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Abstract

We present Bayesian analysis of the multivariate autoregressive conditional

heteroskedastic (ARCH) and generalized ARCH (GARCH) models as a class of

deterministic volatility models. In so doing, we develop a Bayesian inference procedure

by extending the Markov chain Monte Carlo method of Muller and Pole (1998)

introduced for univariate models. Our approach uses a multivariate Bayesian regression

setup in implementation of the Markov chain Monte Carlo.

1. Introduction and Preliminaries

Modeling conditional variances has been interest of many researchers during the

last several decades. Many time-series models focus on modeling conditional means, that

is, , , but they assume that the conditional variance is not a function of theIÐ] l] áÑ> >"

past, implying that by learning from  past, we do not learn about the variances. However,

empirical evidence suggests that the conditional variances do change in  economic and
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financial time-series. The models that focus on modeling conditional variances are

referred to as the conditional heteroskedastic models or stochastic volatility models. The

term volatility is used to refer to the conditional variance of a commodity return. In what

follows, we first introduce the univariate models and then extend them to multivariate

stochastic volatility models. In our development we will focus on commodity returns.

Let  denote return on a commodity at time  and we assume that returns have< >>

constant means and write

< œ > >. 0 , (1)

where  is a zero mean error term whose probabilistic structure will be discussed in 0>

detail. Note that in the above if the mean of the process depends on the past history, then

we can replace  by  where ,  is the conditional mean of the. . .t t œ IÐ< l< áÑ> >"

commodity returns. For example, if  follows a first-order autoregressive process then<>

. 9t œ G  <>". The common approach in time-series modeling is to assume that the

error sequence is an uncorrelated constant variance sequence. In other words, theÖ ×0>

conditional variance or the volatility of the process is constant, that is, ,Z Ð< l<> >"

á Ñ œ 50
#.

The conditional heteroskedastic variance modeling involves modeling the

conditional variance , . In other words, it is concerned with the2 œ Z Ð< l< áÑ> > >"

evolution of  over time. Note that unlike the time-series  the volatility is 2 <> > not

observable. Some of these models use an exact function to describe the behavior of 2>

and most commonly known models of this type are the autoregressive conditional

heteroskedastic (ARCH) and generalized ARCH (GARCH) models. Others use a

stochastic equation to describe the behavior of  and thus are referred to as stochastic2>

volatility models; see . Our focus will beJacquier et. al (1994) and Harvey et. al (1994)

on the ARCH GARCH models.Î
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The ARCH model is introduced by Engle (1982) and is generalized by Bollerslev

(1986) to GARCH models. This class of models assume that the conditional variance is

not constant and work with the mean corrected time-series . As common to many time-0>

series models it is assumed that 's are  but they are  independent.0> nonautocorrelated not

In describing the dependence structure of 's, one strategy is to model the squared 's as0 0> >

an AR(q) process using the square of its past values, that is,

0 ! ! 0 ! 0 %2 2 2
t t 1 t q0 q tœ  â "   (2)

where  is a white-noise term. Note that the above implies that  terms are% 0t
2
t

autocorrelated and thus 's are dependent (even though 's are unautocorrelated). We0 0> >

can see the presence of such dependence by looking at the autocorrelation function of the

02
t  series. Model given by (2) implies a nonlinear dependence structure and thus is not

convenient for estimation purposes. Using the similar idea for motivation Engle (1982)

suggested the following ARCH(q) model for conditional variance

0 %2
t tœ 2 (3)È

>

2 œ  â>  ! ! 0 ! 00 1 q
2 2
t 1 t q, (4)

where 's independent and identically distributed random variables with mean 0 and%t

variance 1. There are certain conditions on 's that need to be satisfied for 0, that!i 2 >

is, 0 for i 0, , q. Note that in the above, since , the conditional! 0 .i t œ á œ < > >

variance is a function of the past values of  series as well. Thus, given the past history<>

of the series, the volatility equation is an exact function for . In the above the mean2>

corrected process  is stationary.0>

In the special case q 1, we have the ARCH(1) model is given byœ

2 œ > ! ! 00 1
2
t 1,

where , 0. We can easily show that! !0 1 

IÐ Ñ œ IÐ lH Ñ œ0 0> > >" 0
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where , and thus . Due to the stationarity of H œ Ð< < áÑ Z Ð Ñ œ IÐ Ñ>" >" ># > >,
2
t0 0 0

 . (5)
1

IÐ Ñ œ œ Z Ð Ñ


0 0
!

!
2
t

0

1
>

and thus 0 and 0 1. If we need higher order moments to exist then we need! !0 1  

to impose other restrictions. It is important to note that in the above

IÐ lH Ñ Á IÐ Ñ0 02 2
t t>" .

Similarly, in the q-th order stationary ARCH process (3)-(4), we need 0 for!i 

i 0, , q andœ á

IÐ Ñ œ
  â

0
!

! ! !
2
t

0

1 2 q1
. (6)

Thus, for the variance to exist we also need 1.!
i 1

q

i
œ

! 

