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On Some Elicitation Procedures for Distributions with

Bounded Support with Applications in PERT

Johan René van Dorp , The George Washington University, USA1

Abstract: The introduction of the Project Evaluation and Review Technique (PERT) dates back to

the 1960's and has found wide application since then in the planning of construction projects.

Difficulties with the interpretation of the parameters of the beta distribution let Malcolm et al.

(1959) to suggest the classical expressions for the PERT mean and variance for activity completion

that follow from lower and upper bound estimates  and  and a most likely estimate  thereof.  The+ , )

parameters of the beta distribution are next estimated via the method of moments technique.

Despite more recent papers still questioning the PERT mean and variance approach, their use is still

prevalent in operations research and industrial engineering text books that discuss these methods. In

this paper an overview is presented of some alternative approaches that have been suggested,

including a recent approach that allows for a direct model range estimation combined with an

indirect elicitation of bound and tail parameters of generalized trapezoidal uniform distributions

describing activity uncertainty. Utilizing an illustrative Monte Carlo Analysis for the completion time

of an 18 node activity network, we shall demonstrate a difference between project completion times

that could result when requiring experts to specify a single most likely estimate rather than allowing

for a modal range specification.

1. Introduction

The three parameter triangular distribution with lower and upper bounds  and X<3+81Ð+ß ,Ñ)ß , + ,

and most likely value , is one of the first continuous distributions on the bounded range proposed)

back in 1755 by English mathematician Thomas Simpson (1755, 1757). It received special attention

1 Department of Engineering Management and Systems Engineering, School of Engineering and Applied Science, The
George Washington University, 1776 G Street, N.W., Washington D.C. 20052. Phone: 202-994-6638, Fax: 202-994-
0245, E-mail: dorpjr@gwu.edu.
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as late as in the 1960's, in the context of the PERT (see, e.g., Winston 1993) as an alternative to the

four-parameter beta distribution
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which involves some difficulties regarding the interpretation of its parameters  and . As a resultα "

Malcolm  (1959)  suggested the following PERT mean and variance expressionset al. 2

IÒX Ó œ ß Z +<ÒX Ó œ Ð,  + Ñ Ð#Ñ
+  %  , "

' $'

)  #

where  is a random variable modeling activity completion time, and  being the lower and upperX + ,

bound estimates and  being a most like estimate for . The remaining beta parameters  and  in) X α "

Ð"Ñ Ð#Ñ Þare next obtained from utilizing the method of moments

The somewhat non-rigorous proposition  resulted in a vigorous debate over 40-years agoÐ#Ñ

(Clark  regarding its appropriateness and even serves1962, Grubbs 1962, Moder and Rodgers 1968)

as the topic of more recent papers (see, e.g.,  Kamburowski 1997,  Herrerías 1989, Herrerías et al.

2003)  1989  suggested substitution of. In a further response to the criticism of , Ð#Ñ Herrerías Ð Ñ

α "œ "  = Ð ,  +Ñß œ "  = Ð,  ,  +Ñß) ) +ÑÎÐ ÑÎÐ Ð$Ñ

in instead, where . This yieldsÐ"Ñ =   "ß +   ,)
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Essentially, Herrerías 1989  reparameterizes the beta pdf  by managing to express  and  inÐ Ñ Ð"Ñ α "

terms of new parameters  and  while retaining the lower and upper bounds  and . ) = + , For =  !

the beta pdf   is unimodal and for  it reduces to a uniform distribution. Hence, Ð"Ñ = œ ! Herrerías

Ð Ñ =1989  designated  to be a confidence parameter in the mode location ) such that higher values of

= = Ä ∞ indicate a higher confidence. Indeed, for , the beta pdf converges to a single point mass at

2Kamburowski (1997) notes that: "Despite the criticisms and the abundance of new estimates, the PERT mean and variance [given
by ( ) in this paper] # can be found in almost every textbook on OR/MS and P/OM, and are employed in much project management
software."
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) ). For , the beta pdf  is U-shaped which is not consistent with  being a most likely "  =  ! Ð"Ñ

value.

