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In this paper we discuss certain issues that arise in the Bayesian analysis of replace-
ment models where the cumulative intensity function is modeled using a nonpara-
metric approach. The problem we consider is motivated by maintenance of railroad
tracks which experience wear as a result of traffic. We consider a semi-parametric
model to describe the failure characteristics of a rail section by specifying a non-
parametric form for cumulative intensity function and by taking into account effect
of covariates by a parametric form. Use of a gamma process prior for the cumulative
intensity function complicates the Bayesian analysis when the updating is based on
failure count data. We develop a Bayesian analysis of the model using Markov chain
Monte Carlo (MCMC) methods and determine replacement strategies. Adoption of
MCMC methods involves a data augmentation algorithm. We show the implementa-
tion of our approach using actual data.

Keywords: Gamma process prior, Optimal replacement, Data augmentation and
Proportional intensities model
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2.1 Introduction
Planned replacement strategies are commonly used for systems such as railroad
tracks that experience aging or wear. This is done to prevent in-service failures that
may be very costly relative to the cost associated with a planned replacement/repair.
Railroad tracks experience wear as a function of traffic usage, which is measured in
millions of gross tons (MGT). A failure of a railroad track takes the form of a crack
in a rail section. Though this does not affect the use of the rail immediately, it can
possibly lead to a fracture which is potentially hazardous. The replacement of rail
tracks is a major expense for railroad companies. Thus, it is important for railroad
companies to develop decision models to determine effective replacement strategies.

Most of the replacement strategies literature assumes that the failure characteris-
tics of systems are known and does not address statistical issues; see for example
Cho and Parlar (1991) for a general review. More recently, statistical issues in the
development of optimal replacement strategies have been considered by Mazzuchi
and Soyer (1995, 1996) and Dayanik and Gurler (2002) using Bayesian approaches.
These authors considered parametric Bayesian approaches that do not allow a flexible
modeling strategy in determining optimal strategies. Furthermore, their approaches
do not allow incorporation of covariate effects on failure intensity. Nonparametric
replacement strategies have been considered from a sampling theory perspective in
Frees and Ruppert (1985) where adaptive age replacement policies are developed.
Such non-parametric approaches have not been considered from a Bayesian point of
view.

In this paper, we present a Bayesian decision theoretic approach to the optimal
replacement problem by focusing on systems such as railroad tracks that are subject
to wear. In so doing, we present a semi-parametric model to describe the failure
characteristics of rail tracks by specifying a nonparametric form for modeling wear
and by taking into account effect of covariates by a parametric function. We develop
a Bayesian analysis of the model based on failure/replacement data using Markov
chain Monte Carlo methods (MCMC) and determine replacement strategies using
our model. Adoption of MCMC methods for determining optimal strategies requires
development of a data augmentation algorithm, in the sense of Tanner and Wong
(1987), to evaluate posterior predictive distributions.

Synopsis of our paper is as follows. In Section 2,a modulated Poisson process
model is presented for describing the failure behavior of as railroad tracks, that are
subject to minimal repair. The modulated Poisson process model was first proposed
in Cox (1972b) to consider covariate effects in counting processes. We refer to the
model as proportional intensities model (PIM) as it is a counting process alternative
to the proportional hazards model (PHM) of Cox (1972a). We introduce a semi-
parametric PIM by using a gamma process prior for the baseline cumulative intensity
and specifying parametric priors for covariate effects. In Section 3 Bayesian analy-
sis of the semiparametric PIMs is considered where the number of rail track failures
are described by a non-homogeneous Poisson process (NHPP). The MCMC based
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procedures that are used for parametric type models are adopted for inference for the
semiparametric PIM. The analysis of rail track data is straightforward if the failure
counts are observed in identical traffic usage intervals for each rail section. How-
ever, data augmentation steps must be introduced to handle the overlapping, but not
identical, intervals that occur in the railroad data analyzed and to perform prediction
for development of replacement strategies. We discuss the basics of block replace-
ment with minimal repair protocol that applies to repairable systems such as railroad
tracks in Section 4 using cost-based utility (loss) functions. In Section 5, Bayesian
replacement strategies are developed for rail tracks the semiparametric model and an
illustration of the approach is presented using actual rail track failure data.

2.2 Proportional Intensities Model for Rail Section Failures
As pointed out in Section 1, railroad tracks experience wear as a function of traffic
usage and the wear causes a failure of a railroad track in the form of a crack in a
rail section. Such a crack can possibly lead to a fracture if it is not repaired. When
a crack is found on the rail, a small piece of rail section around the crack is cut
out and replaced with a new rail piece. Since this does not significantly change the
performance of the rail section which can be miles in length, the rail sections are
assumed to be minimally repaired.