A generalization of the ARCH model was suggested by Bollerslev (1986) by

generalizing the volatility equation to include the past history of  's. This resulted in the2>

generalized ARCH(q, p) model

0 %t tœ 2 È >

2 œ  â  2  â 2> >" >: ! ! 0 ! 0 " "0 1 q 1 p
2 2
t 1 t q , (7)

where 's independent and identically distributed random variables with mean 0 and%t

variance 1. As before we have 0 for i 0, , q and in addition 0 for i 0,! "i i œ á  œ

á @ œ  2 @, p.  The GARCH(q, p) model can be motivated by defining , where  is a> > >
#0t

zero-mean white-noise term. By substituting in (7) we can consider the2 œ  @> >
#0t

alternate representation

0 ! ! " 0 "#

œ œ

=

 > >t t i0 i i j j
 i  1 j 1

2
p

œ  Ð  Ñ  @  @" " (8)
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where p, q . The above representation gives us an ARMA( , ) process for = œ 7+BÐ Ñ = : 0#t

with . Thus,  has the usual interpretation of one-step ahead@ œ  IÐ lH Ñ @> >" >
# #0 0t t

forecast error for . For example, if  q p 1, then we have the GARCH(1, 1) model0#t œ œ

2 œ   2> >"! ! 0 "0 1 1
2
t 1

implying the form

0 ! ! " 0 "#
 > >"t t 10 1 1 1

2œ  Ð  Ñ  @  @ . (9)

The above form gives us ARMA(1,1) for the squared series .0#t

For the unconditional variance of  to exist, we need to impose additional0>

conditions on the parameters in (7). As in the ARCH model, for stationary GARCH

process we have 0. It can be shown that the unconditional variance isIÐ Ñ œ0>

IÐ Ñ œ œ Z Ð Ñ
 Ð  Ñ

0 0
!

! "

2
t

0

 i  1 
i i1

, (10)!
œ

= >

implying that 1. For the special case GARCH(1, 1) this means!
 i  1 

i i
œ

=

Ð  Ñ ! "

Ð  Ñ ! "1 1 1 in (9), that is, the restriction is on the AR coefficient in the ARMA(1,1)

representation. More complicated conditions are required for time invariance of higher-

order moments.

There are nonstationary versions of the GARCH models that are analogous to the

ARIMA models. An integrated GARCH (IGARCH) model is a GARCH model whose

characteristic polynomial having a unit root. For example, IGARCH(1,1) model is a

GARCH(1,1) model as in (9) where 1 implying that 1 . Thus,Ð  Ñ œ œ Ð  Ñ! " ! "1 1 1 1

the model can be written as

2 œ  Ð  Ñ  2> >"! " 0 "0 1 1
2
t 11 . (11)

In the above the unconditional variance  does not exist and the process  is notZ Ð Ñ0 0> >

stationary. Other versions of the GARCH models include GARCH in mean (GARCH-M)

and the exponential GARCH model of Nelson (1991).
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In the sequel we will first discuss their Bayesian analysis using the Gibbs sampler

proposed by Muller and Pole (1998). This is done in Section 2. This will be followed in

Section 3 by our consideration of the multivariate ARCH/GARCH models and

introduction of their Bayesian analysis by extending the method of Muller and Pole

(1998) to the multivariate case. Implementation of our approach will be illustrated with

an example in Section 4.

2. Bayesian Analysis of Univariate GARCH Models

Bayesian analysis of the GARCH(q, p) model (7) has been considered by various

authors in the literature. In what follows, we will present a slighly modified version of

the approach proposed by Muller and Pole (1998) which we will extend to multivariate

GARCH models in Section 3. In our development we will focus on the GARCH(1, 1)

model, but extension to GARCH(q, p) model is straightforward and will be discussed.

We consider the GARCH(1,1) model

< œ > >. 0

2 œ   2> >"! ! 0 "0 1 1
2
t 1 , (12)

where 0> >" > given is normally distributed with mean 0 and variance , denoted asH 2

0> >" >lH µ RÐ!ß 2 Ñ. Given return data  from  periods, the< œ Ð< ß < ß á ß < Ñ 8Ð8Ñ
" # 8

likelihood function under the GARCH model (12) is given by

PÐ ß ß ß à Ñ º Ð2 Ñ /B:  Ð<  Ñ Î2
"

#
. ! ! " .0 1" > > >

8Î# #

>œ"

8

 <Ð8Ñ  ‘" . (13)

There is no joint prior  that provides an analytically tractable posterior:Ð ß ß ß Ñ. ! ! "0 1"

analysis with (13). Thus, in what follows, a Gibbs sampler will be presented to generate

samples from the joint posterior distribution . This requires:Ð ß ß ß l Ñ. ! ! "0 1" <Ð8Ñ

successive drawings from the  of full conditional distributions Ð ß ß ß Ñ. ! ! "0 1"  given ;<Ð8Ñ

see Gelfand and Smith (1990) for details on the .Gibbs sampler
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To obtain the full conditional distribution of , that is, . . ! ! ":Ð l ß ß ß0 1" < ÑÐ8Ñ , we

note that if the prior of  is normal, say, , then posterior analysis follows. . µ RÐ7 ß G Ñ! !

using the standard Bayesian analysis of the normal model with known variance [see for

example, Gelman et al. (2004, pp. 49)]. In our case it is important to note that the

variance is not constant and it involves 2 2> >"   and  and evaluation of these terms0t 1

requires some adjustment. Given 's are given for all periods, we can obtain the full2>

conditional distribution of  as  . . ! ! "Ð l ß ß ß0 1" < Ñ µ RÐ7 ß G ÑÐ8Ñ
" "  where

7 œ"

!
!

