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Abstract

The Bayesian measure of sample information about the parameter, known as Lindley’s mea-
sure, is widely used in various problems such as developing prior distributions, models for the
likelihood function, and optimal designs. The predictive information is defined similarly and
used for model selection and optimal designs though to a lesser extent. The parameter and
predictive information measures are proper utility functions and have been also used in combi-
nation. Yet the relationship between the two measures and the effects of conditional dependence
between the observable quantities on the Bayesian information measures remain unexplored. We
address both issues. The relationship between the two information measures is explored through
the information provided by the sample about the parameter and prediction jointly. The role
of dependence is explored along with the interplay between the information measures, prior,
and sampling design. For the conditionally independent sequence of observable quantities, de-
compositions of the joint information characterize Lindley’s measure as the sample information
about the parameter and prediction jointly and the predictive information as part of it. For
the conditionally dependent case, the joint information about parameter and prediction exceeds
Lindley’s measure by an amount due to the dependence. More specific results are shown for
the normal linear models and a broad subfamily of the exponential family. Conditionally inde-
pendent samples provide relatively little information for prediction, and the gap between the
parameter and predictive information measures grows rapidly with the sample size. Three de-
pendence structures are studied: the intraclass (IC) and serially correlated (SC) normal models,
and order statistics. For IC and SC models, the information about the mean parameter decreases
and the predictive information increases with the correlation, but the joint information is not
monotone and has a unique minimum. Compensation of the loss of parameter information due
to dependence requires larger samples. For the order statistics, the joint information exceeds
Lindley’s measure by an amount which does not depend on the prior or the model for the data,
but it is not monotone in the sample size and has a unique maximum.

Key Words: Bayesian predictive distribution; entropy; mutual information; optimal design;
reference prior; intraclass correlation; serial correlation; order statistics.

1 Introduction

The elements of Bayesian information analysis are a set of n observations, denoted as an n × 1

vector y generated from a sequence of random variables Y1, Y2, · · · with a joint probability model

f(y|θ) where the parameter θ has a prior probability distribution f(θ), θ ∈ Θ, and a new outcome

Yν . We follow the convention of using upper case letters for unknown quantities, which may be

scalar or vector. Whereas the concept of prediction is usually an after thought in classical statistics,

unless one deals with regression or forecasting type models, predictive inference naturally arises as a
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consequence of calculus of probability and is a standard output of Bayesian analysis. Bayesians are

interested in prediction of future outcomes, because eventually they will be observed which allow

to settle bets in the sense of de Finetti. The predictive inference is considered as a distinguishing

feature of Bayesian approach. But one can not develop predictive inference without estimation,

that is, without obtaining the posterior distribution of the parameter. The parameter plays the

pivotal role in prediction, and a clear perspective of the information provided by the sample about

the parameter and prediction can be obtained only through viewing (Θ, Yν) jointly.

Information provided by the data refers to a measure that quantifies changes from a prior to

a posterior distribution of an unknown quantity. Lindley (1956) framed the problem of measuring

sample information about the parameter in terms of Shannon’s (1948) notion of information in

the noisy channel (sample) about the signal transmitted from a source (parameter). The notion is

operationalized in terms of entropy and mutual information measures. Bernardo (1979a) showed

that Lindley’s measure of information about the parameter is the expected value of a logarithmic

utility function for the decision problem of reporting a probability distribution from the space

of all distributions. The information utility function belongs to a large class of utility functions

discussed by Good (1971) and others which lead to the posterior distribution given by the Bayes rule

as the optimal distribution. The predictive version of Lindley’s measure, referred to as predictive

information, quantifies the expected amount of information provided by the sample about prediction

of a new outcome.

A list of articles on Lindley’s measure and its methodological applications is tabulated in the

Appendix. The major areas of applications is classified in terms of developing model for the like-

lihood function and design, and developing prior and posterior distributions. Stone (1959) was

first to apply Lindley’s measure to design of experiments and El-Sayyed (1969) was first to apply

Lindley’s measure to the exponential model. Following Bernardo (1979a,b), several authors have

presented evaluation and selection of the likelihood function in terms of Lindley’s measure as a

Bayesian decision problem. Chaloner and Verdinelli (1995) provide an extensive review and addi-

tional references for the experimental design; see also Barlow and Hsiung (1983) and Polson (1993).

Soofi (1988, 1990), Ebrahimi and Soofi (1990) examined the trade-offs between the prior and design

parameters for the information about the model parameter. Carota, et al. (1996) developed an

approximation for application to model elaboration. Yuan and Clarke (1999) proposed developing

model for the likelihood function that maximizes Lindley’s measure subject to a constraint in terms

of the Bayes risk of the model. San Martini and Spezzaferri (1984) used a version of the predictive
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information for model selection. Amaral and Dunsmore (1985) studied the predictive measure and

applied it to the exponential parameter. Verdinelli et al. (1993) proposed use of predictive infor-

mation for optimal design. Verdinelli (1992) considered a linear combination of the parameter and

predictive information measures.

We explore the relationship between the parameter and predictive information measures and

examine the roles of prior, design, and the dependence in the sequence Yi|θ, i = 1, 2, · · · on the

informations measures and their interrelationship. This expedition integrates and expands the

existing literature in three directions.

First, to this date, the relationship between the sample information about the parameter (Lind-

ley’s measure) and predictive information remains unexplored. Lindley’s measure focuses on the

information flow between the pair (Y ,Θ). The predictive information measure is based on the

information flow between the pair (Y , Yν). The key to exploring the relationship between the in-

formation provided by the sample about the parameter and for the prediction is through viewing

(Θ, Yν) jointly as an interrelated pair. In this perspective, Θ plays an intermediary role in the

information flow from the data y to the prediction quantity Yν . The information flow from Y to

the pair (Y , Yν) is different when Yi|θ, i = 1, 2, · · · are conditionally independent and conditionally

dependent. Panel a) of Figure 1 depicts the conditionally independent model where the parameter

θ is the only link between Y and Yν . As shown in the information flow diagram in Panel a) of

Figure 1, in this case, the information flow from the data to the predictive distribution is solely

through the parameter. This information flow from Y to Θ to Yν is analogous to the data process-

ing of the information theory (Cover and Thomas 1991) where (Y ,Θ, Yν) is a Markovian triplet.

We will show that in this case the sample information about the parameter is in fact the entire

information provided by Y about (Θ, Yν) jointly, and that the predictive information is only a part

of it. We will further show that for some important classes of models, such as the normal linear

model and a large family of lifetime models, the predictive information provided by the conditional

independence sample is only a small fraction of the parameter (joint) information.

Second, thus far, the effects of dependence in the sequence Yi|θ, i = 1, 2, · · · on the Bayesian in-

formation measures remain unexplored. Panel b) of Figure 1 shows the graphical representations of

the conditionally dependent model and its information flow diagram. As shown in the information

flow diagram, in this case, the sample information flows from the data to predictive distribution

directly due to the conditional dependence, as well as indirectly via the parameter. Consequently,

the relationship between the parameter and predictive information measures is quite different than
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Figure 1: Graphics of conditional independent and unconditional dependent models

that for the conditionally independent case. We will show that in this case, the sample information

for parameter and prediction decomposes into the parameter information (Lindley’s measure) and

an information measure mapping the conditional dependence. We study the role of dependence

for three important models: the intraclass (IC) and serial correlation (SC) dependence structures

for the normal sample, and order statistics where no particular distribution for the likelihood and

prior is specified. Estimation of the normal mean and prediction under the IC and SC models are

commonplace. We examine the effects of dependence on the parameter and predictive information

measures drawing from Pourahmadi and Soofi (2000) who studied information measures for pre-

diction of future outcomes in the time series context. We will show that the sample can provide

substantial amount of information for prediction and the dominance of parameter information that

was noted for the conditionally independent case no longer holds. Order statistics, which condi-

tional on the parameter, form a Markovian sequence (Arnold, et al. 1992), also provide a useful

context for studying the effects of dependence on information measures. The information that the

first r failure times provide about the parameter as well as about the time to next failure Yr+1 are

of interest in life testing. Here, n items are under the test and failures are observed one at a time,

determining at an early stage how costly the testing is going to be and whether an action such as a

redesign is warranted. Such joint parameter-predictive inferences are considered by Lawless (1971),

Kaminsky and Rhodin (1985), and Ebrahimi (1992) under various sampling plans.