As the railroad tracks are assumed to be minimally repaired upon failure, point
processes, and specifically non-homogeneous Poisson processes (NHPP), are used
to model their failure behavior. Most of the models applied to repairable systems
do not consider the effect of covariates on the intensity function of the NHPP. Un-
der the minimal repair (MR) protocol of Barlow and Hunter (1960), the number of
failures of the i-th rail section is described by a nonhomogeneous Poisson process
(NHPP) with cumulative intensity (or mean value) function Λi(t|Θ). In what follows
we will present a generalization of the NHPP to incorporate covariate effects in the
cumulative intensity function.

Let Ni(t) denote the number of failures for the i-th rail section in an interval of
length t MGT and let Zi denote the p-dimensional vector of available covariates that
describe the characteristics of the i-th rail section. In the data on rail failures used for
the analysis, the available covariates are constant with respect to traffic usage. Ni(t)
is described by a NHPP with intensity function

λi(t) =
d
dt

E[Ni(t)]. (2.1)

To reflect the fact that the intensity function is affected by covariates, λi(t) can be
modulated by a function of Zi. Such a modulation was introduced in Cox (1972b) by
considering

λi(t;Zi) = λ0(t)eβ T Zi (2.2)
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where λ0(t) is the baseline intensity function and β is a vector of p parameters. The
Poisson process model defined by the intensity (2.2) was referred to as the modulated
Poisson process by Cox (1972b). The model can be thought as a counting process
alternative to the proportional hazards model (PHM) of Cox (1972a) where a similar
form was used for the failure rate of a non-repairable system. Thus, we will refer to
the model as the proportional intensities model (PIM).

Under the PIM the cumulative intensity function of the rail track failure process is
given by Λi(t) =

∫ t
0 λi(s)ds which can be written as

Λi(t;Zi) = Λ0(t)eβ T Zi , (2.3)

where Λ0(t)=
∫ t

0 λ0(s)ds is the baseline cumulative intensity function, that is, E[Ni(t)]
= Λi(t). We note that the baseline cumulative intensity Λ0(t) may have a paramet-
ric or a nonparametric form. In the former case, Λ0(t) will depend on some vector
of parameters, say, θ . Thus, we will write the above as Λ0(t) = Λ0(t;θ) where
Λ0(t;θ) =

∫ t
0 λ0(s;θ) ds. In the nonparametric case Λ0(t) will be modeled by a

stochastic process. In both cases, the distribution of Ni(t) given Zi and Θ = (Λ0(t),β )
is specified using Λi(t;Zi,Θ), explicitly

P(Ni(t) = n|Λ0(t),β ,Zi) =
Λ0(t)nenβ T Zi

n!
exp{−Λ0(t)eβ T Zi}. (2.4)

Thus, Ni(t) given Zi and Θ is a NHPP and conditional on Zi and Θ, all the properties
of NHPPs will hold for the PIM. For example, for the i-th rail section, probability of
number of failures in any MGT interval [s, t), is obtained as

P(Ni(t)−Ni(s) = n|Λ0(t),β ,Zi) =

[Λ0(t)−Λ0(s)]nenβ T Zi

n!
exp{−[Λ0(t)−Λ0(s)]eβ T Zi}.

In the optimal replacement problem setup of Section 4, evaluation of the expected
cost requires E[Ni(tB)|Θ] where tB is the replacement interval.

2.2.1 Modeling the Baseline Intensity Function

In modeling the baseline intensity function of the PIM, one strategy is to specify
a parametric form λ0(t;θ). For example, one can specify a power law model for
λ0(t;θ) which is widely used in reliability modeling of repairable systems. The
power law model is given by λ0(t;θ) = αγtγ−1 implying that

Λ0(t;θ) = αtγ , (2.5)

where θ = (α , γ) and α > 0, γ > 0. In the power law model, values of γ > 1 imply
that the system, in our case the rail track, deteriorates by usage, that is, by MGT.
This is typically what is expected in rail tracks that are subject to wear. Under the
parametric modeling strategy, the Bayesian formulation of the optimal replacement
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problem is completed by specifying the prior distribution π(Θ|D0) of the unknown
parameters Θ = (θ ,β ), that is, π(α,γ,β |D0) for the power law model.