>œ"

8

> > ! !

>œ"

8

> !

< Î2  7 ÎG

"Î2  "ÎG
, (14)

and

G œ"
" ‘"

>œ"

8

> !"Î2  "ÎG . (15)

If the initial values  and  and  are specified then after theÐ ß ß ß Ñ Ð2 Ñ. ! ! " 0! ! ! !
! " " ! !

Ð3  "Ñ>2 iteration of the Gibbs sampler given the values of parameters  and.3"

#3" 3" 3" 3" 3" 3"
! " " " #œ Ð ß ß Ñ Ð ß ß á ß! ! " 0 0 from the previous iteration we can obtain 

03"
8 Ñ using

 (16)0 .3" 3"
> >œ < 

and obtain  viaÐ2 ß 2 ß á ß 2 Ñ3" 3" 3"
# 8"1

2 œ  Ð Ñ  23" 3" 3" 3" # 3" 3"
> " >" >"! ! 0 "0 1 (17)

for .> œ "ßá ß 8  "

The full conditional distribution of   , that is,  # #œ Ð Ñ :Ð l ß! ! " .0 " "
w < ÑÐ8Ñ , can

not be obtained analytically. Thus, at each iteration of the Gibbs sampler we can use a

Metropolis step to draw from ; :Ð l ß#  Chib and Greenberg (1995). < ÑÐ8Ñ see for example, 

for a review of the Metropolis algorithm The algorithm uses a sample from a . probing
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distribution (proposal density) and the selection of this probing distribution plays an

important role in the efficiency of the algorithm. At each iteration the candidate sample

selected from the probing distribution is accepted or rejected with a probability that

depends on the magnitude of the true density at the sampled value. In:Ð l ß#  . < ÑÐ8Ñ  

selecting the probing distribution we will follow Muller and Pole (1998) who proposed to

derive this distribution from an auxiliary regression model. In what follows, we will

suppress the dependence of the true and the probing distributions on denote them. and 

as  and  .:Ð Ð# #l l< Ñ 1 < ÑÐ8Ñ Ð8Ñ

Note that after the Ð3  "Ñ>2 iteration of the Gibbs sampler given the values of

03" 3" 3" 3" 3" 3" 3" 3"
" # " #8 8œ Ð á Ñ œ Ð2 2 á 2 Ñ0 0 0, , ,  and , , ,  obtained via (16) and2

(17), we can consider the regression model

0 ! ! 0 "2 2
t t 10 1œ   2  A " >" >, (18)

which is motivated by the conditional expectation of  given , where the auxiliary02
> >"H

error term  . Thus, the auxiliary regression model can be written asA lH µ RÐ!ß Ñ> >"
#
A5

Y ^ Aœ # (19)

where , œ ÐA A ââA Ñ" # 8
w

Y ^œ ã œ
Ð Ñ

Ð Ñ

Ð Ñ
ã ã ã

Ð Ñ

Ô × Ô ×
Õ Ø Õ Ø
0

0

0

0

3"
"

3"
8

3"
! !

3"
8" 8"

2

2

2

2
and  .

1

1

h

h

3"

3"

The probing distribution at each iteration can be derived by obtaining the posterior

distribution of  given , in (18). In so doing, we can use an improper joint prior for# Ð ÑY ^

Ð ß Ñ "Î# 5 5#
A A as being proportional to  and obtain the probing distribution as a

multivariate normal density given by

 , , (20)          Ð ß Ñ µ RÐ ß Ñ# #lY ^ Zs s5 5# #
A A
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where

#s ^ ^Ñ ^ Yœ Ð  (21)w " w ,

and   . It can be also shown that the distribution of   is an invertedZ ^ ^Ñs œ Ð w " 5#
A

gamma distribution with parameters  and   whereÐ8  $ÑÎ# Î#s5#
A

5s œ Ð Ð
"

8  $
#
A  . (22)Y ^ Ñ Y ^ Ñs s# #w

Details of the above development can be found in  Thus, atGelman et. al. (2004, pp. 356).

the  iteration of the Gibbs sampler the probing distribution s given by (20).3>2 Ð1 < Ñ#l Ð8Ñ  i

