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ABSTRACT 

In this integrated approach to project risk management, schedule risk is represented by 

the distribution of delay in project completion and budget risk is represented by the 

distribution of total project cost, which is conditional on the schedule risk.  The derived 

expression for budget risk takes into account the dependence on schedule risk and is used 

to determine the budget reserve required to achieve a specific level of protection against 

schedule risk.  The result extends previous research on delay-related cost contingency 

analysis. 
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I. INTRODUCTION 

Schedule, budget, and performance—collectively referred to as the project management 

triangle [8] or the triple constraint [6]—are three of the most basic concerns in project 

management.  The challenge for the project manager is to control the schedule and 

budget throughout the execution of the project while remaining mindful of project 

performance and customer expectations.  This requires an integrated approach to risk 

management, in which schedule and budget risks are identified, assessed, and kept in 

balance.  This need has been recognized by a number of authors [2], [4], [6].  

Given the reliance on project networks in project management, it is not surprising 

that the assessment of schedule and budget risks is commonly approached by estimating 

the distributions of completion times and costs of the individual project activities and 

combining the distributions via analytical methods [1] or Monte Carlo simulation [7] .  

This bottom-up approach, however, has a number of limitations.  It is data-intensive and 

time-consuming.  Moreover, when schedule and budget risks are assessed separately, the 

interdependence between them is not evaluated, and when the assessment focuses 

exclusively on individual activities, it will not capture any schedule or budget risks that 

cut across activities.   

In this paper, we discuss a top-down approach in which schedule risk is 

represented by the distribution of delay in project completion and budget risk is 

represented by the distribution of total project cost, which is conditional on the schedule 

risk.  Based on the stipulated distributions, we develop an expression for budget risk that 

takes into account its dependence on schedule risk.  We then show how this expression 

can be used to determine the budget reserve required to achieve a specific level of 

protection against schedule risk.  Thus, the practical significance of this research is that it 

provides a basis for delay-related contingency analysis, which extends the previous 

research on cost contingencies exemplified by [5] and [9].   

 

II. ANALYTICAL APPROACH 

Project delays occur for a number of reasons, including failure to start all of the 

activities on time, overly optimistic estimates of the time required to complete some of 

the activities, and unforeseen developments that prolong the time it takes to perform 
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certain activities.  The greater the newness of the project or the complexity of the project, 

the more likely it is that a lack of experience will result in delay.  When delays occur, 

there is an associated cost, which may have to be paid by the project executor, the 

customer, or both, and is likely to depend on the extent of the delay.   

We begin by recognizing that the length of time a project is delayed and the 

associated cost of delay are random variables, where the value of the second is 

conditional on the value of the first.  In the following development, we will begin by 

determining the joint distribution for delay time and delay-related cost from the assumed 

delay distribution and the conditional cost distribution.  From that, we will then 

determine the marginal distribution of the cost of delay, irrespective of the length of 

delay.  From the cumulative form of that distribution, we can then find the cost of delay 

at any given percentile level.  Viewing the chosen percentile as the size of a cushion, the 

cumulative distribution is used determine the cost for any chosen size, or contingency 

level.  For instance, at the 75th percentile, we would know the level of cost that would be 

exceeded only 25% of the time.  If the budget for the project of concern were to be 

increased by this amount at the outset, we would in effect be incorporating a delay-

related contingency cost.  

Recognizing that risk is a combination of likelihood and consequence, the 

cumulative distribution of the cost of delay provides a means for relating the magnitude 

of that cost (the consequence) to the percentile of concern (the likelihood).  This 

relationship will depend on the values of three parameters, the values of which will 

determine the severity of the risk.  They are: (1) the rate of spending over the period of 

delay (i.e., the burn rate), (2) the maximum length of the delay period, and (3) the 

standard deviation of the cost of delay.   