Railroad tracks show great deal of variation in their physical characteristics and
in terms of the environments under which they operate. A fully parametric model is
not flexible enough to account for such variation. An alternative modeling strategy is
to consider a nonparametric form for the baseline intensity λ0(t) or equivalently for
the cumulative the baseline intensity Λ0(t) of the PIM. In the Bayesian framework
this can be achieved by specifying a prior distribution on the baseline cumulative
intensity function Λ0(t). In order to provide flexibility in modeling, it is important
that such a prior allows a wide variety of different forms for Λ0(t). Since, the baseline
cumulative intensity function is proportional to the expected number of failures up
to traffic usage t in the PIM, there is no restriction on the size of any instantaneous
jumps of the Λ0(t). Thus a gamma process is a suitable prior for Λ0(t) in the PIM.

To construct a gamma process prior, we consider a partition of [0,∞) into k in-
tervals can be defined as [t0, t1), [t1, t2), . . . , [tk−1, tk = ∞), where Λ0(t0) = 0 and
rl = Λ0(tl)−Λ0(tl−1), implying that

Λ0(t j) =
j

∑
l=1

rl . (2.6)

for j = 1, . . . ,k. Doksum (1974) considered such a construction and showed that a
probability distribution can be specified on the space of positive increasing functions,
{Λ0(t)}, by specifying the k-dimensional distribution of r1, . . . ,rk, for each possible
partition [t0, t1), [t1, t2), . . . , [tk−1,∞). In this construction the distributional assump-
tions must hold for any partition of [0,∞) and must be consistent between partitions.
The process obtained is non-decreasing and the increments are independent. If the
increments have gamma distributions, the resulting process is called a gamma pro-
cess, see Singpurwalla (1997). Let c be a positive real number, Λ∗0(t) be a best guess
for baseline cumulative intensity function and assume that the distribution of the r j’s
is given by

r jG(cΛ∗0(t j)− cΛ∗0(t j−1),c), (2.7)

where XG(a,b) denotes that X has a gamma distribution with shape parameter a and
scale parameter b. It follows from this construction that Λ0(t) is a gamma process
with Λ∗0(t) being a best guess and c is a measure of certainty about the best guess
given the prior history D0,

(Λ0(t)|D0)G(cΛ∗0(t),c), (2.8)

for all values of t. The above implies that E[Λ0(t)|D0] = Λ∗0(t) and V [Λ0(t)|D0] =
Λ∗0(t)/c.

Treatment of Λ0(t) as a stochastic process in the above enables us to develop a
Bayesian version of the replacement models considered by Ozekici (1995). Note
that using the nonparametric approach we have specified the prior only for Λ0(t).
We can complete the Bayesian formulation of the optimal replacement problem by
specifying a parametric form for the prior distribution π(β |D0) of β as independent
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of Λ0(t). Our Bayesian modeling strategy consists of a nonparametric treatment
of the baseline cumulative intensity and a parametric specification of the effect of
covariates in the Λi(t;Zi,Θ) = Λ0(t)eβ T Zi . This approach is usually referred to as a
semiparametric Bayesian approach and thus, we will refer to the corresponding PIM
as the semiparametric PIM.

2.3 Bayesian Inference for the Semiparametric PIM
In this section, we will present Bayesian inference for the semiparametric PIMs. In
so doing, we first discuss the Bayesian analysis of the parametric PIM using an adop-
tion of MCMC methods of Dellaportas and Smith (1993) presented for the PHM.
Analysis of the semiparametric model is nontrivial when the failure counts are ob-
served in the overlapping, but not identical traffic usage intervals as is typically the
case with actual data coming from different rail sections. This requires development
of a new MCMC algorithm for the Bayesian analysis.

Under the parametric Bayesian approach, the baseline cumulative intensity Λ0(t)
is assumed to be a differentiable function Λ0(t;θ) where θ is a vector of unknown pa-
rameters. Thus the baseline intensity function λ0(t) is given by λ0(t;θ) = d

dt Λ0(t;θ).
If Ni(t) for each rail section i = 1, . . . ,n is observed at traffic usages t = ti,1, . . . , ti,ri

then the data for the i-th rail section is given by Di = {Ni(t) = ni(t), j = 1, . . . ,ri,Zi}.
Using the independent increments property of the NHPP, the likelihood function of
θ and β given Di is written as

Li(θ ,β ;Di) =
ri

∏
j=1

({
Λ0(ti, j;θ)−Λ0(ti, j−1;θ)

}
eβ T Zi

)ni(ti, j)−ni(ti, j−1)

(
ni(ti, j)−ni(ti, j−1)

)
!

