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We consider probabilistically constrained stochastic programming problems, in which the random 

variables are located in the right-hand sides of the stochastic constraints. The objective function is linear, 

and its optimization is subject to a set of linear constraints as well as a joint probabilistic constraint. 

Problems of that kind arise in many different contexts, and are particularly difficult to solve for random 

variables with continuous joint distributions, because the calculation of the cumulative distribution 

function and its gradient values involves numerical integration and/or simulation in higher dimensional 

spaces. In this paper, we first describe various relaxations to the problem in which the joint probabilistic 

constraint is replaced by individual or lower dimensional cumulative distribution functions, and analyze 

the computational tractability of the relaxed problems. We solve the original formulation and the 

proposed relaxations, study their computational efficiency, and evaluate the tightness and constraining 

power of the relaxations. Finally, we derive additional models in which the joint probabilistic constraint is 

approximated by constraints involving conditional expectations, analyze their convexity properties, and 

study the relationship of the various bounds that come up in the relaxations. The computational analysis is 

made in connection with applications to reservoir system design, coffee blending and power systems. 

Key words: probabilistically constrained problem, reliability level, relaxation, stochastic optimization   

1 Introduction 
The following program  

min  

.   

       

      0,

Tc x

s to Tx

Ax b

x






, 

where A in an [m x n]-dimensional matrix, T in an [r x n]-dimensional matrix, c and x are n-dimensional 

vectors, b and  are m- and r-dimensional vectors, respectively, is frequently the underlying program for 
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static stochastic programming model formulations. One of them has the name programming under 

probabilistic constraints and is given by  

             

min  

.   ( )

       

       0,

Tc x

s to Tx p

Ax b

x

 





                                                               (1)      

where p is a prescribed probability level, usually close to 1. If ( ) ( )F z z   is the cumulative 

distribution function of the random vector  , then the probabilistic constraint can be written in the 

equivalent form: ( )F Tx p . 

The probabilistic constraint enforces the joint fulfillment of a system of linear inequalities with 

random right-hand side variables on or above a prescribed probability level p. Problems of that kind arise 

in many different contexts: reservoir management (Prékopa, Szántai, 1978), power management (Prékopa 

et al. 1980), chemical (Henrion et al., 2001a) and distillation processes (Henrion et al., 2001b), 

monitoring of pollution level (Gren, 2008), supply chain management (Lejeune, Ruszczyński, 2007, 

Lejeune, 2008), military operations (Kress et al., 2008), etc. We refer the reader to Prékopa (1995, 2003), 

Sen (1996) and Henrion (2004) for a more detailed review of application fields.  

Facing prediction uncertainty and having to design large scale planning strategies, it is very difficult 

for human decision makers to develop effective, coordinated solutions in real time. A possible 

consequence of this is the implementation of very conservative decisions leading to unnecessary delays 

and costs. In that respect, probabilistically constrained problems are very helpful to design ahead-of-time 

efficient strategies in the presence of uncertainty. Such problems are extremely difficult to solve 

especially if the random variables have continuous joint distributions, because the calculation of the 

cumulative distribution function and of its gradient values involves numerical integration and/or 

simulation in higher dimensional spaces. The development of computationally tractable solution methods 

is therefore very important.  

Programming under probabilistic constraints, also called chance constrained programming, was 

introduced by Charnes et al. (1958), who considered a set (i =1,…,r) of individual probabilistic 
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constraints imposed on each particular stochastic inequality: 

                   

min

.  ( ) , 1,...,

      

      0.

T

i i i

c x

s to T x p i r

Ax b

x

  





                               

The use of individual probabilistic constraints 1,...,i r  is relatively easy to handle, but the robustness 

of such formulations is questionable: individual probabilistic constraints are appropriate if the system is 

composed of components that do not affect each other. However, in most situations, probabilistic 

constraints, taken individually, do not give an accurate representation of the considered system.  

Miller and Wagner (1965) proposed a formulation for joint probabilistic constraints where the random 

variables , 1,...,i i r   are assumed to be independent. Their problem is the following: 

                       

r

i=1

min

.  ( )

       

      0.

T

i i

c x

s to T x p

Ax b

x

 





    (2) 

The probabilistic constraint has the equivalent form:
r

i=1

( )i iF T x p , where Fi is the cumulative 

distribution function of , 1,...,i i r  .  

The general case was introduced by Prékopa (1970, 1973, 1995). The problem in its most general form 

can be stated as follows: 

                     

min

.  (g ( , ) 0, 1,..., )

      

      0,

T

i

c x

s to x i r p

Ax b

x

   





                                                   (3) 

where g ( , ) 0, 1,...,i x y i r   are functions of (x,y) and   is a random vector with components that are not 

necessarily independent. In the special case where ( , ) , 1,...,i i ig x y T x y i r   , we obtain problem (1) that 

however does not allow the transformation into (2). In fact, the stochastic independence of , 1,...,i i r   is 

not assumed. 

The first question to settle in connection with problem (3) is: under what conditions is the set of 
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feasible solutions convex? A general theorem that answers this question is due to Prékopa (1971, 1973, 

1995) and is stated below. 

Theorem 1: If ( , ) 0,  1,...,ig x y i r  are concave functions of ,n qx R y R   and qR   is a 

continuously distributed random vector with logarithmically concave (logconcave) probability density 

function, then  

 ( ( , ) 0, 1,..., )ig x i r p     

is a logarithmically concave function of x. 

Theorem 1 implies that if  has continuous distribution with logarithmically concave probability 

density function, then the set of feasible solutions of problem (3) is convex. Note that a logarithmically 

concave function is also quasi-concave. For more convexity theorems concerning probabilistically 

constrained stochastic programming problems, the reader is referred to Prékopa (1995). 

The collection of logconcave probability density functions includes the multivariate non-degenerate 

normal distribution, the uniform (over a convex set) distribution, and, under some conditions on the 

defining parameters, the multivariate Dirichlet, Wishart and gamma distributions. Prékopa (2001) has 

proved that the standard r-variate normal cumulative distribution function 1( ,..., ; )nz z R , where R is the 

correlation matrix, is concave on the set  1, 1,...,iz z r i r   . There is no general result for discrete 

distributions that would parallel Prékopa’s results (1973), except for the univariate case Prékopa (1995). 

   In the next section, we focus on the probabilistically constrained problem (3), present some of its 

alternative formulations, and describe several bounding schemes. The introduction of the bounding 

schemes into the stochastic problem results in the computation of the joint probability distribution 

function values of several lower dimensional random vectors instead of that of a single higher 

dimensional random vector. In Section 3, we characterize the proposed relaxations for stochastic 

problems with joint probabilistic constraints, solve the associated optimization models for several 

problem instances taken from the stochastic programming literature, and assess the computational 

tractability and the constraining power of the respective relaxations. In Section 4, we analyze the 



Authors: Lejeune, Prékopa 

   

 5

convexity of non-linear constraints enforcing a certain type of reliability level, study the correspondence 

between conditional expectation constraints and probabilistic constraints, and carry out computational 

experiments. A real-life power management problem illustrates the usefulness of the derived results and 

the substantial gain in reliability that can be obtained from an appropriate formulation, and solution, of the 

corresponding probabilistic problem. Section 5 contains concluding remarks.  