Third, the Bayesian information research has focused either on the design or on the prior. The

past research has mainly used two types of models encompassing two different parameters: the
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linear model for the normal mean parameter, and lifetime model where the scale parameter of an

exponential family distribution is of interest. We consider the normal linear model with normal

prior distribution for the mean and a subfamily of the exponential family under the gamma prior

distribution for the scale parameter. This subfamily includes, the exponential distribution and

many of parametric families such as Weibull, Pareto, and Gumbel extreme values. For each class of

models, we examine the relationships between the parameter and predictive information measures.

Furthermore, we explore the effects of sampling plan and prior distribution on the parameter and

predictive information measures. We will show that under the optimal design for the parameter

estimation, the loss of information for prediction is not nearly as severe as the loss of information

about the parameter under the optimal design for prediction.

This paper is organized as follows. Section 2 presents the measures of information provided

by the sample about the parameter and prediction, including results on the relationship between

them for the conditionally independent model. Section 3 explores the measures of information

provided by the sample about the parameter and prediction in terms of the prior and design matrix

for linear models. Section 4 explores the measures of information provided by the sample about

the parameter and prediction for a subfamily of the exponential family and explores the interplay

between parameter and predictive information for a broad family of distributions generated by

transformations of the generalized gamma family. Section 5 examines information measures for

conditionally dependent samples. Section 6 gives the concluding remarks. An Appendix provides

a classification of the literature on the Bayesian applications of mutual information and some

technical details.

2 Information Measures

Let Q represent the unknown quantity of interest: Θ, Yν, individually or as a pair, or a function

of them. For notational convenience we represent probability distribution with its density function

f(·) and use subscript i for the elements of data vector y and Yν , ν 6= i for prediction. Information

provided by the data y about Q is measured by a function that maps changes between a prior

distribution f(q) and the posterior distribution f(q|y) obtained via the Bayes rule. Two measures

of changes of the prior and posterior distributions are as follows. The uncertainty about Q is

measured by the Shannon entropy

H(Q) = H(f) = −
∫

f(q) logf(q)dq,
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and the observed sample information about Q is measured by the entropy difference

∆H(y;Q) = H(Q)−H(Q|y). (1)

The information discrepancy between the prior and posterior distributions is measured by the

Kullback-Leibler divergence

K[f(q|y) : f(q)] =

∫

f(q|y) log
f(q|y)

f(q)
dq ≥ 0, (2)

where the equality in (2) holds if and only if f(q|y) = f(q) almost everywhere. The observed sample

information measure (1) can be positive or negative depending on which of the two distributions

is more concentrated (less uniform). For a k-dimensional random vector Q, an orthonormal k ×
k matrix A, and a k × 1 vector c, H(AQ + c) = H(Q) and (1) is invariant under all linear

transformations of Q. The information discrepancy (2) is a relative entropy which only detects

changes between the prior and the posterior, without indicating which of the two distributions is

more informative. It is invariant under all one-to-one transformations of Q and y.

The expected sample information measures are obtained by viewing the observed information

measures (1) and (2) as functions of the data and averaging them with respect to the marginal

distribution of Y . The expected entropy difference and expected Kullback-Leibler provide the same

measure, known as the mutual information

M(Y ;Q) = Ey{∆H(y;Q)} = Ey {K[f(q|y) : f(q)]} , (3)

where Ey denotes averaging with respect to

f(y) =

∫

f(θ)f(y|θ)dθ. (4)

Other representations of M(Y ;Q) are:

M(Y ;Q) = H(Q)−H(Q|Y )

= K[f(q, y) : f(q)f(y)],
(5)

where

H(Q|Y ) = Ey{H(Q|y)} =

∫

H(Q|y)f(y)dy

is referred to as the conditional entropy in the information theory literature. The first representa-

tions in (3) and (5) are in terms of the expected uncertainty reduction, and the second representation

in (5) shows that the mutual information is symmetric in Q and Y . It is noteworthy to mention

that the equalities in (3) and (5) do not hold, in general, for generalizations of Shannon entropy

and Kullback-Leibler information divergence, such as Rényi measures.

Some useful properties of the mutual information are as follows.
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1. M(Y ;Q) ≥ 0, where the equality holds if an only if Q and Y are independent.

2. The conditional mutual information is defined by M(Y ;Q|S) = Es[M(Y ;Q|s)] ≥ 0, where

the equality holds if an only if Q and Y are conditionally independent.

3. Given f(q), M(Y ;Q) is convex in f(q|y) and given f(q|y), M(Y ;Q) is concave in f(q).

4. Let Yn denote a vector of dimension n, Yj ∈ Yn and Yj /∈ Yn−1. Then

M(Yn;Q) = M(Yn−1;Q) +M(Q; Yj|Yn−1) ≥M(Yn−1;Q), (6)

thus M(Yn;Q) is increasing in n.

5. M(Y ;Q) is invariant under one-to-one transformations of Q and Y .

2.1 Marginal information

For Q = Θ, the observation y provides the likelihood function, L(θ) ∝ f(y|θ) and updates the

prior to the posterior distribution

f(θ|y) ∝ f(θ)f(y|θ). (7)

The expected sample information about the parameter, M(Y ; Θ) is known as Lindley’s measure

(Lindley 1956) and is referred to as the parameter information.

The following properties are also well-known.

1. Let Sn = S(Y ) be a general transformation. Then M(Y ; Θ) ≥M(Sn; Θ), where the equality

holds if and only if Sn is a sufficient statistic for θ.

2. M(Yn; Θ) is concave in n, which implies that M(Yj; Θ|Yn−1) ≤M(Yj; Θ).

3. Ignorance between two neighboring values in the parameter space, P (θ) = P (θ + δ(θ)) = .5,

implies that M(Y ; Θ) ≈ 2δ2(θ)IF (θ) as δθ → 0, where IF (θ) is Fisher information (Lindley

1961, p. 467). Similar approximation holds for M(Y ;Q); also see Kullback (1959).

For Q = Yν , the prior and posterior predictive distributions, respectively, are given by

f(yν) =

∫

f(yν|θ)f(θ)dθ

and

f(yν |y) =

∫

f(yν |θ)f(θ|y)dθ. (8)
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The expected information M(Y ; Yν) is referred to as the predictive information (San Martini and

Spezzaferri 1984, Amaral and Dunsmore 1985).

In some problems both, the parameter and the prediction, are of interest (Chaloner and

Verdinelli 1995). Verdinelli (1992) proposed the linear combination of marginal utilities

U(Y ; Θ, Yν) = w1M(Y ; Θ) +w2M(Y ; Yν), (9)

where wk ≥ 0, k = 1, 2 are weights that reflect the relative importance of the parameter and

prediction for the experimenter. Since Θ and Yν are not independent quantities, M(Y ; Θ) and

M(Y ; Yν) are not additively separable. The weights in (9) do not take into account the dependence

between the prediction and the parameter.

2.2 Joint information

Taking the dependence between the parameter and prediction into account requires considering the

joint information for the vector of parameter and prediction. The observed and expected informa-

tion measures are defined by (1) and (3) where Q = (Θ, Yν), and will be denoted as ∆H [y; (Θ, Yν)]

and M [Y ; (Θ, Yν)]. Next Theorem encapsulates the relationships between the joint, parameter,

and predictive information measures for the conditionally independent samples.

Theorem 1 . If Y1|θ, Y2|θ, · · · are conditionally independent. Then:

(a) ∆H(y; Θ) = ∆H [y; (Θ, Yν)];

(b) M(Y ; Θ) = M [Y ; (Θ, Yν)];

(c) M(Y ; Yν) ≤M(Y ; Θ).

Proof. The proof of (a) is as follows. The joint entropy decomposes additively as

H(Θ, Yν) = H(Θ) + H(Yν |Θ),

where H(Yν |Θ) = Eθ{H(Yν|θ)} is the conditional entropy. Letting Q = (Θ, Yν) in (1) and applying

the entropy decomposition to each entropy, we have

∆H [y; (Θ, Yν)] = H(Θ) + H(Yν |Θ) − {H(Θ|y) + H(Yν |Θ, y)},

where H(Yν |Θ, y) = Eθ{H(Yν|θ, y)}. The first and third terms give ∆H(y; Θ). The conditional

independence implies for each θ, H [f(yν|θ, y)] = H [f(yν|θ)], thus Eθ{H(Yν|θ, y)} = Eθ{H(Yν|θ)},
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and the second and fourth terms cancel out, which gives (a). Since Y → Θ → Yν is a Markovian

triplet, Parts (b) and (c) are implied by properties of the mutual information functions of Markovian

sequences (see, e.g., Cover and Thomas 1991, pp. 27, 32-33).