We note that in drawing a from (20) we can either first draw from thecandidate sample 

inverted gamma distribution of  or use (22) as an estimate of the .5 5# #
A A

At the  iteration we draw a candidate, say from the probing distribution (20)3>2 #-

and then the new value  is set to the candidate value, that is,  with probability# # #3 3 œ -

+Ð ß Ñ œ 738 "ß
:Ðs

:Ðs
# #

# #

# #
3" -

- 3"

- 3"
š ›Ñ 1 Ñ

1 Ñ Ñ

Ð

Ð
(23)

where

:Ðs # #Ñ œ Ð2 Ñ /B:  Ð<  Ñ Î2 :Ð Ñ
"

#
> > >

"Î# #

>œ"

8 ‘" . (24)

and  is the joint prior density. Note that the Metropolis algorithm requires that the:Ð Ñ#

full conditional :Ð l ß# . < ÑÐ8Ñ  is only specified to a normalizing constant as given by (24).

The probability  implies that if the ratio of the distributions in (23) is large+Ð ß Ñ# #3" -

then the probability of acceptance is high. At each iteration, we generate a uniform Ð!ß "Ñ

random variable, say , and if  , then the candidate  is accepted, that is,? ? Ÿ +Ð ß Ñ# #3" -

# # # # #3 3œ œ- 3" -,   otherwise we set . Note that the candidate is considered for

acceptance only if 0 and 0!!   Ð  Ñ  Þ! "" " 1

Once  is generated, we update  's based on the new parameters, that is, via#3
>2
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2 œ  Ð Ñ  2s s3 3

> ! " >" " >"
3 3 3" # 3! ! 0 " . (25)

Note that the updating given by (25) is based on previous error estimates, that is, based

on 's. Thus, (25) is different than the updating given by (17) which is based on03"
>

current error terms. Once 's are obtained via (25)  is drawn from the normal density2>
3.

whose mean and variance are given by (14) and (15). Once  is drawn then a new set of.3

error terms and 's are obtained via (16) and (17) and the above process is repeated for2>

iteration . Continuing with these successive draws samples are obtained from theÐ3  "Ñ

posterior distribution .:Ð ß ß ß l Ñ. ! ! "! " " <Ð8Ñ

The above algorithm can be easily generalized for the GARCH(q, p) model where

simply the dimension of  the parameter vector  increases to q p 1 . Similarly,  in# Ð   Ñ

other cases, where the observation model  may include covariates, the< œ > >. 0

algorithm can be modified so that the mean and variance terms (14) and (15) represent

posterior mean and variance of regression parameters in the updating.

3. Multivariate ARCH GARCH ModelsÎ

A multivariate extension of the univariate ARCH and generalized ARCH models

of Engle (1982) and Bollerslev (1986), is introduced by Bollerslev et al. (1988). We

consider the multivariate version of the observation model (1) as

<> >œ . 0 , (26)

where  dimensional return vector,  dimensional mean return,<> is the is the O O. 

0> >" > > >¸D 0µ Ð Ñ O ‚OR L L L,  and  is  variance-covariance matrix. Models for  are

referred to as multivariate volatility models for the return series .<>

Different modeling strategies have been suggested in the literature to describe the

evolution of . In what follows we will consider the setup given by  Bollerslev et al.L>
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(1988) where the multivariate GARCH( , ) model is defined by the volatility equation; :

given by

@/-2 œ  @/-2  @/-2ˆ ‰ " "Š ‹ Š ‹L E E F L> ! 3 4 >4

3œ" 4œ"

; :

>3 >30 0
w

, (27)

where  denotes the column stacking operator of the lower portion of a@/-2 †ˆ ‰
symmetric matrix,  is a  vector, 's and  are s s matrices. WeE E F! 3 4= œ OÐO  "ÑÎ# ‚

note that certain conditions need to be satisfied in (27) for  to be a positive definiteL>

matrix. Similar to the univariate case a multivariate GARCH( , ) model can be motivated; :

as a multivariate ARMA( , ) for . As a result the stationarity conditions for; : @/-2Š ‹0 0> >
w

multivariate ARMA( , ) processes need to be satisfied in (27). These conditions are; :

equivalent to conditions on the roots of the matrix polynomial

E M E E MÐPÑ œ Ð  P â P Ñ P = ‚ == " ; =
; , where  is the lag operator and is  the 

identity matrix. The requirement is that the roots of the determinant  be outsidel ÐPÑlE

the unit circle; see for example, Tsay (2002), pp. 322.