2 Formulation 
In this section, we introduce alternative formulations for the probabilistic program (3). The first one, 

relying on the p-efficiency concept, is applicable to multivariate random variables having discrete 

probability distributions (Prékopa, 1990, ), while the other formulations can be applied to random 

variables regardless of the type (discrete or continuous) of probability distributions.  

2.1 p-efficiency approximation for discretely distributed random variables 
In the case of discretely distributed random variables, problem (3) can be transformed into a 

disjunctive program using the concept of p-efficiency (Prékopa, 1990). Let (0,1)p , and F be the 

probability distribution function of an r-dimensional integer-valued random variable r  . A point z, 

rz R , is called a p-efficient point of the probability distribution function F if: 

( ) ,                                  

there is no  ' , '  such that ( ') .

F z p

z z z z F z p


   

                         

It has been shown (Dentcheva et al., 2000) that for any probability distribution on r
 , the set of p-

efficient points is non-empty and finite. Consequently, problem (3) can be substituted by the following 

disjunctive program: 

  

min

.   

        

        

       0,

T

p

c x

s to Tx z

Ax b

z

x







      (4) 

where  (1) ( ), , Jz z  is the set of p-efficient points and ( )

1

( )
J

p i s

i

z R


   . The disjunctive constraint 

means that ( )iTx z  must hold for at least one i: it replaces the joint probabilistic constraint 
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( , 1,..., )i iT x i r p   . The p-efficient points are multi-dimensional vectors that may be found prior to 

the optimization of (4) with respect to x, or may be enumerated in the course of the optimization 

procedure. 

For small dimensional problems, the easiest way is to enumerate all p-efficient points z(i) (Prékopa et 

al., 1998, Beraldi, Ruszczyński, 2002, Boros et al., 2003) and to process the associated problems. 

However, for larger problems, the brute force approach that consists of enumerating all p-efficient points 

can be overly time- and resource-consuming; it is then better suited to convexify the problem (4) as 

follows: 

            

( )

1

1

i

min   

s.to   

        

        1

       0, 1,...,

        0,

T

J
i

i
i

J

i
i

c x

Ax b

Tx z

i I

x

















 





 (5) 

Problem (5) imposes Tx to be greater than or equal to a convex combination of p-efficient points; its 

optimal value is a lower bound (for a minimization problem) on the optimal value of (4). Since the 

enumeration of all p-efficient points is difficult, the solution of (5) is sometimes carried out using a 

column generation method. In some cases, that method (Prékopa et al., 1998, Dentcheva et al., 2000) has 

been shown to be very efficient. 

2.2 Bounding scheme for multivariate random variables  
The approximation schemes presented in this section are applicable regardless of the type (i.e., discrete 

or continuous) of the probability distribution of the random variables. In case of continuous random 

variables, the computation of the joint probability distribution function requires multivariate integration 

that is computationally intensive, in general. (Szántai, 1988, Deák, 1988, Genz, 1992, Genz, Bretz, 2002).  

2.2.1 Boole’s lower bound on the intersection of events 

An alternative formulation for (1) can be obtained using Boole’s lower bound relative to the 

intersection of r events 1, , rA A : 
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          1( ... ) ( 1).i rA A S r                   (6) 

Using (6) for the events : , 1, ,i i iA z i r    , and imposing probabilistic constraint on the right-hand 

side,  we obtain, from (1), the following problem: 

                    

r

i=1

min

.  ( ) ( 1)

       

       0.

T

i i

c x

s to F T x r p

Ax b

x

  




             (7) 

The nonlinear constraint in (7) can be rewritten as:  
r

i=1

1 1 ( )i ip F T x   . The introduction of the 

auxiliary positive decision variables ,...,i rp p such that 
1

1- (1 )
r

i
i

p p


   and of the support constraints  

  , 1,...,i i iF T x p i r  allows for the reformulation of (7) as an optimization problem containing a finite 

number r of individual probabilistic constraints (Prékopa, 1995, 1999), whose deterministic equivalent is: 

                                                          

1

1

min

.   ( ), 1,...,

       1- (1 )

        

        0 1, 1,...,

        0,

T

i i i

r

i
i

i

c x

s to T x F p i r

p p

Ax b

p i r

x





 

 


  


                                                (8) 

where ,...,i rp p  are also decision variables, and p is a fixed probability level. Thus, if x is a feasible 

solution for (8), it is also a feasible solution for problem (1). 

2.2.2 Binomial moments bounding scheme 

The formulation presented in this section is taken from (Prékopa, 1999), and it is based on the 

binomial moment problem of the same author formulated for a finite number of events 1,..., rA A , defined 

in a specified probability space. We use sharp lower and upper bounds for the probability of the following 

Boolean functions of events: 1 1... , ...r rA A A A       . Denoting by   the number of events that occur 

out of 1,..., rA A , it is well known that  

, 1,...,kE S k r
k

  
   

  
             where              

1

11

,...,
r

k

k i i
i i r

S P A A
   

 


 . 

In view of the above equation, kS  is called the kth binomial moment of the random variable  .  

The binomial moment problem is defined as the following linear programming problem: 
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0

0

min(max)

. , 0,...,

0, 0,..., ,

r

i i
i

r

i k
i

i

f

i
s to S k m

k

i r





 
  

 

 





 

            

                   

v

v

v

         (9) 

where 0 ,..., rf f are some constants and m r .  If 

 
0,  if 0,

1,  if 0,
i

i
f

i

 


                      (10) 

then the optimal values of (9) provide lower (upper) bounds for 1( ... )rA A  . If 

 
0,  if ,

1,  if ,
i

i r
f

i r

 


  (11) 

then the optimal values of (9) provide lower (upper) bounds for 1( ... )rA A  . Since  

              1 1... 1 ...C C
r rA A A A      , 

with C
iA  being the complementary event of iA , the sharp lower (upper) bound for 1( ... )rA A   is the 

same as 1 - the sharp upper (lower) bound for 1( ... )C C
rA A  .  

Let 
1 , , ki iF   designate the joint probability distribution function of the random variables 

1
, ,

ki i  . 

Using the results above, we formulate the following linear programs 

           

 

     
1 2 1 2

1 2

0 1 2

1 2 3
1

2 3 ,
1

min(max)
. ... 1

2 3 ...

3 ... ,2 2

...

r

r
r

r i i
i

r i i i i
i i r

s to

r F T x

r F T x T x



  

    

    

   





  
           

                

                                          

                

        

v
v v v v

v v v v

v v v

     
1 1

1

1 , ,
1

0 1

1 ... , ,

, ,..., 0,

r m

m

m m r i i i i
i i r

r

m r F T x T xm m
   

   



 


          

                

v v v

v v v

   

where the optimal values provide lower and upper bounds for  ,...,i rF T x T x .  