By part (a) of Theorem 1, under the conditionally independent model, the information provided

by each and every sample about the parameter is the same as the joint information for the parameter

and prediction.

Part (b) of Theorem 1 provides a broader interpretation of Lindley’s information, namely ex-

pected information provided by the data about the parameter and for the prediction. An immediate

implication is that the prior distribution (Bernardo 1979a,b), the design (Chaloner and Verdinelli

1995 and Polson 1993), and the likelihood model (Yuan and Clarke 1999) that maximize M(Y ; Θ)

also maximizes sample information about the parameter and prediction jointly. However, by part

(c) of Theorem 1, such optimal prior, design, and model may not be optimal according to M(Y ; Yν).

Similarly, the optimal design of Verdinelli et al. (1993) and the optimal model of San Martini and

Spezzaferri (1984) which maximize M(Y ; Yν) may not be optimal according to M(Y ; Θ).

The inequality in (c) is the Bayesian version of the information processing inequality of in-

formation theory, and can be referred to as the Bayesian data processing inequality mapping the

information flow Y → Θ → Yν through the equations (7) and (8), as shown in Figure 1a.

By Parts b) and c) of Theorem 1 we have

M(Y ; Θ) = M(Y ; Yν) +M(Y ; Θ|Yν), (10)

where M [(Y ; Θ)|Yν] = Eyν
{K[f(y, θ)|yν) : f(θ|yν)f(y|yν)]} is the conditional mutual information

between Θ and Y , given Yν . This measure is the link between the parameter and predictive

information measures and is key for studying their relationship. Applying (10) to the utility function

(9) gives the weights for the additive information measures in (10) as

U(Y ; Θ, Yν) = w1M(Y ; Θ|Yν) + (w1 + w2)M(Y ; Yν). (11)

3 Linear Models

Consider the normal linear model

y = Xβ + ε, (12)

where y is an n× 1 vector of observations, X is an n × p design matrix, β is the p × 1 parameter

vector, ε is the error vector. Under the conditionally independent model f(ε|β) = N (0, σ2
1In),

σ2
1 > 0 is known and In is identity matrix of dimension n.
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It will be more insightful to use the orthonormal rotation Z = XG and θ = G′β, where G is

the matrix of eigenvectors of X ′X , and Λ = Z ′Z = diag[λ1, · · · , λp] where λj > 0, j = 1 · · · , p
are the eigenvalues of X ′X . By the invariance of entropy under orthonormal transformations

∆H(y; Θ) = ∆H(y; β) and by invariance of mutual information under all one-to-one transforma-

tions, M(Y ; Θ) = M(Y ; β).

We use the normal conjugate prior f(θ) = N (m0, σ
2
0V0), where V0 = diag[v01, · · · , v0p]. The pos-

terior distribution is f(θ|y) = N (m1, σ
2
1V1) where m1 = V −1

1

(

ηV −1
0 m0 + Z ′y

)

, V1 =
(

ηV −1
0 + Z ′Z

)−1

and η =
σ2

1

σ2
0

. All distributions and information measures are conditional on Z and σ2
1 which are

assumed to be given and will be suppressed. The prior and posterior entropies are H(Θ|σ2
kVk) =

p

2
log(2πe) +

1

2
log |σ2

kVk|, k = 0, 1, where | · | denotes the determinant. Since entropy is location

invariant, mk does not matter. Also since V1 does not depend on data y, the conditional entropy

and posterior entropies are equal, H(Θ|Y , Z, η, V0) = H(Θ|y, Z, η, V0). Thus, the observed and

expected sample information measures are the same, given by

M(Y ; Θ|Z, η, V0) = ∆H(y; Θ|Z, η, V0) =
1

2
log |Ip + η−1V0Z

′Z|

=
1

2

p
∑

j=1

log
(

1 + η−1v0jλj

)

.

(13)

From (13) it is clear that the parameter (joint) information is decreasing in η and increasing in

v0j, λj and σ2
0. Thus, given the prior, the information can be optimized through the choices of

design parameters λj, j = 1, · · · , p and for given data (design), the information can be optimized

through the prior parameters σ2
0 and v0j, j = 1, · · · , p.

The prior and posterior predictive distributions of a future outcome Yν to be taken at a point

zν are normal N
(

z′
νµk, σ

2
kz

′
νVkzν + σ2

1

)

, k = 0, 1, and

M(Y ; Yν|zν , Z, η, V0) = ∆H(y; Yν |zν , Z, η, V0) =
1

2
log

(

η−1z′
νV0zν + 1

z′
νV1zν + 1

)

. (14)

Parts (a) and (b) of Theorem 1 give ∆H [y; (Θ, Yν)|zν, Z, η, V0] = ∆H(y; Θ|Z, η, V0),

andM [Y ; (Θ, Yν)|zν , Z, η, V0] = M(Y ; Θ|Z, η, V0). Therefore all existing results forM(Y ; Θ|Z, η, V0)

apply to the joint parameter and predictive information, as well. Part (c) of Theorem 1 provides an

additional insight: M(Y ; Yν|zν , Z, η, V0) ≤M(Y ; Θ|Z, η, V0). These relationships hold for multiple

predictions, as well.

10



3.1 Optimal Designs

Several authors have studied parameter information in the context of experimental design. It

is clear from (13) that given V0 = Ip and the trace Tr(Z ′Z) =
p
∑

j=1

λj, the optimal parameter

information design is obtained when all eigenvalues are equal, λj = λ̄ =
1

p

p
∑

k=1

λk, which gives

the Bayesian D-optimal design (see Chaloner and Verdinelli (1995) for references). That is, with

the uncorrelated prior the information optimal design is orthogonal. For the case of weak prior

information, σ2
0 → ∞, maximizing the expected parameter information gain is equivalent to the

classical criterion of D−optimality. If the experimental information is weak then the Bayesian

criterion reduces to classical criterion of A−optimality when V0 = Ip (Polson, 1993). Verdinelli et

al. (1993) used the predictive information optimal design for accelerated life testing.

For illustrating implications of Theorem 1 for design we consider the simple case when xij ∈
{0, 1}. This is a one-way ANOVA structure, when the averages (parameters) as well as contrasts

between the individual outcomes are of interest. In this case, Tr(Λ) =
p
∑

j=1

nj = n and the design

parameters are λj = nj. The following proposition gives the optimal designs according to the

parameter (joint) information M(Y ; Θ) and predictive information M(Y ; Yν).

Proposition 1 Given V0 and
p
∑

j=1

nj = n.

(a) The optimal sample allocation scheme according to the parameter (joint) information M(Y ; Θ)

is






















n∗1 =
n

p
− η

p

p
∑

j=2

(

v−1
0j − v−1

01

)

n∗j = n∗1 − η
(

v−1
0j − v−1

01

)

, j = 2, · · · , p.

(15)

and the minimum sample size is determined by n∗1 > max
{(

v−1
0j − v−1

01

)

η, j = 2, · · · , p
}

.

(b) The information optimal sample allocation scheme according to the predictive information

M(Y ; Yν) for prediction at zν is






























n∗1 =
|zν1|n

∑p
j=1 |zνj|

+
η

∑p
j=1 |zνj |

p
∑

j=2

(

v−1
0j − v−1

01

)

n∗j =
|zνj|
|zν1|

n∗1 −
η

|zν1|
(

|zν1|v−1
0j − |zνj |v−1

01

)

, j = 2, · · · , p.

(16)

and the minimum sample size is determined by n∗1 > max

{

η

|zνj|
(

|zν1|v−1
0j − |zνj |v−1

01

)

, j = 2, · · · , p
}

.
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Figure 2: Parameter information per dimension M(Y ; Θ|Z, η)/p and predictive information
M(Y ; Yν|Z, z, η) under the predictive and parameter optimal designs against zν1, z′

νzν = 1 for

p = 2, n = 10, η = 1, v01 = v02 = 1.