As a further alternative to the beta pdf Van Dorp and Kotz (2002) generalized theÐ"Ñß

X<3+81Ð+ß ,Ñ XWT Ð+ß ,ß 8Ñ) )ß ß distribution to a two sided power distribution
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by the inclusion of an additional parameter describing a power-law behavior in both tails. 8  ! For

8 œ # 8 œ " Ð&Ñ X<3+81Ð+ß ,Ñ Ò+ß ,Ó and the distribution reduces to the  and Uniform)ß

distributions, respectively. The following expressions for the mean and the variance follow from :Ð&Ñ
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Interestingly, one immediately observes that by substituting in  the beta mean value8 œ =  " Ð'Ñß

Ð%Ñ Ð'Ñ X µ F/>+Ð+ß ,ß ß Ñ and TSP mean value in  coincide. Moreover, recalling that  given byα "

Ð"Ñ \ µ XWTÐ+ß7ß ,ß 8Ñ Ð&Ñß = œ % 8 œ &and  given by and observing that for  or  the mean

values in and  agree and reduce to the PERT mean  in  as suggested by Malcolm etÐ%Ñ Ð'Ñ IÒX Ó Ð#Ñ

al. back in 1959, one might indeed conclude that they were lucky in this respect. However, observing

that the variance in  for is quite different from the PERT variance in , Malcolm et al.Ð%Ñ = œ % Ð#Ñ

(1959) were after all not so lucky. Moreover, after some algebraic manipulations using variances in

Ð%Ñ Ð'Ñand  it follows that:

Z +<ÒX Ó Z +<Ò\Ó œ œ
Ð8  "ÑÐ,  ÑÐ  +Ñ

Ð8  #ÑÐ8  "Ñ

Ÿ !ß ! Ÿ 8  "ß
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 Ð(Ñ
) )  .

Hence, in the unimodal domains of the TSP distribution and the beta distributions Ð&Ñß 8  "ß Ð"Ñß

=  !ß Ð$Ñwith parameterization , the variance of the TSP distribution is strictly less than the PERT

variance modification of Herrerías 1989  given by . The result is consistent with the TSPÐ Ñ Ð%Ñ Ð(Ñ

distributions being more "peaked" than the beta distribution (see, e.g. Kotz and Van Dorp 2004).

Summarizing, given that an expert only provides lower bounds  and  and most likely value + , 7ß
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additional alternatives are provided in terms of the TSP  pdf's ,  besides the existingÐ8Ñ Ð&Ñ 8 Á #ß

beta and triangular pdf options, and one is left to wonder which one of these to use, perhaps

extending the 50-year old controversy surrounding the use of .Ð#Ñ

The context of the controversy alluded to above deals with the larger domain of distribution

selection and parameter elicitation via expert judgment, in particular those distributions with

bounded support. In a recent survey paper, a leading Bayesian statistician O'Hagan (2006) explicitly

mentions a need for advances in elicitation techniques for prior distributions in Bayesian Analyses,

but also acknowledges the importance of their development for those areas where the elicited

distribution cannot be combined with evidence from data, because the expert opinion is essentially

all the available knowledge. Garthwaite, Kadana and   (2005) provide a comprehensiveO'Hagan

review on the topic of eliciting probability distributions dealing with a wide variety of topics, such as

e.g. the elicitation process, heuristics and biases, fitting distributions to an expert's summaries, expert

calibration and group elicitation methods. Experts are, as a rule, classified into two, usually

unrelated, groups: 1) experts (also known as substantive technical domain experts or  experts) who are

knowledgeable about the subject matter at hand and 2)  experts possessing knowledge of thenormative

appropriate  analysis techniques (see, e.g., De Wispelare  (1995) and Pulkkinen andquantitative et al.

Simola (2000)). In the absence of data and in the context of decision/simulation and uncertainty

analyses, substantive experts are used (often by necessity) to specify input distributions albeit directly

or indirectly with the aid of a normative expert. The topic of this paper deals with fitting specific

parametric distributions to a set of summaries elicited from an expert.

In Section 2, we provide an overview of indirect elicitation procedures for TSP pdf Ð&Ñ

parameters and their generalizations developed in Kotz and Van Dorp (2006), Van Dorp et al.

(2007) and theHerrerías et al. (2009). Firstly, we shall present an indirect elicitation procedure for 

bound parameters , and tail parameter of TSP pdf's  It has the specific advantage of not+ , 8 Ð&ÑÞ

requiring bounds elicitation whom may not fall within the realm of expertise of a substantive expert.