Using this bounding scheme and introducing it in problem (3) for replacing the joint probabilistic 

constraints, we obtain the following approximation problems for the minimization problem in (1): 



Authors: Lejeune, Prékopa 

   

 9

                

   

   

1 2 1 2

1 2

1 1

0 1 2

1 2 3
1

2 3 ,
1

1 , ,

min
. ... 1

2 3 ... ( )

3 ... ( , )2 2

...
1 ... ( ,

r

T
r

r
r

r i i
i

r i i i i
i i r

m m r i i i

c x
s to

r F T x

r F T x T x

m r F T xm m





  




    

    

   

   





 

  
  

       

                            

       

         

v
v v v v

v v v v

v v v

v v v
11

0 1

, )

, ,..., 0

0,

m

m

i
i i r

r

r

T x

p
x

   








       
       
       

v v v
v

   (12) 

and 

              

   

   

1 2 1 2

1 2

1 1

0 1 2

1 2 3
1

2 3 ,
1

1 , ,

min
. ... 1

2 3 ... ( )

3 ... ( , )2 2

...
1 ... ( , ,

r

T
r

r
r

r i i
i

r i i i i
i i r

m m r i i i

c x
s to

r F T x

r F T x T x

m r F T xm m





  




    

    

   

   





 

 
  

       

                            

       

         

v
v v v v

v v v v

v v v

v v v
11

0 1

)

, ,..., 0

0,

m

m

i
i i r

r

r

T x

p
x

   








       
       
       

v v v
v

 (13) 

where  is an arbitrary positive number. 

2.2.3 Bounding scheme using Slepian’s inequality 
Slepian’s inequality (Slepian, 1962, Bawa, 1973) can be stated as follows. If R  and R’ are two 

correlation matrices such that 'R R , then, for any  1, , r
rz z z R  , we have  

 ; ) ; '),z R z RF( F(              (14) 

where F  is the r-variate standard normal probability distribution function. If  1, , r   is a non-

degenerate, normally distributed random vector with     2, , 1, ,i i i iE Var i r        and correlation 

matrix R, then the joint probability distribution function of 1, , r   is  

          , 1,..., ; .i i

i

z
i r R




 
 

 
F  (15) 

If  'R R , then we have the inequality  

          , 1,..., ; , 1,..., ; ' .i i i i

i i

z z
i r R i r R

 
 

    
     

   
F F  (16) 
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If we impose a probabilistic constraint on the right-hand side expression in (17), rather than on the left-

hand side expression, and substitute it for the probabilistic constraint in (1), then the set of feasible 

solution becomes smaller and the optimum value larger. Hence, the new optimum value provides us with 

a lower bound on the optimum value of problem (1). 

Denoting by '* '*Tz c x  ( * *Tz c x ) the optimal value of (1) associated with R’ (R), and by '* *( )i ix x the 

optimal values of the decision variables, the following valid inequality  

            * '*z z  (18) 

and disjunctive cuts   

                  

* '*

1

, 1,...,

1, {0,1}, 1,..., ,

i i i

r

i i
i

x x M i r

r i r



 


  

   
    (19) 

where M is a large positive number, and  is an r-dimensional binary vector, can be introduced in (1). In 

particular, if R   0 and R’= I, then (20) becomes: 

1

, 1,..., ; ,
r

i i i i

ii i

T x T x
i r R

 
 

    
    

   
F F  

which is equivalent to  

                                                
1

ln , 1,..., ; ln .
r

i i i i

ii i

T x T x
i r R

 
 

    
    

   
 �F F                                       (21) 

 
Note that in (22) the functions on both sides are concave, by Theorem 1. Slepian’s inequality is especially 

useful if the correlations between the different random variables are all 0  or 0 , because the use of 

independent random variables can then provide bounds. In the next section, we further evaluate the 

respective computational tractability and constraining power of the formulations presented in this section.  

3 Evaluation of Approximation Approaches  

3.1 Complexity and Solution Method  
In this section, we briefly describe the numerical solution method used to solve the probabilistic problem 

(1) and some possible relaxations (8), (12) and (13). The solution of the stochastic problem (1) containing 

joint probabilistic constraints with dependent random variables is very challenging; the complexity of the 

task rapidly increases with the dimension of the random variable. With respect to the computational 
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tractability of the approximation problems for (1), we first observe that the convexity of problem (8) can 

be proved under mild conditions. In fact, if ( )i iF z  is concave for 0i iz z , then 1( )i iF p  is a convex 

function of ip  for 1
0( )i i ip F z . The above condition holds for many cumulative distribution functions, 

e.g., in case of the univariate normal distribution, we have 0 0z  . However, the logconcavity property 

does not carry over for sums, the function in the left-hand side of the constraint  
r

i=1

( ) ( 1)i iF T x r p    is 

not guaranteed to be concave, which in turn implies that the program (7) is not necessarily convex. The 

same remark applies for problems (12) and (13). Moreover, (12) and (13) contain equality constraints 

involving nonlinear functions.  

The solutions of the nonlinear optimization problems described above are solved with the open-source 

solver Ipopt (Wächter, Biegler, 2006) which implements an interior point line search filter method used to 

solve problems of the form 

min  ( )

       ( )

      ,

L U

L U

f x

g g x g

x x x

 

 

  

where nx R  are the decision variables, possibly with lower and upper bounds Lx  and Ux , f is the 

objective functions and g are the general nonlinear constraints with lower and upper bounds ( )Lg x  and 

( )Ug x . The functions ( )f x  and ( )g x  can be linear or nonlinear, convex or concave, but must be twice 

differentiable.  

The models are coded using the AMPL modeling language. In the computational tests, the random 

variables are assumed to be normally distributed. Therefore, the solution of the joint probabilistic problem 

and of its approximations necessitates the computation of univariate and multivariate normal 

probabilities, and their incorporation in the optimization procedure. The computations of the normal 

probabilities are carried out using Genz’ method (Genz, 1992). Besides the calculation of those 

probabilities, the interior point approach also requires the computations at each iteration of the first and 

second derivatives of the normal distributions which have closed-form formulations. We use the 
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specialized AMPL external function constructed by Bonami and Lejeune (2007) to compute the normal 

probabilities and their first and second derivatives whose values can be “transmitted” to the Ipopt solver. 

3.2 Test Sets 
3.2.1 Reservoir Management – Problem I 

The objective is to design a reservoir system, in which reservoirs are used to hedge against the 

possibility of flooding that may occur as a result of random stream of water. The probabilistic constraints 

impose limits on the probability that the water rises above the downstream reservoir capacity. The 

capacities xj of the reservoirs j are the decision variables. They are limited from above, and are to be 

designed in such a way that they can retain the flood by a prescribed, large probability preventing from it 

the downstream locations. We consider a problem, in which there are two possible sites, on a main river, 

where reservoirs can be built, and a tributary comes in between the two sites. Assume that once in a year 

water amounts 1 2,   are to be retained by the two reservoirs. Let x1 and x2 designate upstream and 

downstream reservoir capacities, respectively. Let further c1 and c2 be the cost per unit of reservoir 

capacity. For references, see Prékopa (1995).  