Proof. See Appendix.

Note that by Theorem 1, the maximum predictive information attained with optimal design

(16) is dominated by the parameter information:

M(Y ; Θ|n∗i , zν) = M [Y ; (Θ, Yν)|n∗i , zν] ≥M(Y ; Yν |n∗i , zν).

Figure 2a shows the plots of the parameter information measures under the parameter and pre-

dictive optimal designs against zν1, z′
νzν = 1 for p = 2, n = 10, v01 = v02 = 1, and η = 1. In order

to make the two information measures dimensionally comparable, we have plotted information per

parameter M̄(Y ; Θ|n∗i ) = M(Y ; Θ|n∗i )/p. Figure 2b shows the plots of the predictive information

measures under the parameter and predictive optimal designs. Note that the vertical axes of the

two panels are different. These plots show that the joint information per dimension is much higher

than the predictive information even though the design is optimal for prediction and not for the

parameter. The dashed lines show the information quantities for the D-optimal design, which is

optimal for the parameter (joint) and for prediction at the diagonal z1 = z2 = 1/
√

2 ≈ .707. The

sample is least informative for prediction in this direction. We note that the loss of information

for prediction is not nearly as severe as the loss of information about the parameter. This is due

to the fact that by Theorem 1, the parameter information measures the joint information about

the parameter and prediction and inclusive of the predictive information. Thus, use of D-optimal

design would be preferable if the experimenter has interest in inference about the parameter as well

as about a prediction.
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3.2 Optimal Prior Variance

Next we illustrate application to developing prior as the Bayesian solution to the collinearity prob-

lem. When the regression matrix X is ill-conditioned, posterior inference about individual parame-

ters are unreliable. The effects of collinearity on the posterior distribution and compensating for the

collinearity effects by using V0 = Ip are discussed in Soofi (1990). In the orthogonal prior variance

case
p
∑

j=1

v0j = p is distributed uniformly among the components of V0. The following proposition

gives an optimal prior variance allocation according the parameter (joint) information M(Y ; Θ)

that will be useful when X ′X is nearly singular.

Proposition 2 Let λ1 ≥ · · · ,≥ λp,
p
∑

j=1

λj = p, and given
p
∑

j=1

v0j = c. The optimal prior variance

allocation according the parameter (joint) information M(Y ; Θ) is























v∗01 =
c

p
+
η

p

p
∑

j=2

(

λ−1
j − λ−1

1

)

v∗0j = v∗01 − η
(

λ−1
j − λ−1

1

)

, j = 2, · · · , p.

(17)

and the minimum prior variance is determined by v∗01 >
(

λ−1
p − λ−1

1

)

η.

Proof. See Appendix.

The optimal information prior (17) allocates prior variances to the components θj, j = 1, · · · , p
based on the eigenvalues λ1 ≥ · · · ,≥ λp of X ′X . So it is in the same spirit as Zellner’s g prior

where v0j ∝ λ−1
j , j = 1, · · · , p. In the same spirit, West (2003) and Maruyama and George (2010)

have defined generalized g priors that are applicable when X is singular. Our information optimal

allocation scheme is another generalization of the g prior tailored for the collinearity problem where

X is full-rank, but nearly singular.

The optimal allocation scheme (17) can be represented in terms of the condition indices κj =
√

λ1/λj, j = 1, · · · , p of X ′X as































λ1v
∗
01 + η

λjv
∗
0j + η

= κ2
j , j = 2, · · · , p,

p
∑

j=1

v∗0j = c.

The largest portion of the total prior variance v∗0p is allocated to the component θp that corresponds

to smallest eigenvalue λp such that
λ1v

∗
01 + η

λpv
∗
0p + η

= κ2, where κ = κ(X ′X) =
√

λ1/λp is the condition

number of X ′X which is used for collinearity diagnostics (Stewart 1987, Soofi, 1990, Belsley 1991).
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In some prediction problems, the prediction point zν is given. For example, in the accelerated life

testing, zν is the environmental condition and the experiment must be designed such that prediction

at zν is optimal. The information decomposition (13) provides the clue when the quantity of interest

is the mean response Q = E(Y |zν). The components of θ = (θ1, · · · , θp)′ are independent, a′priori

and a′posteriori, and from (13), M(θj,Y |Z, η, V0) = .5 log
(

1 + η−1v0jλj

)

. Under the orthogonal

prior, the sample is most informative about the linear combination of the regression coefficients

θ1 = g′
1β where g1 is the first eigenvector ofX ′X . Thus the optimal design for the expected response

at a covariate vector zν is X∗ such that zν is the first eigenvector of Ip + η−1V0X
∗′X∗. Under the

uncorrelated prior or weak prior, X∗ is frequentist E-optimal design, which can be different than

the designs that are optimal with respect to parameter (joint) information. The optimal allocation

scheme (17) provides improvement to the orthogonal prior for prediction of the expected response

when zν is in the space of the eigenvectors corresponding to the large eigenvalues.

Figure 3 compares information measures for the optimal scheme, the orthogonal prior, and

V0 ∝ Λ−1 which is used in some priors such as the g-prior with p = 2, c = 100, η = 1. Figure

3a shows the plots of parameter information M(Y ; Θ|Z, η) against the condition number κ =
√

λ1/λ2 of X ′X . Under all three priors, the parameter information M(Y ; Θ|Z, η) decrease with

κ, i.e., as the regression matrix descents toward singularity. The parameter information under the

optimal scheme slightly dominates the measure under the orthogonal prior, and both dominate

the information under the g-prior which deteriorates quickly with collinearity. By Theorem 1, the

parameter information measure is the joint information about the parameter and prediction and is

inclusive of the predictive information. Figure 3b shows M(Y ; θ1|Z, η) for the direction of the first

eigenvector θ1 = G′
1β, i.e., the most informative direction for prediction of the expected response.

The optimal and orthogonal priors improve the information under collinearity, but the measure for

the g-prior deteriorates quickly.

4 Exponential Family

Consider distributions in the exponential family that provide likelihood functions in the form of

L(θ) ∝ θne−θsn , θ > 0, (18)

where sn is a sufficient statistic for θ. An important class of models whose likelihood functions are

in the form of (18) is the time-transformed exponential (TTE) (Barlow and Hsiung 1983). The

TTE models are usually defined in terms of the survival function F̄ (y|θ) = exp{−θφ(y)}, y ≥ 0

14



Figure 3: Parameter information M(Y ; Θ|Z, η) and information for the most informative direction
for prediction of the expected response M(Y ; θ1|Z, η) for three types of prior variance allocations

(p = 2, c = 100, η = 1).

where φ(y) = − log F̄0 and θ is the “proportional hazard”. The density functions of the TTE

models are in the form of

f (φ(y)|θ) = θφ′(y)e−θφ(y), (19)

where φ(y) is a one-to-one transformation of Y with the exponential distribution f(y|θ) = θe−θy .

For TTE models sn =
n
∑

i=1

φ(yi). Examples include the exponential φ(y) = y, y ≥ 0, Weibull φ(y) =

yq, y ≥ 0 , Pareto Type I φ(y) = log(y/a), y ≥ a > 0, Pareto Type II φ(y) = log(1 + y), y ≥ 0,

Pareto Type VI φ(y) = log(1 + ya), y ≥ 0, a > 0, and the extreme value φ(y) = ey.

The family of conjugate priors for (18) is gamma G(α, β) with density function

f(θ) =
βα

Γ(α)
θα−1e−βθ. (20)

The posterior distribution is G(α+ n, β + sn).

The information in the observed sample is given by

∆H(y; Θ) = HG(α)−HG(α+ n) + log

(

1 +
sn
β

)

,

where HG(α) is the entropy of G(α, 1) given by

HG(α) = log Γ(α) − (α− 1)ψ(α) + α,

and ψ(α) =
d logΓ(α)

dα
is digamma function.