The multivariate ARCH models are obtained from (27) by setting 0. Similar: œ

to the univariate ARCH models, multivariate ARCH( ) models imply that ; @/-2Š ‹0 0> >
w

follows a vector autoregressive process of order . In other words, we can motivate an;

ARCH( ) process via;

@/-2 œ  @/-2 Š ‹ Š ‹"0 0 0 0 => > >3 >3! 3 >

3œ"

;
w w

E E , (28)

where  is a zero-mean white-noise process.= 0 0> > > >œ @/-2  @/-2ˆ ‰ Š ‹L
w

We note that the model (27) is a highly parameterized representation. For example, the

first order ARCH model is given by

@/-2 œ  @/-2ˆ ‰ Š ‹L E E> ! " >3 >30 0
w

, (29)

where for the two-dimensional case, 2,  is a matrix and the model can beO œ Ð$ ‚ $ÑE"

written as
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@/-2 œ œ 
L
L
L

†ˆ ‰ Î Ñ
Ï Ò

Ô × Ô ×
Õ Ø Õ Ø

Ô ×Ö Ù
Õ ØL>

""> !" "" #" $"

"#> !# "# ## $#

##> !$ "$ #$ $$

" >"

" >" # >"

# >"

! ! ! !
! ! ! !
! ! ! !

0

0 0

0

2
,

, ,

,
2

. (30)

The stationarity of  in (29) requires that the root of the determinant@/-2Š ‹0 0> >
w

lÐ  PÑlM E E= " " be outside the unit circle or equivalently all the eigenvalues of  to be

less than 1.

A natural simplification is obtained by assuming a diagonal structure for the E1

matrix in (30) as

E1 œ
Ô ×
Õ Ø
!

!
!

""

##

$$

0 0
0 0
0 0

that is, 0 if i j, As pointed out by Bollerslev et al. (1988), this simply implies that!ij œ Á

each covariance depends only on its past values, that is,

Î Ñ
Ï Ò

Ô ×Ö Ù
Õ Ø

L
L
L

œ



 †



"">

"#>

##>

!" "" " >"

!# ## " >" # >"

!$ $$ # >"

! ! 0

! ! 0 0

! ! 0

2
,

, ,

,
2

. (31)

Similar simplifications can be obtained for multivariate GARCH models which are

motivated  by being a vector ARMA process.@/-2Š ‹0 0> >
w

3.1 Bayesian Analysis of Multivariate ARCH GARCH ModelsÎ

In what follows we will introduce a Bayesian approach for the analysis of

multivariate ARCH GARCH models. Our approach is an extension of the Markov chainÎ

Monte Carlo method of Muller and Pole (1998), presented in section 2, to multivariate

models. For illustrative purposes we will present our approach using the first order

ARCH model of (29). Extension to the general GARCH  models is straightforwardÐ;ß :Ñ

and the necessary details will be summarized  at the end of the section.
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We consider the multivariate GARCH(1, 1) model

<> >œ . 0 ,

@/-2 œ  @/-2  @/-2ˆ ‰ Š ‹ Š ‹L E E F L> ! " " >">3 >30 0
w

, (32)

where , , ,  and0 0 .> >" > > "> #> O> " # O
w w¸D 0µ Ð Ñ œ Ð ââ Ñ œ Ð ââ ÑR L 0 0 0 . . .

@/-2 = œ OÐO  "ÑÎ#ˆ ‰L>  is the extension of (30) with dimension . Note that (32) is a

multivariate extension of (12). For example, for the bivariate case, that is, , (32)O œ #

reduces to

Î Ñ Î
Ï Ò Ï

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø

Ô ×Ö Ù
Õ Ø

L
L
L

œ  
""> !" "" #" $" "" #" $"

"#> !# "# ## $# "# ## $#

##> !$ "$ #$ $$ "$ #$ $$

" >"

" >" # >"

# >"

! ! ! ! " " "
! ! ! ! " " "
! ! ! ! " " "

0

0 0

0

2
,

, ,

,
2

Ñ
Ò

L
L
L

"" >"

"# >"

## >"

,

,

,

 Given the return data from periods, the likelihood  < < < <Ð8Ñ œ Ð Ñ" # 8ß ßá ß 8

function of  , and  is given by.  E E F! " "ß

PÐ ß ß à Ñ º l l /B:  Ð  Ñ Ð  Ñ
"

#
. . ., , (33) E E F L < L <! " " > > >

"Î# w "

>œ"

8

> <Ð8Ñ  ‘"
where  is defined via (32) and  is an dimensional vector and  and  areL E E F> ! " "= 

= ‚ = :Ð ß matrices. The Bayesian analysis involves specification of the joint prior .

E E F! " "ß ß Ñ. As in the univariate case, there is no joint prior that provides an analytically

tractable posterior analysis when combined with the likelihood (33). Thus, we will

develop a Gibbs sampler algorithm to generate samples from the posterior distribution

:Ð ß ß ß l Ñ. E E F! " " <Ð8Ñ  by generating successive drawings from the full conditional

distributions of   and  given  .ß ßE E F! " " <Ð8Ñ.