The probabilistically constrained problem for the design of a reservoir system containing two 

reservoirs takes the following form: 

1 1 2 2

1 2 1 2

2 2

1 1

2 2

min  

.  

       0
       0 .

c x c x
x x

s to p
x
x V
x V

 



   

  
 
 


        

The random variables 1 2,   are assumed to be normally distributed: 2( , ), 1,2i i iN i    , 

1 1 2 21, 0.1, 2, 0.2        , and the covariance  1 2cov ,   between 1 2and    is known. The random 

variable 1 1 2     has mean 1[ ] 3E    and variance   1 1 2 1 2[ ] [ ] [ ] 2cov ,Var Var Var       , where 

 1 2 1 2cov ,       ,  and   denotes the correlation coefficient between 1 2and   .  

Table 1 displays the considered problem instances, i.e., the different values taken by the coefficients of 

the objective function, the correlations between the random variables, the reliability level p, and the 

maximal quantity that the reservoirs can contain, while Table 2 reports the value of the objective function 
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and the values of the decision variables for the various problem formulations previously discussed.  

Table 1: Parameter settings 

Instance # c1 c2 p σ cov 1[ ]Var 
1V  2V  

 1 2 1 0.9 0 0 0.05 0.8 2.5 
2 2 1 0.9 -0.8 -0.016 0.018 0.8 2.5 
3 2 1 0.9 0.8 0.016 0.082 0.8 2.5 
4 2 1 0.9 0.10 0.002 0.054 0.8 2.5 
5 1 2 0.9 0 0 0.05 0.8 2.5 
6 1 2 0.9 -0.8 -0.016 0.018 0.8 2.5 
7 1 2 0.9 0.8 0.016 0.082 0.8 2.5 
8 1 2 0.9 0.12 0.0023 0.055 0.8 2.5 
9 1 2 0.99 0 0 0.05 2 5 

10 1 2 0.99 -0.8 -0.016 0.018 2 5 
11 1 2 0.99 0.8 0.016 0.082 2 5 
12 1 2 0.99 0 0 0.05 0.8 3 
13 1 2 0.99 -0.8 -0.016 0.018 0.8 3 
14 1 2 0.99 0.8 0.016 0.082 0.8 3 

It appears that the problems (1) and (8) result in almost the same optimal value *z  of the objective 

function in many parameter settings. However, in instances 4 and 8 in which the available resources are 

very tight to reach the prescribed reliability level, the approximation of form (8) turns out to be infeasible, 

while the original problem (1) is actually feasible. This indicates that (8) does not always provide a tight 

enough approximation. 

Table 2: Optimal values for each parameter setting and formulation 

 Problem (1) with joint 
probability constraints 

Problem (8) with intersection 
of events approach 

# *z  *
1x *

2x  *z
*
1x *

2x  

1 4.088 0.794 2.500 4.089 0.795 2.500 
2 3.853 0.677 2.500 3.854 0.677 2.500 
3 INFEASIBLE 
4 4.096 0.798 2.500 INFEASIBLE 
5 5.789 0.800 2.494 5.790 0.800 2.495 
6 5.585 0.800 2.393 5.586 0.800 2.393 
7 INFEASIBLE 
8 5.796 0.800 2.498 INFEASIBLE 
9 6.090 1.052 2.519 6.091 1.052 2.520 

10 5.858 0.856 2.501 5.858 0.856 2.501 
11 6.218 1.193 2.513 6.250 1.189 2.530 
12 6.243 0.800 2.721 6.243 0.800 2.721 
13 5.870 0.800 2.535 5.870 0.800 2.535 
14 6.532 0.800 2.866 6.533 0.800 2.866 

Considering now independent random variables, it appears that the solution of problem (2) does not 

present major difference in terms of computational tractability. The optimal value of the objective 
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ξ1 ξ2

ξ3
ξ6

ξ7

ξ4
ξ8

ξ9

ξ5

x5

x4

x3

x2x1

function in (2) is roughly the same as this of the programs analyzed in Table 2. However, unlike program 

(8) that is widely applicable, problem (2) assumes the random variables to be independent of each other. 

Table 3: Optimal values with (2) for experiments with independent random variables 

 Problem (2) 

# *z  *
1x  *

2x  p1 p2 

 1 4.088 0.794 2.500 0.994 0.906 

 4 5.789 0.800 2.494 0.993 0.906 

 7 6.091 1.052 2.519 0.995 0.995 

Figure 1 represents the ratio ( )p IE pR p p  of the actual reliability level ( )IE pp  obtained with the 

intersection of events problem to the enforced reliability level p as a function of the correlation level 

between the random variables. Clearly, the higher the value of the correlation among random variates, the 

larger the value of the ratio and the less tight the intersection of events approximation is.  

Figure 1: Impact of correlation and enforced reliability level 

 
3.2.2 Reservoir Management – Problem II 
The second and more complex reservoir management problem is                         Figure 2: River network 

based on the river network represented in Figure 2 and was first studied 

by Prékopa and Szántai (1978). As above, the goal is to design a 

reservoir system such that the likelihood of a flooding is below a high 

prescribed probability level.  

The water stream is modeled as a five-dimensional random variable                           

ξ = (ξ1,...,ξ5) following a normal distribution, while the water 

containment system will be composed of 5 reservoirs whose capacities 

x1,...,x5 are upper-bounded decision variables.  
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The auxiliary variables ξ6,...,ξ9, depending on both stochastic and decision variables, are given by:  

6 1 1 1 2 2 2

7 3 3 3 6

8 4 7

9 8 8 4 5

min( , ) min( , )

min( , )

min( , ) .

x x

x

x

    
   
  
   

   
   
  
   

 

The probabilistically constrained problem for the design of this problem reads:  

                                                            

 
1 2 3 4 5

9 5

1

2

3

4

5

min  0.4 0.5 0.6 1.2 1.8
.  

       0 1
       0 1
       0 1
       0 2
       0 3.

x x x x x
s to x p

x
x
x
x
x


   
 

 
 
 
 
 



                                           

At first sight, this problem looks straightforward with a single individual probabilistic constraint 

constraining the happening of a flooding to be below the fixed probability level p . However, the typology 

of the river network is such that the inequality 9 5x  subject to the probabilistic constraint holds if the 

nine inequalities below hold jointly. Thus, the probabilistic constraint in the above problem is actually a 

joint probabilistic constraint that is formulated as follows: 

                                       

5 5

4 5 4 5

1 4 5 1 4 5

2 4 5 2 4 5

3 4 5 3 4 5

1 2 4 5 1 2 4 5

1 3 4 5 1 3 4 5

2 3 4 5 2 3 4 5

1 2 3 4 5 1 2 3 4 5

.

x

x x

x x x

x x x

x x x

x x x x

x x x x

x x x x

x x x x x


 

  
  
  

   
   
   

    

 
    
     
 

     
     
 

       
        

       
          

                                          (23) 

The means and variances of each component of ξ are reported in Table 4.  