For the TTE family (19), the marginal distribution of sn is inverted beta (beta prime) distri-

bution with density

f(sn) =
1/β

B(α, n)

(sn/β)n−1

(1 + sn/β)α+n
, sn ≥ 0,
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where B(α, n) is the beta function. Using Esn

{

log

(

1 +
sn
β

)}

= ψ(α+ n) − ψ(α), the expected

information for all models with likelihood functions in form of (18) is:

M [Y ; (Θ; Yν)] = M(Y ; Θ) = HG(α)−HG(α+ n) + ψ(α+ n) − ψ(α). (21)

An interesting property of (21) is the following recursion:

M(Yn; Θ|α) = M(Yn−1; Θ|α) +KG(α+ n − 1), (22)

where Yn and Yn−1 are vectors of dimensions n and n − 1, and

KG(v) = K(Gv : Gv+1) =
1

v
+ ψ(v)− log v (23)

is the Kullback-Leibler information between Gv = G(ν, β) and Gv+1 = G(ν + 1, β). The recursion

(22) is found using ψ(α+ 1) = ψ(α) +
1

α
. By (6), M(Yn; Θ|Yn−1) = KG(α+ n − 1). That is, on

average, the incremental contribution of an additional observation is equivalent to the information

divergence due to one unit increase of the prior variance.

The prior predictive distribution for TTE family (19) is Pareto P(α, β) with density function

f(yν) =
αβα

(β + yν)α+1
, , yν ≥ 0.

The posterior predictive distribution f(yν|y) is also Pareto with the updated parameters P(α +

n, β + sn). The predictive information measures are given by

∆H(y; Yν) = HP(α) −HP(α+ n) − log

(

1 +
sn
β

)

M(Y ; Yν) = HP(α) −HP(α+ n) − ψ(α+ n) + ψ(α), (24)

where HP (α) =
1

α
− logα+ 1 is the entropy of P(α, 1).

By Theorem 1, ∆H [sn; (Θ, Yν)] = ∆H(y; Θ), M [Y ; (Θ, Yν)] = M(Y ; Θ), and M(Y ; Yν) ≤
M(Y ; Θ). The following Theorem gives more specific pattern of relationships.

Theorem 2 . The following results hold for the TTE family (19) and gamma prior (20).

(a) M(Y ; Θ|α) and M(Y ; Yν|α) are decreasing functions of α, increasing functions of n, and as

n→ ∞, M(Yn+1; Θ|α)−M(Yn; Θ|α) → 0 and M(Y ; Yν|α) → KG(α).

(b) M(Y ; Θ|α) = M(Y ; Yν|α)+M(Y ; Θ|α+1), where M(Y ; Θ|α+1) is the sample information

with gamma prior G(α+ 1, β).

(c) M(Y ; Θ|α)−M(Y ; Yν |α) increases with α and with n.
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Proof. For (a), it is known that the expected parameter and predictive measures are increasing

functions of n. It is shown in Ebrahimi and Soofi (1990) that for the exponential model, M(Y ; Θ|α)

is decreasing in α. By the invariance of the mutual information the same result holds for the TTE

family. The limits are found by noting that KG(v) → 0 as v → ∞. The expected predictive mea-

sure is decreasing in α is found by taking the derivative, using series expansion of the trigamma

function ψ′(u) =
∞
∑

k=1

1

(u+ k)2
(Abramowitz and Stegun 1970), and an induction on n that shows

the derivative is negative. Parts (b) is found using recursion ψ(α + 1) = ψ(α) +
1

α
. Part (c) is

implied by (a) and (b). The difference is M(Y ; Θ|α+ 1) which is increasing (decreasing) in n (α).

By part a) of Theorem 2, the parameter and predictive information both increase with n. Part

b) of Theorem 2 gives the relationship between the parameter (joint) and the predictive information

measures. Part c) indicates that under conditional independence, the parameter (joint) information

grows faster than the predictive information with the sample size.

As an application, consider Type II censoring where observing the number of failure is a design

parameter. Let y1 ≤ y2 ≤ · · · ≤ yn be the order statistics of a sample of size n. Then, for example,

for the exponential likelihood (18) the sufficient statistic for θ is

tr = y1 + · · ·+ yr−1 + (n− r + 1)yr, r ≤ n.

The parameter information M(Tr; Θ|n) is given by (21). Ebrahimi and Soofi (1990) examined

the loss of information about the parameter. The predictive information is given by (24) with

n = r. By part a) of Theorem 2, censoring also results in loss of predictive information. As in the

case of parameter information, the loss of predictive information can be compensated by the prior

parameter α.

Figure 4 shows plots of the expected parameter and predictive information measures. Figure

4a illustrates the information decomposition part (Theorem 2 part b) for α = 1 as function of n.

The parameter information and predictive information are both increasing in n. The parameter

information increases at a faster rate than the predictive information. In this case, the difference

between the parameter and predictive information is M(y; Θ|α+1) also shown in Figure 4a. These

information measures are decreasing in α. Figure 4b shows the plots of loss of information due to

Type II censoring for n = 25 and α = 1, 2. We note that the predictive information loss is not

as severe as the parameter information loss. As seen in the figure, the information losses can be

recovered by increase in prior precision.
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Figure 4: Decomposition of the joint (parameter) information M(Tr; Θ|α, n) into predictive infor-
mation M(Tr; Yν|α, n) and M(Tr; Θ|α+1, n) and loss of informationM(Tn; Θ|α)−M(Tr; Θ|α) due

to Type II censoring of exponential data.

By Part a) of Theorem 2, M(Y ; Θ) and M(Y ; Yν) are maximized by choosing α as small as

possible. It is natural to expect that the limiting case, which is the Jeffreys prior f(θ) ∝ 1

θ
,

to be optimal with respect to both the parameter and prediction information. But its use is

consequential. Since Jeffreys prior is improper, the expected parameter information is given by

the negative conditional entropy of the posterior distribution which is proper. However, unlike the

mutual information, the entropy is not invariant under one-to-one transformations and the result

depends on the parametric function of interest. For example, for p = 1 so the model is exponential

with failure rate θ. The posterior distribution of θ is gamma f(θ|sn) = G(n, sn) and its entropy is

H [f(θ|sn)] = HG(n) − log sn. The distribution of Sn is Pareto f(sn) = P(n− 1) which is proper

for n > 1 and E(logSn) =
n

n− 1
. The expected parameter information is I(Θ|Sn) = −H[f(θ|sn)],

which is a decreasing function of n. But the posterior distribution of the mean parameter µ =
1

θ
is

inverse-gamma and information about the mean is increasing in n. With Jeffreys prior, the prior

predictive distribution is also improper. The posterior predictive is Pareto P(n, sn) and its entropy

is H [f(Yν|sn)] = HP(n)+log sn. The expected predictive information is I(Yν |Sn) = −H[f(Yν |sn)],

which is an increasing function of n.

5 Dependent Sequences

When the sequence of random variables Yi, i = 1, 2, · · · are not conditionally independent, the

information provided by the sample about the parameter and prediction jointly decomposes as:

M [Y ; (Θ, Yν)] = M(Y ; Θ) +M(Y , Yν|θ) ≥M(Y ; Θ), (25)

18



where M(Y , Yν |θ) ≥ 0 is the measure of conditional dependence, and the inequality becomes

equality for the case of conditional independence. From (10) and (25), we find that

M(Y , Yν) ≤M(Y ; Θ) if and only if M(Y ; Θ|yν) ≥M(Y , Yν|θ).

Thus, under strong conditional dependence the predictive information M(Y , Yν) can dominate

M(Y ; Θ) the parameter information.

In this section we first examine the effects of correlation between observations on the information

about the mean parameter and prediction where the data are normally distributed. We then

consider order statistics where no prior and model for the likelihood function are assumed.

5.1 Intraclass and Serially Correlated Models

We consider the intercept linear model f(y|θ) = N (θz, σ2
1R), where z is an n × 1 vector of ones

and R = R|θ = [ρij|θ] is a known correlation matrix. By invariance of the mutual information,

the results hold for all distributions of variables that are one-to-one transformation of y, e.g., log-

normal model. As before, σ2
1 > 0 is known and f(θ) = N (µ0, σ

2
0). The posterior variance is given

by σ2
θ|y = σ2

0

[

1 + Tn(R)η−1
]−1

, where Tn(R) = z′R−1z is the sum of all elements of R−1. The

parameter information is given by

M(Y ; Θ|R) = .5 log
(

1 + η−1Tn(R)
)

. (26)

The following representations facilitate computation and study of the predictive and joint in-

formation measures. If Yν and Yν |y are normal, then the predictive information is given by

M(Y ; Yν) = −.5 log
(

1− ρ2
yν ,y

)

= .5 log[C−1]νν , (27)

where ρ2
yν ,y is the square of unconditional multiple correlation coefficient of the regression of Yν on

y, C = [cij], i, j = 1, · · · , n + 1 denotes the correlation matrix of the (n + 1)-dimensional vector

(Y , Yν), and [C−1]νν denotes the (ν, ν) element of C−1.