Next, we present the indirect elicitation of both tail parameter of a generalization of TSP distribution

allowing for separate power law behavior in both tails. This procedure was presented in Herrerías et
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al. (2009), but does require the bounds  and  to be available. We return to indirect bounds and+ ,

power tail parameter elicitation for generalized trapezoidal uniform (GTU) distributions given lower

and upper quantile estimates and a modal range specification. A substantive expert may be more

comfortable with specifying a modal range rather than having to specify a single point estimate as

required in  and . The GTU elicitation procedure was developed in detail in Van Dorp etÐ#Ñß Ð$Ñ Ð&Ñ

al. (2007). Finally, in Section 3, we shall demonstrate via an illustrative Monte Carlo analysis for the

completion time of an 18 node activity network a potential difference between project completion

times that could result when requiring experts to specify a single most likely estimate rather than

allowing for a modal range specification.

2. Parameter elicitation algorithms for TSP distributions and some generalizations.

Let  with pdf , where  \ µ XWTÐ Ñ Ð&Ñ@ @ )œ Ö+ß ß ,ß 8×. The main advantage of the pdf  overÐ&Ñ

the beta pdf is that it has a closed form cdf expressible using only elementary functions:Ð"Ñ
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Suppose a lower and upper percentiles ,  and most likely value  for  are pre-specified in a+ , \: < )

manner such that .+   ,: <) Kotz and Van Dorp (2006) showed that a unique bounds and + ,

solution
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exists given a value for the parameter , where . The unique value for8  ! ;Ð8Ñ œ T<Ð\  Ñ) 3

T<Ð\  Ñ ;Ð8Ñ)  follows by solving for from the equation

3Herein we shall use the notation  even when  is non-integer valued.8 B œ B 8  !"Î8
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using a bisection method with starting interval   When Ò:ß <ÓÞ 8 Æ !ß
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that  similar to in may be solved for using a bisection method with starting interval .ß ;Ð8Ñ Ð"!Ñß Ò:ß <Ó

The pdf  itself, satisfying , converges to a Bernoulli distribution with point massÐ&Ñ +   ,: <)

;Ð!Ñ + 8 Æ ! 8 Ä ∞ at  when  and when  converges to an asymmetric Laplace distribution:
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where the coefficients  and  areT U

T Uœ œ Ð"%Ñ
P91 P91

 + , 

   ;Ð∞Ñ ";Ð∞Ñ
: "<

: <) )
 and .

(See also Kotz and Van Dorp (2005).)

Summarizing, the information does not uniquely specify a member within the TSP+   ,: <)

family. Kotz and Van Dorp (2006) suggest the elicitation of an additional quantile  to+  B: = < ,

indirectly elicit the remaining parameter . They solve for and  via an eight step algorithm. Its8 +ß , 8

details are provided in Kotz and Van Dorp (2006) and a software implementation of this algorithm

is available from the author upon request. Settingß + œ 'Þ&ß B œ "! ß , œ "" œ (!Þ"! !Þ)! !Þ*!
" "
% # and )

we have:

8 $Þ)($ ;Ð8Ñ œ !Þ#!*ß 8 8 %Þ"#!ß 8 8 "(Þ)()Þ Ð"&Ñ¸ ¸ ¸, +Ö;Ð Ñl × ,Ö;Ð Ñl ×

Figure 1 displays the TSP distribution with most likely value  and parameter values .) œ ( Ð"&Ñ
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2.1. GTSP parameter elicitation algorithm

Kotz and Van Dorp (2004) briefly mentioned generalized  distributions with pdfKXWTÐ Ñ@
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They reduce to pdf's when  and were studied in more detail by XWTÐ Ñ Ð&Ñ 7 œ 8@ Herrerías et al.

(2009).  Their cdf's follow from as:Ð"'Ñ
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To indirectly elicit the power parameters  and  Herrerias et al. (2009) also suggest eliciting a7 8ß

lower quantile  and an upper quantile . Similar to the PERT mean and variance ,+  ,  Ð#Ñ: <) )

however, lower and upper bounds ,  and a most likely estimate  must have been directly pre-+ , )
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Herrerias et al. (2009) showed that the first (second) equation in ( ) has a unique solution  for#! 7•

every fixed value of and thus it defines an implicit continuous function  such that the8  ! Ð8Ñ0

parameter combination satisfies the first quantile constraint for all . ThisÖ ß7 œ Ð8Ñß 8× 8  !) 0•

unique solution  may be solved for by employing a standard root finding algorithm such as, e.g.,7•
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the Newton-Raphson method (Press et al., 1989) or a commercially available one such as, e.g.,

GoalSeek in Microsoft Excel. Analogously, the second equation defines an implicit continuous

function  such that the parameter combination  satisfies the second' ) 'Ð7Ñ Ð ß7ß 8 œ Ð7ÑÑ•

quantile constraint for all . By successively solving for the lower and upper quantile constraint7  !