Table 4: Mean and variance of water flows 

ξi E[ξi] Var[ξi] 

 ξ1 0.8 0.2 

ξ2 1.5 0.3 

ξ3 1.2 0.6 

ξ4 0.5 0.4 

ξ5 0.7 0.3 
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We will consider the following three correlation matrices R(i), i=1,2,3: 

(1)

1 0 0.6 0.4 0

0 1 0.5 0.3 0.3

0.6 0.5 1 0.7 0.6

0.4 0.3 0.7 1 0.4

0 0.3 0.6 0.4 1

R

 
 
 
 
 
 
 
 

, (2)

1 0.5 0 0.3 0.5

0.5 1 0.8 0 0.2

0 0.8 1 0 0.3

0.3 0 1 0

0.5 0.2 0.3 0 1

R

  
   
  
 
 
  

,  and (3)R  is an identity matrix. 

Considering the Bonferroni’s inequality which gives the approximation of form (8) for the stochastic 

problem (1) subject to a joint probabilistic constraint joint, Chen et al. (2007) recommend the formulation 

          
1

min

.   ( ), 1,...,

        

       0

T

i i i

c x

s to T x F p i r

Ax b

x

 




 ,          (24) 

where pi are fixed parameters whose values are set equal to  

    
(1 )

1 , 1,...,i

p
p i r

r


             (25) 

and not decision variables. We recall that r is the number of dimensions in the multivariate random 

variable ξ.  Problem (24) is a linear program, and the rationale for doing so, according to Chen et al. 

(2007), is that problem (8) is non-convex and possibly intractable if the pi, i=1,...,r are decision variables.  

Table 5 reports, for each problem instance, the optimal value, the optimal solution obtained with the 

original formulation (3), the intersection of events approach (8), and the above approximation (25) that 

reformulates the stochastic programming problem as a linear programming one, and the “individual 

probability level” of each constraint. To each inequality (i=1,...,9) subject to the joint probability (23) 

condition, we compute the individual probability level as follows:  * , 1,...,9ip x i   , where *x  is 

the optimal solution for the problem with the considered formulation. In the first inequality (i=1), ξ = ξ5 

and * *
5 1.396x x   in the optimal solution of the joint probabilistic constraint formulation for the first 

problem instance. The acronym LP refers to approximation (25). Table 5 does not display the optimal 

values of x2 and x3, since they are equal to 1 in each instance and with each formulation.  
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Table 5: Comparison of optimal solutions 

Formulation R p 
Probability Level for Individual Constraint Optimal Solution

Optimal 
Value 

p1 p2 p3 p4 p5 p6 p7 p8 p9 
*
1x  *

4x  *
5x  *z  

O R(1) 0.8 0.990 0.998 0.998 0.970 0.937 0.959 0.919 0.828 0.811 0.800 1.720 1.396 5.995 

IE R(1) 0.8 1 1 1 1 1 1 0.994 1 0.993 0.964 0.966 1.720 6.997 

LP R(1) 0.8 0.998 1 1 0.998 0.995 0.998 0.996 0.965 0.970 0.99 2 2.48 8.368 

O R(1) 0.9 1 1 1 0.995 0.976 0.995 0.976 0.910 0.918 0.998 1.885 1.524 6.869 

IE R(1) 0.9 1 1 1 1 1 1 0.994 1 0.993 0.964 0.966 2.210 7.878 

LP R(1) 0.9 1 1 1 1 0.997 0.999 0.996 0.978 0.978 1 2 2.85 9.036 

O R(2) 0.8 0.987 0.996 0.999 0.952 0.941 0.973 0.951 0.865 0.900 0.906 1.351 1.371 5.551 

IE R(2) 0.8 0.969 1 1 0.999 1 0.984 0.972 0.995 0.982 0.933 0.965 1.260 5.875 

LP R(2) 0.8 0.990 1 1 0.997 0.991 0.998 0.989 0.978 0.978 0.76 2 1.40 6.320 

O R(2) 0.9 1 1 1 0.987 0.976 0.992 0.976 0.941 0.952 0.833 1.239 1.830 6.214 

IE R(2) 0.9 0.986 1 1 1 1 0.995 0.986 0.999 0.992 0.966 0.985 1.360 6.229 

LP R(2) 0.9 0.999 1 1 1 0.995 1 0.994 0.989 0.989 0.75 2 1.60 6.689 

O R(3) 0.8 0.993 0.994 0.999 0.950 0.946 0.970 0.965 0.817 0.967 1 1.226 1.431 5.547 

IE R(3) 0.8 0.970 1 1 1 1 0.991 0.985 0.995 0.990 0.923 0.946 1.260 5.965 

LP R(3) 0.8 0.999 1 1 0.999 0.997 0.999 0.997 0.978 0.978 0.85 2 1.58 6.686 

O R(3) 0.9 0.988 0.999 1 0.988 0.981 0.993 0.988 0.910 0.938 1 1.650 1.374 5.953 

IE R(3) 0.9 0.987 1 1 1 1 0.998 0.994 0.999 0.996 0.959 0.973 1.260 6.346 

LP R(3) 0.9 1 1 1 1 0.999 1 0.999 0.999 0.999 0.85 2 1.81 7.105 
 

A few comments are in order. First, as explained above, problem (8) is convex for a wide class of 

probability distributions, i.e., those whose probability density functions is logconcave (uniform (over a 

convex set) distribution, and, under some mild conditions, the multivariate Dirichlet, Wishart, normal and 

gamma distributions). Second, the above results (Table 5) shows that problem (8) is computationally 

tractable. It can be solved to optimality for each problem instance. Third, the results shown in Table 4 

clearly indicate that the optimal solutions provided by the LP approximation (25) are much more 

conservative than those obtained with the IE approach and result in much higher costs. On average, over 

the six problem instances, it can be seen that: 

 the optimal value of the objective function obtained with the LP approach (25) is 10.47% 

higher than that of the IE approach (8);  

 the optimal value of the objective function obtained with the LP approach (25) (resp., the IE 

approach (8)) is 22.09% (resp., 8.61%) higher than that of the original problem (1). 
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Additionally, Table 1 shows that approximations are very conservative for the correlation matrix R(1) in 

which all the correlation coefficients are positive (or 0). Finally, with the original formulation (1), we note 

that the optimal objective function value is smaller (regardless of the value of p) for the correlation matrix 

R(2)  than it is with the correlation matrix R(3)  (which assumes that the random water streams are 

uncorrelated):    * (2) * (3); ; , 0.8,0.9.z p R z p R p   However, the conclusion is reverse with the two 

approximation methods:    * (2) * (3); ; , 0.8,0.9.z p R z p R p   

3.2.3 Coffee blending 
The coffee blending problem has a linear objective function which is minimized subject to a set of 

linear constraints related to the limited availability of the coffee types, the fulfillment of quality 

requirements, and a joint probability constraint that imposes that the demand for coffee be satisfied with 

probability p, representing the reliability level of the production system. The reader is referred to Szántai 

(1988) and Prékopa (1995) for more detailed explanations. Denoting by D the feasible set determined by 

the linear constraints, and setting  
8 8 8

1 1 2 2 3 3
k=1 k=1 k=1

, ,  and k k kx x x       , the program is formulated as: 

                                                             8

k=1

min
.  