The joint information about the parameter and prediction is given by

M [Y ; (Θ, Yν)] = M(Y ; Θ) +M(Y , Yν|Θ) ≥M(Y ; Θ). (28)

Thus, due to the conditional dependence, the joint information about parameter and prediction

exceeds M(Y ; Θ) by an amount M(Y ; Yν|Θ) ≥ 0 which is the information measure of the condi-

tional dependence between Yν and the data. This quantity can be computed similar to (27) with

conditional correlation matrix

M(Y ; Yν|Θ) = −.5 log
(

1− ρ2
yν ,y|θ

)

= .5 log[C−1|θ]νν ≥ 0, (29)
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Table 1. Formulas for uncorrelated, intraclass, and serial correlation models.

Uncorrelated (UC) Intraclass (IC) Serial Correlation (SC)

|R|θ| 1 [1 + (n− 1)ρ](1− ρ)n−1 1− ρ2

Tn(R|θ) n
n

1 + (n− 1)ρ

n− (n− 2)ρ

1 + ρ

ρ2
yν ,y|θ 0

nρ2

1 + (n− 1)ρ
ρ2

ρ2
p

1

1 + η

1 + ηρ

1 + η

1 + ηρk

1 + η

ρ2
yν ,y

n

(1 + η)(n+ η)

nρ2
p

1 + (n− 1)ρp
Immediate future ρ2

p

where ρ2
yν ,y|θ is the square of conditional multiple correlation coefficient and C|θ = [cij|θ], i, j =

1, · · · , n+ 1 is the correlation matrix of conditional distribution of (Y , Yν), given θ. Note that C|θ
includes R and an additional row/column for Yν .

Measures such as the determinant |R| and condition number κ(R) =
√

λ1/λn, where λ1 <

· · · < λn are eigenvalues of R, can be used to rank dependence of the normal samples. However, in

general, these measures do not provide a unique ranking. In order to rank the dependence uniquely

as well as for ranking the predictive information in terms of sample dependence, we assume some

structures for R. We consider two important models: the intraclass (IC) model with ρij|θ = ρ for

all i 6= j, and the serial correlation (SC) model with ρi,i±k|θ = ρk ≥ 0, k > 0. Dependence within

each model and between the two models are ranked uniquely by |R| and κ(R).

Table 1 shows |R| and Tn(R) for the IC, SC models along with the independent model (UC).

The determinants and inverses of the IC and SC matrices which are well known. Using Tn(R) in

(26) gives the parameter information. The third row of Table 1 shows ρ2
yν ,y|θ which is computed

using (29) with (n + 1)-dimensional IC and SC matrices for C. Table 1 also shows the square of

unconditional (predictive) correlation ρ2
p = cij, which are used in (27) for computing the predictive

information measures. Computation of ρ2
p = cij is shown in the Appendix. The last row of Table 1

shows the square of unconditional multiple correlation coefficient ρ2
yν ,y computed from (27). The

predictive measure for SC model is for the one-step prediction.

The following Theorem summarizes the effects of the IC and SC correlation structures on the
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normal information measures (26)-(28).

Theorem 3

(a) For all three models, M(Y ; Θ|ρ), M(Y ; Yν|ρ), and M [Y ; (Θ, Yν)|ρ)] increase with n and

decrease with η.

(b) For both IC and SC models, M(Y ; Θ|ρ) decreases with ρ, and

M IC(Y ; Θ|ρ) ≤MSC(Y ; Θ|ρ) ≤MUC(Y ; Θ),

where the last equality holds if and only if ρ = 0.

(c) For both IC and SC models, M(Y ; Yν|ρ) increases with ρ, and

M IC(Y ; Yν|ρ) ≥MSC(Y ; Yν|ρ) ≥MUC(Y ; Yν),

where the last equality holds if and only if ρ = 0.

(d) For both IC and SC models, M [Y ; (Θ, Yν)|ρ)] decreases in ρ for ρ ≤ ρ0(n, η) and increases

in ρ for ρ > ρ0(n, η), where ρIC
0 (n, η) and ρSC

0 (n, η) are roots of quadratic equations and both

are increasing in n and decreasing in η.

Proof. (a) Can be easily seen by taking derivatives. (b) It is also easy to see that for the cor-

related models Tn(R) are decreasing functions of ρ and that T IC
n (R) ≤ T SC

n (R) ≤ TUC
n (R) = n.

(c) This is implied by the facts that ρIC
p > ρSC

p and the predictive information increases with ρ,

as expected. (d) Taking the derivative, ρ0(n, η) is given by the root of An,ηρ
2 + Bn,ηρ+ Cn,η = 0,

where AIC
n,η = n − 1, BIC

n,η = 2(1 + nη−1), ASC
n,η = 1 + (2n − 1)η−1, BSC

n,η = 1 + (2n − 1)η−1, and

Cn,η = (1 − n)η−1. For each model there is only a unique positive solution.

Theorem 3 formalizes the intuition that samples with stronger dependence are less informative

about the parameter and more informative about prediction. Figure 5 shows plots of M(Y ; Θ|ρ)
and M(Y ; Yν|ρ) against sample size for the UC model and the correlated models IC and SC with

ρ = .50, .75. Some noteworthy features are as follows. All information measures are increasing in n.

For the UC model, the parameter information is the highest and has the fastest rate of increase with

n, and the predictive information is the lowest with the slowest (almost flat) rate of increase. For

the SC model, the parameter information is higher and increases much faster than the predictive

information. For the IC model, the parameter information is lower than the predictive information
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Figure 5: The parameter information M(Y ; Θ|ρ) and predictive information M(Y ; Yν|ρ) for the
independent, IC, and SC normal models as functions of the sample size (η = .5).

while both measures have about the same rates of increase. Interestingly, as seen in Figures 5a and

5b, for the UC and SC models, the differences between the parameter and predictive information

measures grow with n much faster than the predictive information measures. That is, the share of

predictive information decreases with the sample size.

Since M(Y ; Θ|ρ) is increasing in n, one can compensate the loss of parameter information due

to the dependence by increasing the sample size. For example, as can be seen in Figure 5a, to gain

about one unit (nit) of information, we need n = 3 from the UC, and with ρ = .50, .75, we need

n = 8, 16 observations under SC, and n = 26, 37 observations under IC models, respectively.

The effects of prior on the information quantities are induced through η which is proportional

to prior precision. It is clear that (26) and (27), and their difference are decreasing in η. Thus, the

optimal prior for inference about the parameter and prediction is to choose the prior variance as

large as possible.

Figure 6a shows the plots of the joint information measures for the SC and IC models as

functions of ρ2 for n = 5, 10 and η = .5. Note that the joint information of SC model dominates

the joint information of IC model when dependence is weak. After the minimum point, the of

rate of growth of joint information for the IC model is steep and the IC information measure

dominates the SC information measure for when the dependence is rather strong. Figure 6b shows

the plots of the minimum joint information measures for the SC and IC families as functions of

n for η = .25, .5, .75. These plots are useful for determining sample size for each family such that

the minimum information exceeds a given value. For example, to gain about 1.5 units (nits) of

information from an SC sample with unknown ρ, we need n = 9, 25, 37 with η = .25, .50, .75,
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Figure 6: The joint parameter and predictive information M [Y ; (Θ, Yν)|ρ] and minima of the joint
information minρM [Y ; (Θ, Yν)|ρ] for SC and IC normal models.

respectively. The plots show that

M IC
0 [Y ; (Θ, Yν)|n, η] ≤MSC

0 [Y ; (Θ, Yν)|n, η],

where M0[Y ; (Θ, Yν)|n, η] = minρM [Y ; (Θ, Yν)|ρ]. This inequality can be proved by substituting

ρIC
0 (n, η) and ρSC

0 (n, η) in the expressions for Tn(R) and ρ2
yν ,y|θ.