The cost of delay is assumed to be normally distributed and conditional on the 

length of delay, with a mean value that is proportional to the length of delay.  For 

convenience, the standard deviation of the length of delay shall be assumed to be a third 

of the maximum reasonable cost, based on the fact that about 99.8% of the normal 

distribution is within three standard deviations of the mean.  Selecting the normal 

distribution follows the guidance offered in [3], which states that it is the distribution that 

most often characterizes the underlying distribution function of a derived cost.   



 4

In contrast, the choice of distribution for the length is based on the intuitive notion 

that the probability of delay will not be an increasing function of the length of delay.  

Hence the length of delay is assumed to follow either a uniform distribution, where the 

delay is equally likely to have any value within some prescribed interval, or a declining 

triangular distribution, where the longer the delay, the less likely it will be.  These two 

distributions are shown in Fig. 1.        

 

III. MODEL FORMULATION 

To represent the foregoing relationships algebraically, we proceed as follows.  Let x = 

cost of delay, t = length of delay, b = burn rate, and xmax = maximum reasonable cost.  

The conditional distribution of x given t is then: 

f1(x| t) = N(μ,σ2)                         (1) 

where μ = bt and σ = xmax/3.  If we let T be the maximum length of delay, then the 

distribution of t is either:  

f2(t) = 1/T                       (2) 

if t has a uniform distribution, or 

f2(t) = 2(1/T – t/T2)                     (3) 

if t has a declining triangular distribution, where t ranges from 0 to T in both cases.  The 

joint distribution of x and t is then: 

f(x,t) = f1(x|t) f2(t)  

from which we obtain the marginal distribution of x:   
 

∫ ∫
∞

∞−

∞

∞−
== dttftxfdttxfxf )()|(),()( 21                 (4) 

 
where the limits of integration are 0 and T.  The cumulative distribution of f(x) is: 
 

∫ ∞−
= px

p dxxfxF )()(                                                  (5) 

 
where xp = the 100pth percentile cost of delay.   

Performing the integration in (4) and (5) yields expressions for f(x) and F(xp) in 

each of the two cases for f2(t), as follows.  
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Case 1.  Uniform Delay Distribution  

When the distribution f2 (t) is uniform, substituting equations (1) and (2) into (4) yields 

)()()( bTxxxf −−= ϕϕ                          (6) 

where  

)2/()
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σ

ϕ =                         (7) 
 

and 
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22)(
π

  (the error function). 

Fig. 2 shows how the shape of  f(x) changes as the value of T increases and the other 

parameters are held constant.  Since b and T only appear in the product bT, increasing T 

with b held constant has the same effect as increasing b with T held constant.   

 The cumulative distribution of xp is determined by inserting (6) in (5), thereby 

producing this result  
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This culminates in 

 )()()()]()([/2)( bTxbTxxxbTxxxF ppppppp −−−+−−= ϕϕωωπσ + 0.5            (9)  

Case 2.  Declining Triangular Delay Distribution  

In the case where h(t) is a declining triangular delay distribution, substituting (1) and (3) 

into (4) yields  
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For this case, Fig. 3 shows how the shape of  f(x) changes as the value of T increases and 

the other parameters are held constant.  Once again, b and T only appear in the product 

bT, hence the same observation holds as before.  

 The cumulative distribution in this case is determined by inserting (10) into (5), 

which results eventually in  
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IV. COMPUTATION 

 This formula gives the probability that the cost of delay will not exceed a 

particular value xp, but for practical purposes we need to know the inverse relationship.  

That is, to figure out how much contingency to add to a project budget in order to cover 

the 100pth percentile value of the cost of lateness, we need to be able to find the value of 

xp corresponding to a given value of F(xp).  A closed-form expression for xp = F-1(p) 

would serve this purpose, but since no such expression exists for the cumulative normal 

distribution—which is a far simpler distribution—it is unlikely to exist for F(xp) either.  

Hence we need to use numerical analysis instead.  