       , 1,2,3

        0, 1,...,8, 1,...,3,

T

kl l

kl

c x
s to x D

x l p

x k l




    
 
  

                       (26) 

with 2( , ),1 1,2,3i i iN    , with 1 1 2 2 3 33, 0.5, 40, 5, 20, 3           . We will consider the 

following three matrices R(i), i=1,2,3 defining the correlation between random variables: 

(1)

1 0.1 0.1

0.1 1 0.9

0.1 0.9 1

R

 
   
 
 

,       (2)

1 0 0

0 1 0

0 0 1

R

 
   
 
 

      and      (3)

1 0.1 0.1

0.1 1 0.9

0.1 0.9 1

R

 
   
  

 . 

We provide in Table 6 the optimal objective value and the values of the random variables 1 2 3, ,p p p  (i.e., 

the individual probability level) for various values of the enforced overall reliability level p in (8). Our 

solution method finds the optimal solution for all problem instances regardless of the enforced reliability 

level (p = 0.9, 0.95, 0.99), and justifies the computing resources allocated for the computation of the first- 

and second-order derivative of the normal probabilities. Table 6 reports the optimal value and individual 
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probability levels with formulation (8) for the considered problem instances. 

Table 6: Optimal values for problems with intersection of events bound  

 Problem (8) with intersection of events 

p 1p  2p  3p  *z  

0.9 0.992 0.925 0.983 22988 

0.95 0.996 0.963 0.991 23910.4 

0.99 0.999 0.993 0.998 25704.1 

Figure 3 compares the optimal objective function values with the two approximation methods  (25) 

and (8), and shows that the optimal  value of (25) is larger, for each instance, than that of (8).  

Figure 3: Comparison of approximation methods 

 

Results for the lower (13) bound of problem (1), obtained using the binomial moment bounding 

scheme, are given in Table 7. All results have been obtained by setting the parameter in (13) equal to 

15. None of the problem instances formulated with (13) could be solved to optimality.  

Regardless of the reliability level considered, it can be seen that the optimal objective values obtained 

with programs (1) and (13) for any of the three correlation matrices are lower than the optimal value 

obtained with program (8). It is logical that the optimal solution of (13) be lower than these of program 

(8), since (13) provides a lower bound on the objective value, while (8) approximates (1) through the 

enforcement of requirements that are at least as demanding as those of (1). The low magnitude of the gap 

between the optimal values of (1) on the one side and that of (8) on the other side indicates that (8) 

provides here a tight approximation of (1).  
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Table 7: Optimal values for the programs involving a joint probabilistic constraint and 
the binomial moment bounding scheme 

p 
Correlation 

level 

Problem (13) with 
binomial moment 
bounding scheme: 

Lower Bound 

Problem (1) with 
joint probability 

constraints 

Formulation (2) for 
independent random 

components 

0.9 R1 22458.4 22564.0  
0.9 R2 22087.3  22949.4 22949.4 
0.9 R3 22242.2 22961.6  

0.95 R1 23487.9 23603.6
0.95 R2 22598 23866.6 23866.6 
0.95 R3 23274.6 23885.2  
0.99 R1 25420 25500.6
0.99 R2 25063.8 25702.0 25702.0 
0.99 R3 25203.5 25680.6  

Considering the correlation matrices ( ) , 1,2,3iR i  ,  and denoting by ( )k
ijs the (i,j)th element of R(k), one 

can see that  (1) ( ) , , 1,..., , 2,3k
ij ijs s i j r k   , therefore allowing the reliance on Slepian’s inequality  

       (1) ( ), 1,..., ; , 1,..., ; , 2,3ki i i i
i i

i i

z i r R z i r R k
   
 

    
        

   
   . 

For any reliability level enforced, it can be seen in Table 7 that the optimal values obtained when 

considering the correlation matrix (1)R are lower than those obtained when considering (2)R  and (3)R . The 

solution of the stochastic program associated with correlation matrix (1)R  can moreover be solved with 

the introduction of the valid inequality (21).  

3.2.4 Power management: STABIL problem 

The last problem considered is the STABIL problem (Prékopa et al., 1980) involving the construction 

of a plan for the Hungarian electrical energy sector in the seventies. It has a linear objective function 

minimizing the profit function multiplying by –1, while satisfying 106 deterministic constraints 

(manpower balance, investment features, foreign trade balance, balance of the state budget, finance, and 

electricity demand satisfaction), as well as the joint probabilistic constraint described below.  

The problem is formulated by: 

               
25 1

26 2

24 40 3

1 2 3 4 24 4

min
.  , 1,...,106

25

16.67
       

0.8696

0.9( ) 0.115
        0,

T

i i

c x
s to a x b i

x

x
p

x x

x x x x x
x







 
  
      
       


   (27) 
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where cTx is given by x35 - x36, x35 and x36 representing respectively the increase in the wage bill and the 

enterprise profit before taxation, and , 1,...,4i i  are normally distributed random variables with the 

following means and standard deviations:  

             1 1 2 2 3 3 4 448313, 483, 426, 4, 16000, 160, 14950, 19                       . 

The joint distribution of the random variables is normal, and the following two correlation matrices are 

considered: 

         (1) (2)

1 0.8 0.4 0.4 1 0.7 0.3 0.3

0.8 1 0.1 0.1 0.7 1 0.1 0.1
,

0.4 0.1 1 0.9 0.3 0.1 1 0.9

0.4 0.1 0.9 1 0.3 0.1 0.9 1

R         R

    
        
   
   
   

 

The first two components of (27) restrain the planned deficit of foreign trade (in $US and roubles) to 

be below a certain level, while the last two components express the relationships between the electrical 

sector and the other sectors of the Hungarian economy.  

Below, the solution of the program associated with formulation (8) based on the intersection of events 

containing a set of individual constraints is reported and discussed. The two reliability levels p = 0.9 , 

0.95 are considered and the optimal values of the corresponding optimization problems are respectively 

equal to -4370.3 and -4369.1. In Table 8, we report the optimal reliability levels associated with each 

individual stochastic constraint , 1,...,ij j i i
j

t x p i r
 

   
 
 corresponding to each of the inequalities 

, 1,...,ij j i
j

t x i r  in the joint probabilistic constraint (27).  

Table 8: Reliability level for each stochastic inequality (8) 
 

 

 

 

 

As for the coffee blending problem, we observe that the optimal individual reliability levels differ 

very much, ranging from 91.33% to 100% and from 96.26% to 100% when the overall enforced 

reliability levels are, respectively, 90% and 95%. Enforcing identical (25) individual reliability levels 

 p=0.9 p=0.95 
i pi pi 
1 98.55% 98.74% 
2 99.99% 99.99% 
3 100% 100% 
4 91.33% 96.26% 
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would be detrimental. 

Table 9 reports the best solution found for the original problem (1) containing a joint probability 

constraint and for the relaxation (13) based on the binomial moment bounding scheme.  