For our development of the Gibbs sampler, in (32) we assume that the mean

return vector . . has a normal prior, say, where  is a specified µ RÐ ß Ñ O7 G 7 ‚"

vector and  is a specified  matrix. The full conditional posterior distribution of G ‚O O

. is given by

:Ð l ß Ñ º PÐ à ß ß Ñ :Ð Ñ. . .E E F E E F! " " ! " ", , ,< <Ð8Ñ Ð8Ñ 
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º /B:  Ð  Ñ Ð  Ñ  Ð  Ñ Ð  Ñ
"

#
’ Š ‹“"

>œ"

8

> >
w " w

>< L < 7 G 7. . . ." . (34)

The above can be written as proportional to

º /B:    # Ð 
"

#
’ Š ‹“ˆ ‰ ˆ ‰" ". . .w " w "

>œ" >œ"

8 8

> > >L G L < G 7" " ,

implying that

:Ð l ß Ñ º /B:  Ð  Ñ Ð Ð  Ñ
"

#
. . .E E F 7 G Ñ 7! " "

w, , (35)<Ð8Ñ ’ Š ‹‡ ‡ " ‡

where

7 œ L G L < G 7‡ " "Š Š" "
> >

> >
" "

>

œ" œ"

8 8"
 ‹ ‹ (36)

and

Ð G Ñ œ L G‡ " "Š"
>

>
"

œ"

8 "‹ . (37)

Thus, the full conditional posterior distribution of  is obtained as a multivariate normal.

as , , .  Note that the posterior mean and precisionÐ l ß Ñ µ RÐ ß Ñ. E E F 7 G! " " <Ð8Ñ ‡ ‡

updates given by (36) and (37) are multivariate versions of  (14) and (15).

The full conditional distributions of , and , that is, , ,E E F E E F! " " ! " ":Ð l ß.

< < <Ð8Ñ Ð8Ñ Ð8ÑÑ Ñ Ñ, ,  and :Ð l ß :Ð l ßE E F F E E" ! " " ! ". ., , , , are not available as known

distributional forms. Thus, we will present an extension of the approach presented in

Section 2 for the univariate ARCH GARCH models. Similar to the development, we willÎ

use a Metropolis step at each iteration of the Gibbs sampler to draw from the full

conditional distribution of  , , . In so doing, our probing distribution for ,Ð Ñ ÐE E F E! " " !

E F" ", is derived from an auxiliary multivariate linear regression model and as a resultÑ 

we will use results from Bayesian multivariate analysis; see for example Press (1989, pp.

131-137). In the sequel, we will review the Bayesian multivariate regression analysis and

adopt some of the results to our problem.
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If the initial values  , and ,  are specified then after theÐ ß ß Ñ Ð Ñ. 0! ! ! !E E F L! " " ! !

Ð3  "Ñ>2 iteration of the Gibbs sampler, given the values of parameter vectors and

matrix ,  from the previous iteration we can obtain the errorÐ ß ß Ñ.3" 3" 3" 3"E E F! " "

vectors  usingÐ ß ß á ß Ñ0 0 03" 3" 3"
# 81

 . (38)0 .3" 3"
> >œ <

Also, we can obtain @/-2 á @/-2Š ‹ Š ‹L L3" 3"
" 8", ,  via the volatilility equation (32).

Once these values are available we consider the auxiliary multivariate regression model

@/-2 œ  @/-2  @/-2 Š ‹ Š ‹ Š ‹0 0 0 0 => > >3 >3! " >" >
w w

E E F L1 , (39)

where the  with  covariance matrix .auxiliary error vector = D D> >" A A¸D µ RÐ ß Ñ = ‚ =!

Note that (39) is motivated by the vector ARMA(1, 1) process representation of the

multivariate GARCH(1, 1) model. Given ,  dimensional vectors 8 Ð= ‚ "Ñ Ð ß ß á ß0 03" 3"
#1

03"
8 Ñ Ð3  "Ñ>2 and the (39) we can represent this as a multivariate linear model at the 

iteration where the dependent variable matrix is given by Y œ @/-2 ˆ ‰0 0" "
ww

@/-2 ââ@/-2 Ð8 ‚ =Ñˆ ‰ ˆ ‰ ‘0 0 0 0# #
w w w

8 8
w w . Note that is a matrix where each row is the sY  

dimensional row vector  based on  iteration values. For the case@/-2 Ð3  "Ñ>2ˆ ‰0 0> >
ww

where , we have  and is given byO œ # = œ $ Y  

Y œ ã ã ã
Ô ×
Õ Ø
0 0 0 0

0 0 0 0

"" #""" #"

"8 #8"8 #8

2 2

2 2
. (40)

Note that for the dimension case,  row of the matrix will be given byO  # >  >2 Y  

Ð â â ââ Ñ0 0 0 0 0 0 0 0 0 0 0 0 0# # #
"> #> O>"> #> "> O> #> $> #> O> O"ß> O>    .

We will define the coefficient matrix of the multivariate regressionauxiliary 

model by  which is a matrix. For the bivariate case where > œ Ò Ó Ð#=  "Ñ ‚ =E E Fw w w
! " "

w

= œ $, is given by> 
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> œ

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

! ! !
! ! !
! ! !
! ! !
" " "
" " "
" " "

!" !# !$

"" "# "$

#" ## #$

$" $# $$

"" "# "$

#" ## #$

$" $# $$

(41)

Note that for the ARCH( ) models with , we define    ; ;  " œ Ò â â> E E E Fw w w w
! " ; "

Fw w
:Ó .