given a value for  or , respectively, an algorithm can be formulated that solves Details are8 7 Ð#!ÑÞ

provided in Herrerias et al. (2009). Setting  in + œ #ß œ (ß , œ "&ß + œ % ß , œ "" Ð#!Ñ) !Þ"! !Þ*!
"
%

yields the power parameters

7 ¸ "Þ))$ 8 ¸ #Þ%'!Þand Ð#"Ñ

Figure 1 displays the GTSP distribution with lower and upper bounds , most likely+ œ #ß , œ "&

value  and the power parameter values .) Ð#"Ñ

2.2. GTU parameter elicitation procedure

Van Dorp et al. (2007) considered Generalized Trapezoidal Uniform (GTU) distributions. Letting
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Utilizing the stage probabilities one obtains the following convenient form for1 @3Ð Ñß 3 œ "ßá ß $ß

the cdf of Ð##Ñ
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The ) distributions reduce to trapezoidal distributions studied by KXYÐ@ Pouliquen (1970) by

setting to 7 œ 8 œ # ß KXWTÐ Ñ Ð"'Ñ Ð"(Ñ œ@ ) )distributions given by and by setting , and to" #

XWT Ð Ñ Ð&Ñ œ œ 7 œ 8 Ð##Ñ Ð#$Ñ@ ) ) ) distributions given by  by setting and in and ." #
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Figure 1. Pdf's (A) and cdf's (B) of TSP, GTSP and GTU distributions with parameter settings Ð"&Ñß Ð#"Ñ

and Elicited modal (quantile) values are indicated in Figure 1A (1B).Ð#*ÑÞ
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Equations + Ð Ñ œ , Ð Ñ œ‡ ‡7 7 8 8+ ,~ ~
Ð Ñß Ð Ñ may be solved for using a standard root finding

algorithm such as, e.g., the Newton-Raphson method (Press et al., 1989) or a commercially available

one such as, e.g., GoalSeek in Microsoft Excel. No solution exist for power parameters  and 7 8

exist when conditions in  are not met. After solving for  the lower bound  follows byÐ#)Ñ 7 +

substitution of  in . Solving for the upperbound  is analogous, but utilizes the7 Ð Ñ ,+ Ð Ñ‡ 7 7 or ~+

expressions for . Setting , Ð Ñ‡ 8 8 or ~, Ð Ñ Ò) ) 1 1 1 1" # # " # $ !Þ"!
$
%ß Ó œ Ò(ß *Ó Î œ "Î#ß Î œ "Î$ß + œ $, 

and  in yields the tail and lower and upper bound parameters, œ "& Ð#(Ñ!Þ*!

7 8 Ð#*Ñ¸ "Þ%#$ß ¸ "Þ&%'ß + ¸ "Þ$!' , ¸ ")Þ#($Þand 

Figure 1 displays the GTU distribution with modal range parameter values .Ò) )" #ß Ó œ Ò(ß *Ó and Ð#*Ñ

Please observe in Figure 1 that both TSP and GTSP distributions posses mode , whereas the) œ (

GTU distribution has a modal range Quantile values for the TSP, GTSP and GTU examplesÒ(ß *ÓÞ

in this section are indicated in Figure 1B.

3. An illustrative activity network example

We shall demonstrate via an illustrative Monte Carlo analysis for the completion time of an 18 node

activity network  a potential difference between projectfrom Taggart (1980), depicted in Figure 2,

completion times that could result when requiring experts to specify a single most likely estimate

rather than allowing for a modal range specification. We shall assume that lower and upper quantiles

+ ,!Þ"! !Þ*! and  in Table 1 have been elicited via an expert judgment for each activity in the project

network. We shall investigate four scenarios of mode specification for the activity durations in the

project network, keeping their lower and upper quantiles and + ,!Þ"! !Þ*!  fixed. In the first scenario

"GTU" activity duration uncertainty is modeled using a GTU distribution. The modal range Ò ß Ó) )" #

is specified in Table 1. For all activities, a relative likelihood of .  is specified for the right# (& Ð"Þ#&Ñ
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Figure 2. Example project network from Taggart (1980).