Table 9: Optimal values  

Setting 
Problem (1) with  

joint probability constraints 
Problem (13) with binomial moment 

bounding scheme: Lower Bound 
R(1), p =0.9 -4370.3 -4384.9 

R(1), p =0.95 -4369.4 -4384.91 

R(2), p =0.9 - 4370.6 -4384.92 

R(2),  p =0.95 -4369.9 -4382.6 

From a managerial perspective, it is very important to note that the optimal value of the 

probabilistically constrained problem is the same as that of the underlying deterministic problem (R(1), p 

=0.9). However, their optimal solutions differ significantly: the optimal solution of the underlying 

deterministic problem has a reliability level of 10% while that of the probabilistically constrained problem 

gives a reliability level of 90%! It turns out that the appropriate formulation of the problem above allows 

reaching a nine times higher reliability level without having to support additional costs. 

3.3 Impact of correlation on approximation tightness  

In this section, we study the effect about the correlation structure among random variables on the 

tightness of the approximation approaches for the probabilistically constrained problem of form (1). More 

precisely, we study the impact of the correlation level between the variates of the multidimensional 

random vector on the following metrics:  

 the ratio * *
z j OR z z of the optimal value of the approximation problem j (i.e., j =IE (8) or LP 

(25)) to that of the original problem (1). We examine the impact of the correlation structure  

and the enforced probability level p on the value taken by zR ;  

 the highest reliability level ( jp ) that can be enforced with the approximation approach j given 

the correlation structure. 
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The notation *
jz  is the optimal value obtained with formulation j when the enforced reliability level is 

p. The acronyms O, IE, and LP  respectively refer to the problem with joint probabilistic constraint (1), 

the intersection of events problem (28), and the linear programming approximation (25). 

The results displayed in Figure 4 are based on the first reservoir problem. The graph shows that the 

ratio zR of the optimal value of the approximation problem (8) to that of the original problem is an 

increasing function of the level of positive correlation between random variables.   

Figure 4: Impact of correlation on ratio of optimal values and maximum reliability level 

 
The same empirical conclusions can be drawn from the second reservoir problem. Table 10 shows 

that the relative gap measured by Rz between the optimal value of the approximations and that of the 

original problem increases with the correlation level. We recall that R(2)contains positive and negative 

correlation components, R(3)represents the case of uncorrelated variables, and that R(1)only contains 

positive correlation components. This implies that the relative cost (i.e., as measured by the value of the 

objective function) of using an approximation method instead of the original formulation increases with 

the correlation level. Table 10 also indicates that the relative difference between the optimal objective 

value of the approximation problems on one hand and that of the original problem on the other one 

decreases as p increases. 

Table 10: Impact of correlation 

Formulation P 
Ratio of optimal value Rz  

R(2) R(3) R(1) 

IE 0.8 103% 108% 117% 

LP 0.8 111% 121% 139% 

IE 0.9 101% 107% 115% 

LP 0.9 107% 120% 132% 
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Regarding the feasibility of the approximation problems, we observe that a feasible solution for the 

second reservoir problem can be found for a very high reliability level (i.e., 0.9999) for the three 

formulations (O, IE, LP) when we consider the correlation matrices R(2) and R(3). However, in the case of 

R(1), which assumes a positive correlation among all components of the random vector,  

 a reliability level of 0.995 can be enforced with the original formulation, while,  

 the largest probability level for which a feasible solution can be found with the 

approximations IE and LP is respectively equal to 0.982 and 0.924. 

The above empirical experiences attest the fact that the approximation approaches become 

increasingly conservative and costly when the positive correlation among random variables increases. The 

approximation approach can even become so conservative that the corresponding optimization problem 

becomes infeasible, while the original problem is actually feasible (see also first reservoir problem, 

instances 4 and 8 in Table 2). 

4 Convexity analysis of constraints enforcing reliability level 
4.1 Constraints involving conditional expectations 

Until now, we have studied several approximations of the probabilistic constraint in (1). There is 

another possibility, however, to replace the probabilistic constraint by constraints involving conditional 

expectations. A model of this type was first proposed by Prékopa (1973). This means that problem (1) is 

replaced by the following one: 

                              
min

.  E | 0 , 1,...,

      

      0.

T

i i i i i

c x

s to T x T x d i r

Ax b

x

     




                                        (29) 

It is proved in the aforementioned paper that if the univariate random variable   has continuous 

distribution and logconcave probability density function, then the function  

                  ( ) E 0g t t t        (30) 

is decreasing; the function can also be written as 
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(1 ( ))

( )
1 ( )

t

F x dx

g t
F t









 , 

where F is the probability distribution function of  . If we assume that each random variable 

, 1,...,i i r   has that property and designate by ( )ig t  the function corresponding to i , then problem (29) 

can be reformulated in the following manner: 

                                                                      
1

min

.  ( ), 1,...,

      

     0.

T

i i i

c x

s to T x g d i r

Ax b

x

 




                                                 (31) 

Problem (31) is a linear programming problem and can be solved in a standard way. 

Similarly, as the approximating problem (8) is created from problem (3), we can take ,...,i rd d  as 

variables in (31) and impose on them the additional constraint 

  0
1

0
r

i i i
i

d T x d


     , 

where 0d  is a constant. In that case, however, problem (31) is not necessarily convex. A sufficient 

condition of the convexity of the problem is that each function 1( ), 1,...,i ig d i r   is convex, or, what is the 

same, that each function ( ), 1,...,i ig d i r  is concave.  

We now study the concavity of (30) when the random variable has a normal distribution. For i  

having a standard normal distribution with mean 0 and standard deviation 1, we have  

2

2

/2

/2

( ) ( )            , and    '( ) ( )
2

( ) )    , and    F'(t)= ( ).
2

t

t x

e
f t t t t t

e
F t t dx t

  











   

  F(
    

The first derivative of g with respect to t is given by   

                                            

2

2

(1 )) ( ) (1 )) 

'( )
(1 ))

( )
1 ( ).

1 )

t

t t x dx

g t
t

t
g t

t







   




  


F( F(

F(

F(

                          (32) 

Since ( )t  is a logconcave function, it follows that g’(t) < 0. For the second derivative of g(t), we obtain: 
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2

2

2

2

2

2

( ) ( )
"( ) ( ) '( )

1 ) 1 )

'( )(1 )) ( ) ( )
( ) '( )

(1 )) 1 )

( )(1 )) ( ) ( ) ( )
( ) 1 ( )

(1 )) 1 ) 1 )

( ) ( ) ( ) ( )

1 ) (1 ))

d t t
g t g t g t

dt t t

t t t t
g t g t

t t

t t t t t t
g t g t

t t t

t t g t t g t

t t

 

  

   

  

 
    

 
 

 
   

       


  
 

F( F(
F(
F( F(
F(
F( F( F(

F( F(

2

2

2

2

0

( ) ( ) ( )

1 ) (1 ))
2 ( ) ( ) ( )

( ( ) 1)
(1 )) 1 )

( ) 2 ( ) ( )
( ) 1 .

