposed solution method was implemented and

used to construct four absolute return fund-of-funds that re traded on the major stock markets.
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