5.2 Order Statistics

Let Y1 ≤ Y2 ≤ · · · ≤ Yn be the order statistics of conditionally independent sample X1, · · · , Xn

from a continuous distribution with density function g(x|θ), and let yr = (y1, · · · , yr), r ≤ n.

Conditional on θ, the order statistics have a Markovian dependence (Arnold 1992). The mutual

information between consecutive order statistics given by

M(Yr; Yr+1|θ) = Mn(r)

= logB(r + 1, n− r+ 1) + log(n+ 1) − 1

−r{ψ(r)− ψ(n)} − (n− r){ψ(n− r) − ψ(n)};

(30)

see Ebrahimi et al.(2004). That is, Mn(r) is the measure of Markovian dependence between order

statistics of the independent sample conditional on θ. It is shown in Ebrahimi et al.(2004) that

Mn(r) is increasing in n, and for a given n, the information is symmetric in r and n − r, and

attains its maximum at the median (see Figure 7). Next lemma gives generalizations of (30). All

information functions are conditional on r and n, which will be suppressed when unnecessary.
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Lemma 1 Let Y1 ≤ · · · ≤ Yn denote the order statistics of random variables X1, · · · , Xn which,

given θ, are independent and have identical distribution g(x|θ) and Y r and Y q denote the disjoint

subvectors of order statistics. Then:

(a) M(Y r; Y q|θ) is free from the parent distribution f(x|θ) and the prior distribution f(θ),

(b) For any two consecutive subvectors Yr = (Yk+1, · · · , Yk+r) and Y q = (Yk+r+1, · · · , Yk+r+q),

M(Y r; Y q|θ) = Mn(r).

Proof. Let U = G(X). Then U is uniform and its order statistics W1 ≤ W2 ≤ · · · ≤ Wn are

given by Wi = G(Yi), and W r and W q be the subvectors corresponding to Y r and Y q. Since

Wi = G(Yi) is one-to-one, we have M(Y r; Y q) = M(W r; W q). Furthermore the distribution of

any subset of order statistics is ordered Dirichlet with parameters n and the indices of the order

statistics contained in the subset, hence M(Y r; Y q) = M(W r; W q) is free from the parent distri-

bution f(x|θ). Part (b) Follows from Y1|θ, · · · , Yn|θ being a Markovian sequence.

It can easily be shown that information provided by the first r order statistics about the

parameter M(Y r,Θ) satisfies (6). The predictive distributions of order statistics are given by

f(yi) =

∫

f(yi|θ)f(θ)dθ, i = 1, · · · , n. Note that y1 ≤ y2 ≤ · · · ≤ yn are the order statistics of

a sample of the exchangeable sequence X1, · · · , Xn, unconditionally. The following results provide

some insight about the parameter and predictive information for order statistics.

Theorem 4 Let M [Y r; (Θ, Yr+1)] denote the information provided by the first r order statistics

about the parameter and for prediction of the next order statistic jointly. Then:

(a) M [(Y r; (Θ, Yr+1)] = M(Y r; Θ) +Mn(r) ≥M(Y r; Θ).

(b) The following statements are equivalent:

(i) M(Y r; Yr+1) ≥ (≤) Mn(r).

(ii) M(Θ; Yr+1) ≥ (≤) M(Yr+1; Θ)−M(Y r; Θ), where Yr+1 = (Y1, · · · , Yr, Yr+1).

Proof. Using the following decompositions of mutual information we have,

M [(Θ, Yr+1); Y r] = M(Y r; Θ) +M(Y r; Yr+1|Θ).

Applying part (b) of Lemma 1 to the second term gives the result (a). For (b) we use the following

decompositions of mutual information M [(Y r,Θ); Yr+1] decompositions:

M [(Y r,Θ); Yr+1] = M(Y r; Yr+1) +M(Θ; Yr+1|Y r)
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= M(Θ; Yr+1) +M(Y r; Yr+1|Θ).

Equating the two decomposition with M(Yr+1; Y r|Θ) = Mn(r) gives equivalence of (i) and

M(Θ; Yr+1) ≥ (≤) M(Θ; Yr+1|Y r). (31)

The equivalence with (ii) is obtained by solving

M(Yr+1; Θ) = M(Y r; Θ) +M(Θ; Yr+1|Y r),

for M(Θ; Yr+1|Y r) and substituting in (31).

Part (a) of Theorem 4 shows M [Y r; (Θ, Yr+1)] is inclusive of Lindley’s measure reflecting the

fact that conditional on θ, order statistics are dependent. So the information provided by the

first r order statistics about the parameter and for prediction of the next order statistic is more

than the information provided about the parameter. However, the excess amount of information

measures the Markovian dependence between order statistics of the independent sample and does

not depend on fx|θ and fθ. An implication of this result is that reference posterior corresponding to

the prior that maximizes the parameter information M(Y r; Θ) also remains optimal with respect

to M [Y r; (Θ, Yr+1)].

Part (b) of Theorem 4 gives the equivalence of the orders of information in terms of (i) the

predictive and sample order statistics and (ii) the expected information about the parameter pro-

vided by an order statistic in terms of the incremental amount of information provided about the

parameter.

Example 1 For the case of exponential model with the gamma prior, the conditional distribution

of (r+ 1)st order statistic given θ and the first r order statistics is exponential with density

f(yr+1|yr, θ) = (n− r)θe−θ(n−r)(yr+1−yr), yr+1 > yr. (32)

The posterior predictive distribution of (r+1)st order statistic given first r order statistics is Pareto

with parameters α+r, br =
β + tr
n− r

, and a location parameter yr . Since entropy is location-invariant,

H(Yr+1|yr) is H(Yr+1|tr, yr, r, n) = H(Y |tr, r)− log(n− r).

Figure 7a shows plots of M(Y r; Θ|α, r, n) for the exponential sample with n = 26 and α =

.5, 1, 2, 4, superimposed by the Markovian dependence information measure Mn(r) for the order

statistics. Since M(Tr; Θ|α, r, n) is increasing in r, censoring results in loss of information about

the parameter. Thus, without consideration of cost the experiment, r∗ = n = 26. Since Mn(r) is
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Figure 7: Expected information about the parameter M(Y r,Θ) and the joint information about
the parameter and prediction of the (r+1)st order statisticM [Y r; (Θ, Yr+1)] provided by the vector

of preceding order statistics Y r, and the information due to the Markovian dependence between
order statistics (n = 26).

decreasing for r larger than the median, censoring beyond the median results in gain of information

about the next outcome. Figure 7b shows the plots of the parameter information and joint infor-

mation M [Y r; (Θ, Yr+1)|α, r, n] computed using part (a) of Theorem 4 for α = 0.5, 1. We note that

M [Y r; (Θ, Yr+1)|α, r, n] is not monotone because the Markovian dependence information measure

Mn(r) decreases for the order statistics above the median. The optimal r for the joint parameter

and predictive information, without consideration of cost the experiment is r∗ = 17 < n. Thus,

unlike the case of conditionally independent model, the parameter information utility and the joint

parameter-predictive information utility lead to different sampling plans.

In Section 4 we noted that under Jeffreys prior, at least one observation is needed for obtaining

a proper posterior. Following this idea more generally, we compare the expected uncertainty change

due to the first r order statistics with the first order statistic r = 1, give by

B[Y r; (Θ, Yr+1)] = H [(Θ, Y1)]−H[(Θ, Yr+1)|Y r],

where H[(Θ, Yr+1)|Y r] = Esr
{H [(Θ, Yr+1)|Y r]} is the conditional joint entropy of (Θ, Yr+1) given

the first order statistic, averaged with respect to f(yr). The expected uncertainty change B(Y r; Yr+1)

for prediction of (r+1)st order statistic is defined similarly. These measures, which can be referred

to as the information bridge between the first and (r + 1)st order statistics, are invariant under

linear transformations, but can be negative. It can be shown that for any parent distribution g(x|θ)
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where θ is the scale parameter and any prior f(θ),

M(Y r; Θ) = B[Y r; (Θ, Yr+1)] + log

(

n

n− r

)

M(Y r; Yr+1) = B(Y r; Yr+1) + log

(

n

n − r

)

.