1 ) 1 )

t t g t

t t
t g t t

tg t
t t

t t g t
tg t

t t



 

 




 

  
 

 
     

F( F(

F( F(

F( F(

 

To test the concavity of g(t), we must therefore evaluate the sign of  

    2 ( ) ( ) (  ( ) 1)(1 )).t g t t g t t   F(                                     (33) 
The solution of 

     

min   

.    2 ( ) ( ) (  ( ) 1)(1 )) 0
         

t

s to t g t t g t t
t R
    


F(                                    (34) 

shows that the smallest value of t for which (33) is negative is t = 7.20369 for which the objective value 

of (34) is equal to -0.000249534; (33) is thus positive on 

 ,7.20369   .    

Finally, we note that 
( 7.20369) 0.999999999999705   ,  

which means that g(t) (30) is convex except for extremely large values of t, and that the feasible set 

determined by (30) is convex except for extremely demanding reliability levels di characterized by 

extremely low values for di, requiring extremely high values of t for (30) to hold. This also implies that 

the inverse g-1(t) of g(t) is convex for most values of t (right-hand side in Figure 5).  

Figure 5: Function g(t)  
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4.2 Correspondence between types of reliability levels 

In this section, we proceed to a correspondence study between the reliability guaranteed by two types 

of stochastic constraints. Assuming that the random variable has a standard normal distribution, we study 

the correspondence between the service level pi that requires the probabilistic constraint of form 

                      ( )i i it p    ,  
which is equivalent to  

                      1( )i i it F p    

and the reliability level di that requires the constraint (in (29), where ,...,i rd d  are not decision variables)  

 E | 0i i i i iT x T x d     . 

The latter one is equivalent to  
1( )i i iT x g d . 

To determine which value of di corresponds to various probabilities (pi = 0.9, 0.95, …), we solve the 

following non-linear problem: 

 

min

(1 ( ))

.
)

0,

p

i

i

t
ip

i

i

 d

F x  dx

s to d
1-F (t

      d










  (35) 

where 1( )p
i it F p is given and di is the decision variable.  

The correspondence between the two types of reliability levels obtained by solving (35) for different 

values of pi are given in Table 11.  

Table 11 : Correspondence between pi and di  

pi 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.999 

di 0.4734 0.4636 0.4533 0.4423 0.4306 0.4179 0.4037 0.3873 0.3672 0.3389 0.2769

In view of the difficulty to solve probabilistically constrained problems, the results of the 

correspondence study are especially valuable. Two different types of constraint (i.e., joint probabilistic 

constraint and conditional expectation constraint) enforcing the same requirements, and allows the choice 

of the associated problem formulation that is most convenient (i.e., with respect to the convexity results 

derived above) to solve.  
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4.3 Application 

After having shown in Section 4.1 that the enforcement of reliability levels of type di with normally 

distributed random variables result in non-linear convex problems, we consider the STABIL problem in 

which similar reliability levels are prescribed. More precisely, we solve the problem below that enforces 

the reliability level d0  

                      0
1

min
.  E 0 , 1,...,

       0

       
       0
       , 1,...,

T

i i i i i
r

i i i
i

i

c x
s to T x T x d i r

d T x d

Ax b
x
d R i r

 




      

  



 

     (36) 

with di,i =1,…,r  being decision variables.  

Substituting di,i =1,…,r by 

     E 0 , 1,...,i i i iT x T x i r       , 

the constraint 

   0
1

(  ( 0))
r

i i i
i

d T x d


     

becomes 

         0
1

E 0 ( 0)
r

i i i i i i
i

T x T x T x d  


            .                    (37)       

Since 

         

( ) ( ) 

E 0
1- ( )

i

i i i i

T x
i i i i

i i

z T x f z dz

T x T x
F T x

 





     


   , 

and 
      0 1- ( )i i i iT x F T x     , 

constraint (37) can be rewritten as  

                  ( ) ( ) 
i

i i i i

T x

z T x f z dz


      

and is thus an “integrated probabilistic constraint” (Klein Haneveld, 1986), in which 

                                                            , 1,...,i i iz T x i r


      

is the positive part of the expression , 1,...,i iz T x i r   and can be interpreted, in the STABIL context, as 

the amount of unserved power. It is thus clear that problem (36) restrains the expected amount of 

unserved power to be below a certain threshold d. 
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Table 12 displays the results for reliability levels d equal to 0.473, 0.418 and 0.339, which respectively 

correspond to a probability level p of not having a stockout equal to 0.9, 0.95 and 0.99 (Table 12).  

Table 12 : Reliability level d for the STABIL problem 

p 0.9 0.95 0.99 
d 0.473 0.418 0.339 

1

1 1 1 1( ) ( ) 
T x

z T x f z dz


  0.158 0.139 0.112 

2

2 2 2 2( ) ( ) 
T x

z T x f z dz


  0.152 0.135 0.111 

3

3 3 3 3( ) ( ) 
T x

z T x f z dz


  0 0 0 

4

4 4 4 4( ) ( ) 
T x

z T x f z dz


  0.163 0.144 0.116 

Objective value -4373.080 -4372.840 -4372.441 

5 Conclusion 
We considered probabilistically constrained problems, in which the random variables are located in 

the right-hand sides of linear constraints. The objective function is linear, and its optimization is subject to 

a set of linear constraints and one joint probabilistic constraint. This latter one guarantees the joint 

fulfillment of a system of linear inequalities with random right-hand sides to be above a probability level.  

We proposed several approximations for such probabilistic problems, and solved the corresponding 

optimization problems. We then discussed the characteristics of the relaxations, and evaluated their 

tightness and computational tractability on applications related to reservoir system design, coffee 

blending and power systems. We examined in which cases the proposed relaxations do not approximate 

closely the original joint probabilistic formulation. These results, supported by computational 

experiments, have a very insightful managerial content, in that they pinpoint under which circumstances 

the decisions stemming from these approximation models enforce stronger conditions than those initially 

required, and can be suitable for risk-averse decision making. We also gave insights into the conditions 

under which the approximation problems become infeasible, while the original one is actually feasible.  

In the last part of this paper, we focused upon problems in which the probabilistic constraint is 

replaced by conditional expectation constraints or integrated chance constraints. Considering the standard 
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normal distribution, we derived convexity results for the conditional expectation functions and for the 

feasibility set of the problem in which they appear. We studied the correspondence between the reliability 

levels that appear in two types of constraints mentioned above. The correspondence study is very 

valuable, since it identifies two very different problem formulations (i.e., one with joint probabilistic 

constraints and one with conditional expectation constraints) enforcing the same requirements, and allows 

the choice of the one that is the easiest to solve: the choice can be made with respect to the derived 

convexity properties of the various proposed formulations. Finally, a power real-life problem highlights 

the importance of correctly modeling reliability. More precisely, we show how a very substantial increase 

in the reliability level (9 times higher) can be obtained, without having to support any additional costs, by 

using the correct probabilistic formulation and relying on an appropriate solution technique. 
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