The design matrix of the multivariate linear regression will be given by

8 ‚ Ð#=  "Ñ > matrix  with row is given by^

Ð" â â ââ L âL âL Ñ0 0 0 0 0 0 0# # #
"ß>" #ß>" Oß>""ß>" Oß>" #ß>" Oß>" >" "O >" OO >"  .11, , ,

For example, for the two-dimensional case where  we have  matrix= œ $ Ð8 ‚ (Ñ

^ œ
" L L L
ã ã ã ã ã ã ã
" L L L

Ô ×
Õ Ø

0 0 0 0

0 0 0 0

" #"! #! "# ##""

8 " 8" # 8" # 8 ""ß8" "#ß8" ##ß8"

0 0
2 2

0 0 0

1, 1 , , , 1

. (42)

We also define the  error matrix asÐ8 ‚ =Ñ

H œ ã ã ã
Ô ×
Õ Ø
= = =

= = =

"" #" ="

"8 #8 =8

. (43)

Thus, at the  iteration of the Gibbs sampler, the auxiliary multivariate linearÐ3  "Ñ>2

model can be written as

Y ^œ > H. (44)

Given and , the likelihood function of  and , where  is the variance-Y ^ > D DA A

covariance matrix of the , is given byauxiliary error vector =>

PÐ Ñ º l l /B:  ><Ð ÑÐ Ð Î#> D D D > >, ; , , (45)A A
8Î# " w

AY ^ Y ^ Ñ Y ^ Ñ  ’ “
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where  denotes the trace of the matrix. The probing distribution at iteration  can><Ð Ñ 3DA
" 

be derived by obtaining the posterior distribution of  the random matrix  given and> Y  

^ . In so doing, we can use an improper prior for  and  as> DA

:Ð Ñ º l l> D D, . (46)A A
Ð="ÑÎ# 

It can be shown that the least squares estimator of matrix  is given by> 

>s ^ ^ ^ Yœ Ð Ñw w" (47)

and using the orthogonality property of the least squares estimators [see for example,

Press (1989), pp. 134], the joint posterior distribution , ,  can be written as:Ð l Ñ> DA Y ^

º l l /B:  ><Ð Ñ  Ð Ð Î#D D > > > >A
Ð8="ÑÎ# " w

A
  ’ “I  Ñ ^ ^  Ñs sw ‘ , (48)

where I Y ^ Ñ Y ^ Ñs sœ Ð Ð> >w .

From (48) we can obtain the posterior distribution of given  as  > DA

:Ð l Ñ º /B:  ><Ð Ñ Ð Ð Î#> D D > > > > , , . (49)A A
" wY ^  Ñ ^ ^  Ñs s’ “ w ‘

The distribution given by (49) is known as a with mean matrixmatrix normal distribution 

> Ds, left variance matrix  and right variance matrixÐ= ‚ =Ñ Ð#=  "Ñ ‚ Ð#=  "ÑA

Ð Ñ Ð#=  "Ñ ‚ =^ ^w ". Note that is a  random matrix and the variance-covariance> 

matrix of  is given by  the  matrix  where is> D ÒÐ#=  "Ñ= ‚ Ð#=  "Ñ=Ó Ð ÑA
"Œ ^ ^ Œw

the Kroenecker product. Thus, defines the covariance matrix for the Ð Ñ Ð Ñ 3>2DA 33
"^ ^w

row of whereas defines the covariance matrix for the column. The> D ÒÐ Ñ Ó 4>2^ ^w "
44 A

above implies that all the elements of the random matrix have univariate, multivariate> 

or matrix normal distributions [see Dawid (1981) for a review of matrix normal

distribution].

Using (48) and (49), it can be shown that the posterior distribution of  is anDA

inverse-Wishart distribution with degrees of freedom and scaleÐ8  #=  "Ñ Ð8 ‚ =Ñ

matrix
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I Y ^ Ñ Y ^ Ñs sœ Ð Ð à> >w (50)

see Press (1982), pp. 136, for details. Thus, at the iteration of the Gibbs sampler the3>2/

probing distribution of the full conditional of  is given by the matrix normal distribution>

(49) where a value for  can be either drawn from the inverse-Wishart distribution orDA

(50) can be used to estimate , after divided by the degrees of freedom .DA Ð8  #=  "Ñ

As before, we suppress the dependence of the true and the probing distributions

on and data and denote them as  and  . Then a. > > t the  iteration we:Ð Ð 3>2l l< Ñ 1 < ÑÐ8Ñ Ð8Ñ

draw a candidate, say from the probing distribution (49) and then the new value  is> >- 3

set to the candidate value, that is,  with probability> >3 œ -

+Ð ß Ñ œ 738 "ß
:Ðs

:Ðs
> >

> >

> >
3" -

- 3"