 To perform this analysis, we employ the Newton-Raphson method, which entails 

iterating with the following formula for determining the root x of the equation ξ(x) = 0: 

 xi = xi – 1  – ξ(xi – 1)/ξ'(xi – 1), i =1,2,… 

Substituting F(x) – p for ξ(x) and f(x) for ξ'(x) this becomes 

 xi = xi – 1  – (F(xi – 1) – p)/f(xi – 1), i =1,2,…                  (13) 

For the starting value xo we can use the 100pth percentile value of the normal distribution 

with mean µo equal to the expected value E(x) of the cost of lateness and variance σo
2 

equal to the variance Var(x) of that cost.  E(x) and Var(x) are determined by integration 

using the expressions for f(x) in (6) and (10), yielding the following equations in each of 

the two cases: 
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Case 1.  Uniform Delay Distribution   

 E(x) = ½ bT               (14) 

 Var(x) = b2T 2/12+ s2              (15) 

Case 2.  Declining Triangular Delay Distribution 

  E(x) = ⅓ bT              (16) 

 Var(x) = b2T 2/18+ s2             (17) 

To illustrate the numerical procedure discussed above, suppose the delay 

distribution f2(t) is triangular and let b = 10, T = 1, and σ = 3, and that the level of concern 

is the 80th percentile of the cost overrun distribution, so that p = 0.8.  Then from 

equations (16) and (17) we find that the starting values of µo and σo
2 are 3.33 and 25.67.  

By means of Microsoft Excel’s NORMINV function, we then find that the 80th percentile 

of the normal distribution with those parameters is at xo = 7.58.  Then, using (13) in 

conjunction with equations (10) and (12), we find in just four iterations that x4  = 6.56, 

with a deviation between the results of iterations 3 and 4 of only x4 – x3 = 5.96 × 10-7.   

The interpretation is as follows.  If the delay follows a declining triangular distribution 

and is at most one month (T = 1), and the cost of delay is normally distributed with a 

mean of $10,000 per month (b = 10) and a standard deviation of $3,000 (σ = 3), then the 

contingency budget required to cover 80% of the possible cost of delay is $6560 (x4  = 

6.56).  

Thus the formulas for f(x) and F(x) in equations (6) and (9) for Case 1 and 

equations (9) and (12) for Case 2, coupled with the iterative formula in equation (13), 

provide a means of determining the reserve that will cover a given percentage of the cost 

of delay, over and above the baseline project budget, which presumes there will be no 

delay.  The reserve may be expanded further to account for other uncertainties unrelated 

to delay (e.g., variability in the cost of inputs).  The F(x) formulas can also be used to 

evaluate the benefits of potential risk management measures by changing the appropriate 

parameter values.  For instance, a measure that would shorten the maximum duration of 

delay, T, would result in a reduction in F(x).   Such a measure would, therefore, have a 

beneficial impact on the risk and, if the cost of the measure were determined, a cost-

benefit ratio could be calculated.   
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V. CONCLUSIONS 

The results shown were based on the assumption that project delay follows either 

a uniform or declining triangular distribution and that the cost of delay, which is of 

course conditional on the delay itself, follows a normal distribution and is linked to the 

delay distribution by its mean, which is proportional to the length of the delay.  In a sense, 

this approach is a first approximation to the solution of the problem of how to best 

describe the interdependence between schedule risk and cost risk, which may require 

different distributions and linkages than the ones assumed here.  Nevertheless, it 

demonstrates how closed-form mathematical relationships can be derived and used to 

assess risk in lieu of simulation models, making it easier to estimate delay-related 

contingencies, analyze the sensitivity of risks to variations in key parameters, and 

evaluate the payoffs of risk reduction measures aimed at schedule risks, cost risks, or 

both.  .                           
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Figure 1  Uniform and triangular delay distributions,  f2(t) 
 
Figure 2.  f(x) when  f2(t)  is uniform and T varies from 1 to 10 (b = σ = 1) 
 
Figure 3.  f(x) when  f2(t) is triangular and T varies from 1 to 10 (b = σ = 1) 
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