Table 1. Data for modeling the uncertainty in activity durations for the project network presented in

Figure 5 for the Scenarios "GTU", "Uniform", "Laplace ", "Laplace "." #

Activity Name a0.10 θ1 θ2 b0.90

Shell: Loft 22 25 28 41
Shell: Assemble 35 38 41 54
I.B.Piping: Layout 22 25 28 41
I.B.Piping: Fab. 6 8 10 19
I.B.Structure: Layout 22 25 28 41
I.B.Structure: Fab. 16 18 20 29
I.B.Structure: Assemb. 11 13 15 24
I.B.Structure: Install 6 8 10 19
Mach Fdn. Loft 26 29 32 45
Mach Fdn. Fabricate 31 34 37 50
Erect I.B. 28 31 34 47
Erect Foundation 6 8 10 19
Complete 3rd DK 4 6 8 17
Boiler:Install 7 9 11 20
Boiler:Test 9 11 13 22
Engine: Install 6 8 10 19
Engine: Finish 18 21 24 37
FINAL Test 14 17 20 33
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tail (left tail) as compared to the modal range .  From the relative likelihoods it immediatelyÒ ß Ó) )" #

follows that the lower bounds  of the modal ranges in Table 1 equal the first quartile (probability)"

" "
% " #) of the activities, whereas a  probability is specified throughout for the modal range .5 Ò ß Ó) )

Hence, the upper bounds  of the modal ranges are the -th percentiles of the activity durations)# %&

and thus are strictly less than their median values. Moreover, all activity durations are right skewed

(having a longer tail towards the right). We solve for the lower and upper bounds  and  using the+ ,

procedure described in Section 2.2.

The next three scenarios involve limiting cases when activity duration uncertainties are

distributed as a two-sided power (TSP) distribution with the pdf Ð&ÑÞRecall from Section 2 that

Kotz and Van Dorp (2006) have shown that for every  in , a unique unimodal TSP8  " Ð&Ñ

distribution can be fitted given a lower quantile , an upper quantile  and a most likely value+ ,!Þ"! !Þ*!

) ) such that . For , the fitted TSP distribution reduces to a uniform+   , 8 Æ "!Þ"! !Þ*!

distribution with the bounds

+ œ , œ Ð$!Ñ
!Þ*!+  !Þ"!, !Þ*!,  !Þ"!+

!Þ)! !Þ)!
!Þ"! !Þ*! !Þ*! !Þ"! and .

We shall use bounds  for the  scenario designated "Uniform" combined with the valuesÐ$!Ñ second

for  and  in Table 1. The uniform distribution with bounds  actually has the smallest+ , Ð#*Ñ!Þ"! !Þ*!

variance amongst pdf's  given the constraint set by Ð&Ñ +   ,!Þ"! !Þ*!)  and their fixed values.

For and with specified values , the TSP distribution  converges to8 Ä ∞ Ð&Ñ+   ,!Þ"! !Þ*!)

an asymmetric Laplace distribution  with parameters  and , where  isÐ"$Ñ + ß ß , ;Ð∞Ñ ;Ð∞Ñ!Þ"! !Þ*!)

the limiting probability of being less than the mode  and the unique solution to Equation .) Ð"#Ñ

This asymmetric Laplace distribution has the largest variance amongst the TSP distributions Ð&Ñ

given the constraint +   .!Þ"! !Þ*!)  and their preset values. Hence, for our  scenario "Laplacethird

1" we set , specified in Table , and use the values  and ) )œ " + ," !Þ"! !Þ*! in Table 1 to determine the

remaining parameter . Similarly, we obtain the  scenario "Laplace 2" by setting .;Ð∞Ñ fourth ) )œ 2

Note that our first two scenarios "GTU" and "Uniform"  with the mode specificationsare consistent

+   , " #!Þ"! !Þ*!)  in the third and fourth scenarios "Laplace " and "Laplace ", respectively. That is,
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in all the scenarios the activity durations have the lower and upper quantiles  and  in+ ,!Þ"! !Þ*!

common and a mode at   (  ) for the third (fourth) scenario.) ) ) )œ œ" #

Now we shall generate the cdf of the completion time distribution of the project presented in

Figure 2 for each of these scenarios "GTU", "Uniform", "Laplace " and "Laplace " by employing" #

the Monte Carlo technique (Vose 1996) involving 25,000 independent samples from the activity

durations and subsequently applying the critical path method (CPM) (see e.g. Winston 1993) .4

Consequently, for each scenario we obtain an output sample of size 25000 for the completion time

of the project network in Figure 2 from which one can empirically estimates  its completion time

distribution. The resulting cdf's for the four scenarios described above are depicted in Figure 3.