Clearly, B(·, ·|r, n) →M(·, ·|r, n) as
r

n
→ 0. So, the quantity log

(

n

n− r

)

can be interpreted as the

finite sample correction factor for the information.

6 Concluding Remarks

This paper is the first attempt to study the relationship between the parameter and predictive infor-

mation measures, the analytical behavior of the predictive information in terms of prior parameter,

and the effects of conditional dependence between the observable quantities on the Bayesian infor-

mation measures. We provided analytical results and showed applications in some statistical and

modeling problems.

The measure of information that sample provides about the parameter and prediction jointly led

to some new insights about the marginal parameter and predictive information measures. For the

case of conditionally independent observations, decompositions of the joint information revealed

that the parameter information is in fact the measure of information about the parameter and

prediction jointly. This finding implies that all existing results about Lindley’s information are

applicable to the joint measure of parameter and predictive information. In particular, the reference

posterior and the optimal design that maximize the sample information about the parameter are

also optimal solutions for the sample information about the parameter and prediction jointly. Yet

another information decomposition revealed that predictive information is a part of the information

that sample provides about the parameter.

We examined interplay between the information measures and the prior and design parameters

for two general classes of models: the linear models for the normal mean, and a broad subfamily

of the exponential family. A few applications showed the usefulness of the information measures

and some insights were developed. A proposition provided the optimal designs with respect to

the parameter (joint) information and predictive information measures for an ANOVA type model.

The results include the minimum sample sizes required in terms of the given prior variances and

the covariate vector for the prediction. Another proposition provided the optimal prior variance

allocation scheme with respect to the parameter (joint) information for collinear regression, which

includes the minimum prior variance required for the problem. Examples for the linear and the
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exponential family models revealed that the predictive information provided by the conditional

independence sample is only a small fraction of the parameter (joint) information and the gap

between the parameter and predictive information measures grows rapidly with the sample size.

This finding indicates that despite of the importance of prediction in the Bayesian paradigm,

the parameter takes the major share of the information provided by conditionally independent

samples. An example examined the parameter information when the parameter of interest is the

vector of means of two treatments and the predictive information of interest is for the weighted

average (or contrast) between outcomes of the two treatments. This example revealed that the

loss of information about the parameter under the optimal design for predictive information is

much higher than the loss of predictive information under the optimal design for the parameter

information. The parameter is the major share holder of the sample information so its loss is more

severe than the loss of predictive information under suboptimal designs.

We have examined, for the first time, the role of conditional dependence between observable

quantities on the sample information about the parameter and prediction. For a dependent se-

quence, the joint parameter and predictive information decomposes into the parameter information

(Lindley’s measure) and an information measure mapping the conditional dependence. We provided

more specific results for correlated variables whose distributions can be transformed to normal and

for the order statistics without any distributional assumption. For the normal sample, we compared

the information measures for the independent, the intraclass correlation, and serial correlation mod-

els. We showed that the parameter information decreases and predictive information increases with

the correlation. However, the joint information decreases in the correlation to a minimum point,

which is determined by the prior precision and sample size, and then increases. For conditionally

dependent sequences, the dominance of parameter information that was noted for the conditionally

independent samples does not hold. Since all information measures increase with the sample size,

loss of parameter information due to dependence can be compensated by taking larger samples.

Order statistics also provided a context for information analysis of conditionally Markovian

sequences. Extension of a result on information properties of order statistics was needed to show

that the Markovian dependence measure depends neither on the model for the data, nor on the

prior distribution for the parameter. By this finding, the reference posterior that maximizes the

sample information about the parameter, retains its optimality according to the joint parameter

and predictive information measure of the order statistics. An example illustrated implication in

terms of the optimal number of failures to be observed under Type II censoring.
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Several authors have used information in various Bayesian contexts, which are not listed in

Table A of the Appendix; see for example, Aitchison (1975), Zellner (1977, 1988, 1997), Geisser

(1993), Keyes and Levy (1996), Ibrahim and Chen (2000), Brown, George and Xu (2008), and ref-

erences therein. Nicolae et al. (2008) defined some measures of fraction of missing information and

have pointed out connection between their measures and the entropy, stating that “essentially all

measures we presented have entropy flavor”. Measures of information for nonparametric Bayesian

data analysis is also available (Müller and Quintana 2004). Since our focus is on the mutual in-

formation, e.g. Lindley’s measure and its predictive version, we did not discuss other information

measures.
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Appendix

Classification of literature

Table A gives a classification of literature on the Bayesian applications of mutual information.

Table A. Classification of articles on Lindley’s measure of Sample Information about the

Parameter and its Predictive Version.

Parameter information:
Likelihood model & design:

Lindley (1956, 1957, 1961), Stone (1959), El-Sayyed (1969), Brooks (1980, 1982),
Smith & Verdinelli (1980), Turrero (1982), Barlow & Hsiung (1983),
Soofi (1988, 1990), Ebrahimi & Soofi (1990), Carlin & Polson (1991), Verdinelli & Kadane (1992),
Polson (1992), Verdinelli (1993), Parmigiani & Berry (1994), Chaloner & Verdinelli (1995),
Carota, et al. (1996), Singpurwalla (1996), Yuan & Clarke (1999)

Prior & posterior distributions:
Bernardo (1979a,b), Soofi (1988, 1990), Ebrahimi & Soofi (1990), Bernardo & Rueda (2002),
Bernardo (2004)

Predictive information
Likelihood model & Design:

San Martini & Spezzaferri (1984), Amaral & Dunsmore (1985), Verdinelli (1993),
Verdinelli, et al. (1993), Chaloner & Verdinelli (1995), Singpurwalla (1996)
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Proof of Proposition 1

(a) Noting that λj = nj , j = 1, · · · , p and letting n1 = n −
p
∑

j=2

nj in (13) gives the first order

conditions

∂M(Y ; Θ|Z, η, V0)

∂nj
=

1

2

[

v0j

η + v0jnj
− v01

η + v01n1

]

= 0, j = 2, · · · , p.

Solutions to this system give n∗j , j = 2, · · · , p in (15) and n∗1 is found from n∗1 = n −
p
∑

j=2

n∗j . It

can be verified by the second order conditions that the solutions give the maximum.

(b) Using V1 =
(

ηV −1
0 + Z ′Z

)−1
in (14) gives

M(Y ; Yν|zν , Z, η, V0) =
1

2
log

(

η−1z′
νV0zν + 1

)

− 1

2
log

(

z′
ν

(

ηV −1
0 + Z ′Z

)−1
zν + 1

)

.

The first term does not depend on the design, so it is sufficient to minimize

h(n1, · · · , np) = z′
ν

(

ηV −1
0 + Z ′Z

)−1
zν =

p
∑

j=1

v0jz
2
j

η + v0jnj

subject to the constraint
p
∑

j=1

nj = n. Letting n1 = n −
p
∑

j=2

nj gives the first order conditions

∂h(n1, · · · , np)

∂nj
= −

v2
0jz

2
j

(η + v0jnj)2
+

v2
01z

2
1

(η + v01n1)2
= 0, j = 2, · · · , p.

Solutions to this system give n∗j , j = 2, · · · , p in (16) and n∗1 is found from n∗1 = n −
p
∑

j=2

n∗j . It

can be verified by the second order conditions that the solutions give the maximum.

Proof of Proposition 2

The solutions are found similarly to Part a) of Proposition 1 by taking the derivative of (13) with

respect to v0j subject to
p
∑

j=1

v0j = c.

Computation of Normal Predictive Correlation

We compute the predictive correlation ρp through the well-known formula for partial correlation:

ρij|k =
ρij − ρikρjk

(1− ρ2
ik)

1/2(1 − ρ2
jk)

1/2
. (33)

In our case, i, j, k represent Yi, Yν , and θ, respectively. Note that

ρ2
iθ = 1−

σ2
θ|yi

σ2
0

=
1

1 + η
, for all i = 1, 2, · · · .
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Letting ρ2
ik = ρ2

jk = ρ2
iθ in (33) gives the unconditional (predictive) correlation as

ρiν = ρ2
iθ + (1− ρ2

iθ)ρiν|θ =
1 + ηρiν|θ

1 + η
.

Letting ρiν|θ = 0, ρ, ρν−i, ν > i respectively for UC, IC and SC models, we obtain the entries of

Table 1 for the three models.
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