- 3"
š ›Ñ 1 Ñ

1 Ñ Ñ

Ð

Ð
(51)

where

:Ðs > D D > > >Ñ œ l l /B:  ><Ð ÑÐ Ð Î# :Ð ÑA
8Î# " w

A
  ’ “Y ^ Ñ Y ^ Ñ (52)

and  is the prior density for the matrix of coefficients. Note that t:Ð Ñ> he probability

+Ð ß Ñ> >3" -  implies that if the ratio of the distributions in (51) is large then the

probability of acceptance is high. At each iteration, we generate a uniform  randomÐ!ß "Ñ

variable, say , and if  , then the candidate  is accepted, that is, ? ? Ÿ +Ð ß Ñ> > > >3" 3- -œ ,

otherwise we set  > > >3 œ 3" -. Note that the candidate is considered for acceptance

only if conditions for positive definiteness are satisfied in (32)Þ More specifically these

imply the positive definiteness of the and  matrices. Thus, at each iteration theE F" "

algorithm checks whether the resulting matrices have positive eigen values.

Once  is generated, we update 's via the volatility equation (32)>3
>@/-2Š ‹L3"

based on the new parameters, that is, via

@/-2 œ  @/-2  @/-2ˆ ‰ Š ‹ Š ‹L E E F Ls s3" 33" 3" 3
> ! " >3 >3 " >"

3"

0 0
w

. (53)
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Note that, as before, the updating given by (53) is based on previous error estimates, that

is, based on 's. Thus, (53) is different than the earlier updating after iteration ,03"
>3 Ð3  "Ñ

which is based on current error terms. Once 's are obtained via (53)  is@/-2Š ‹L3"
>

3.

drawn from the multivariate normal density given by (35). Continuing with these

successive draws samples are obtained from the posterior distribution :Ð ß ß ß l. E E F! " "

<Ð8ÑÑ.

4. A Numerical Illustration

We first consider a multivariate ARCH(1) model with diagonal structure given by

(30) in our illustration. We assume that the components of  vector are independentE!

gamma distributed random quantities, that is, .!!ß3 µ K+77+Ð!Þ(&ß "Ñß 3 œ "ßá ß $

Similarly, the diagonal matrix  has independent gamma components,E"

! ."ß3ß3 µ K+77+Ð!Þ(&ß "Ñß 3 œ "ßá ß $. The mean vector  is assumed to have a normal

prior with mean vector  and variance covariance matrix7! œ
!Þ!$!
!Þ!#%” •

G E E! ! "œ
!Þ!"! !Þ!!'
!Þ!!' !Þ!"!” •. Furthermore, we assume that apriori ,  and  independent.

of each other and specify .0! œ
!Þ!
!Þ!” •

Using real securities data from companies Amoco and GM, we employ the Gibbs

sampler described in Section 3.1 to sample from ,  and . The Gibbs sampler wasE E! " .

run for 10,000 iterations. In this case the full conditional distribution of  and  E E! " can

not be obtained analytically. Thus, at each iteration of the Gibbs sampler we use a

Metropolis step to draw from E E! " and .

Figure 1 is autocorrelation function graph of one of the accepted !"" series,

showing the autocorrelation is rapidly decreasing. Figure 2 shows trace plot of the same

!"", showing there is no trends involved. Figure 3 shows histogram with the density line

of the same !"".
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Figure 1. Autocorrelation function of posterir samples of .!""

Figure 2. Trace plot of .!""
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Figure 3. Posterior histogram and density plot for .!""

REFERENCES

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity.
Journal of  Econometrics, 31, 307-327.

Bollerslev, T.,   (1988). A Capital Asset PricingEngle, R. F. and Wooldridge, J. M.
Model with Time-varying Covariances. , 96, 116-131.Journal of Political Economy

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm,
The American Statistician, 49, 327-335.

Dawid, A. P. (1981). Some matrix-variate distribution theory: notational considerations
and a Bayesian application, , 68, 265-274.Biometrika

Engle, R. F. (1982).  Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation, , 50, 987-1007.Econometrica

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-Based approaches to calculating
marginal densities, , 85, 398-409.Journal of the American Statistical Association

Gelman, A., Carlin, J. B., Stern, H.S., and Rubin, D. B. (2004). Bayesian Data Analysis,
Second Edition, Chapman and Hall.



22

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Model Markov Chain Monte
Carlo in Practice, Chapman & Hall.

Harvey, A., Ruiz, E. and Shephard, N. (1994). Multivariate Stochastic Variance Models,
Review of Economic Studies, 61, 247-264.

Jacquier, E., Polson, N. G. and Rossi, P. (1994). Bayesian analysis of stochastic volatility
models. , 12, 371-388.Journal of Business and Economic Statistics

Muller, P. and Pole, A.(1998). Monte Carlo Posterior Integration in GARCH Models.
Sankhya, Series B, 60, 127-144.

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new approach.
Econometrica, 59, 347-370.

Press, S. J. (1989). . Wiley.Bayesian Statistics: Principles, Models, and Applications

Tsay, R. S. (2002). . Wiley.Analysis of Financial Time Series