Among the scenario's in Figure 3 only the scenario "Uniform" has symmetric activity duration

distributions. The activity durations of all other scenarios are all right skewed with a mean value less

than that of the same activity in the "Uniform" scenario. This explains why the completion time

distribution of the "Uniform" scenario is located substantially to the right of all the other scenarios.

Moreover, as explained above, the variances of activity durations in the "Uniform" scenario are

smaller than those of the activities in the other one. Thus it explains why its project completion time

cdf is the steepest.

The largest discrepancy between the cdf's in Figure 3 occurs between the "Uniform" and

"Laplace 1" and equals   observed at  days.  Hence, certainly the specification of¸ !Þ#% ¸ "*%

lower and  upper quantiles  and  and a most likely value  seems to be insufficient to+ ,!Þ"! !Þ*! )

determine a pdf in the family . Note that the project completion time cdf of the "GTU" scenarioÐ&Ñ

in Figure 3 for the most part is sandwiched between those of the "Laplace " and "Laplace "" #

scenarios with a maximal difference of ( ) between its cdf and the "Laplace "¸ !Þ!% ¸ !Þ!( "

("Laplace ") cdfs observed at approximately  days  days).# ")( Ð"*(

4To avoid the occurence of negative activity durations in the sampling routine as a result of the infinite support of the
Laplace distributions, a negative sampled activity duration is set to be equal to zero.
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Figure 3. Comparison of CDF's of the completion times for the Project in Figure 2 for the scenarios

"GTU", "Uniform", "Laplace " and "Laplace "." #

Finally, note that in Figure 3 the project completion time of  days following from the CPM"%*

using  the most likely values of  in Table 1, is represented by the bold vertical dotted lineonly )"

"CPM ". Similarly, a completion time of  days follows using  the most likely values of  in" "(" only )#

Table 1 is indicated by the bold "CPM " line. Since the values of  are less than the median for # )" all

18 activities in Table 1 (in addition to having right skewness), we observe from Figure 3 that the

probability of achieving the "CPM  1" completion time of days is negligible. For the "CPM 2""%*

completion time of  days these probabilities are less than % for all four scenarios."(" ¸ "!

Although the skewness of the activity distributions in Table 1 may perhaps be somewhat inflated, a

case could definitely be made that a skewness towards the  bound may appear in assessedlower

activity time distributions in view of a potential motivational bias of the  expert. Thesesubstantive

CPM results further reinforce the observation that in applications uncertainty results ought to be

communicated to decision makers.
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Concluding Remarks

A discussion some 50 years ago about the appropriateness of using the PERT mean and variance

Ð#Ñ utilizing either beta or triangular pdfs, was followed by a concern by others some 20 years later

or more (e.g. Selvidge, 1980 and regarding the elicitation of lower andKeefer and Verdini, 1993 ) 

upper bounds of a bounded uncertain phenomenon, since these typically do not fall within the+ß ,

realm of experience of an substantive expert. When instead eliciting a lower and upper quantiles +:

and  and a most likely value  however, even within the two-sided power (TSP) family of, ß< )

distribution with bounded support, infinitely many options exist that match these constraints.

Hence, one arrives at the conclusion that additional information needs to elicited from the

substantive expert for further uncertainty distribution specification. In case of the TSP family of

distributions, Kotz and Van Dorp (2006) suggested the elicitation of an additional quantile to

uniquely identify its lower and upper bounds and  and power parameter .  Even when relaxing+ , 8

the TSP pdf or PERT requirement of specifying a single mode  to allow for a modal range)

specification  of a generalized trapezoidal uniform (GTU) distributions, a lower quantileÒ ß Ó) )" #

+  , : " < #) ) and upper quantile  specification is not a sufficient information to determine its

lower and upper bounds  and  and its power parameters .  +  + ,  , 7ß 8  !: < Van Dorp et al.

(2007) suggest to elicit in addition two relative likelihoods regarding the three stages of the GTU

distribution to solve for these parameters.

Summarizing, lower and upper bounds specification or lower and upper quantiles specification

combined with providing a single modal value, or even a modal range, does not uniquely determine

an uncertainty distribution. In my opinion, this lack of specificity is one of the root causes regarding

the controversy alluded to in the introduction of this paper surrounding the continued use of the

PERT mean and variance  or other common arguments amongst practitioners regarding whetherÐ#Ñ

to use beta, triangular (or TSP) distributions to describe a bounded uncertain phenomena.
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