×exp{−{
Λ0(ti, j;θ)−Λ0(ti, j−1;θ)

}
eβ T Zi},

where Λ0(ti,0;θ) = 0.
Given m rail sections, conditional on the cumulative intensities, that is, Λi(t)’s

i = 1, . . . ,m, the Ni(t)’s are assumed to be independent. Thus, given the failure counts
for each Ni(t) at traffic usage t = ti,1, . . . , ti,ri for i = 1, . . . ,m, the likelihood function
of θ and β given D = (Di; i = 1, ...,m) is given by

L(θ ,β ;D) =
m

∏
i=1

Li(θ ,β ;Di). (2.9)

The joint posterior distribution of θ and β given D can not be obtained analytically
for any given form of the prior π(θ ,β ), but a Gibbs sampler can be used to draw
samples from the joint posterior π(θ ,β |D). For any reasonable choice of the forms
of Λ0(t;θ), π(θ ,β ), the full conditonal distributions are logconcave densities and
therefore the adaptive rejection sampling algorithm of Gilks and Wild (1992) can be
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used to draw samples from these distributions at each iteration of the Gibbs sampler.
Typically independent priors are assumed for θ and β and a reasonable form for
π(β ) is the multivariate normal density.

The use of a gamma process prior for the cumulative intensity function of a NHPP
was considered by Kuo and Ghosh (2001). The model considered by the authors
excluded the covariate information and the inference was introduced only for the
case of failure time data. If the data is only available as failure counts at different
points in traffic usage, as in the case of the data for the railroad tracks, then the semi-
parametric Bayesian inference in the PIM is not straightforward. In the railroad track
data, the rail sections are observed over different intervals, some of which overlap.
In this case the implementation of the Gibbs sampler requires a data augmentation
step. Such a step is also required for the case of a single rail section for predictive
estimation which is needed in development of replacement strategies. In the sequel,
inference for the semiparametric PIM will be discussed for the single and multiple
item cases and then a general algorithm will be presented.

2.3.1 Analysis for a Single Rail Section

Suppose that for the i-th rail section, the process Ni(t) is observed in the traffic usage
intervals [t1, t2) and [t2, t3) so that the data is given by

Di = {Ni(t2)−Ni(t1) = n1,Ni(t3)−Ni(t2) = n2,Zi}
as shown in Figure 2.1. The cumulative intensity for the i-th rail section is given by

FIGURE 2.1
The data observed for a single rail section.

Λi(t) = Λ0(t)eβ T Zi ,

where Λ0(t) is defined by (2.8). Using the independent increments property of the
NHPP, the likelihood function of Λ0(t) and β given Di is written as

Li(Λ0(t),β |D) =
2

∏
j=1

(
Λ0(t j+1)eβ T Zi −Λ0(t j)eβ T Zi

)n j

n j!
(2.10)

×exp{−(Λ0(t j+1)eβ T Zi −Λ0(t j)eβ T Zi)}. (2.11)
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As in the parametric case, a Gibbs sampler can be used for developing posterior
inference. Assuming that the prior on β , π(β ) is independent of the gamma process
prior on Λ0(t), the full conditional posterior of Λ0(t) given β is obtained, by using
the independent increments property of the gamma process, as

π(Λ0|β ,Di) ∝ [Λ0(t2)−Λ0(t1)]
c[Λ∗0(t2)−Λ∗0(t1)]+n1−1

×exp
{
− [Λ0(t2)−Λ0(t1)] (c+ eβ T Zi)

}

× [Λ0(t3)−Λ0(t2)]
c[Λ∗0(t3)−Λ∗0(t2)]+n2−1

×exp
{
− [Λ0(t3)−Λ0(t2)] (c+ eβ T Zi)

}
.

Thus the posterior distribution of Λ0(t) conditional on β can be written as

(Λ0(t)|β ,Di) G(cΛ∗0(t),c), for t < t1 (2.12)

(Λ0(t2)−Λ0(t1)|β ,Di) G(c{Λ∗0(t2)−Λ∗0(t1)}+n1,c+ eβ T Zi), (2.13)

(Λ0(t3)−Λ0(t2)|β ,Di) G(c{Λ∗0(t3)−Λ∗0(t2)}+n2,c+ eβ T Zi), (2.14)
(Λ0(t)−Λ0(t3)|β ,Di) G(c{Λ∗0(t)−Λ∗0(t3)},c), for t > t3. (2.15)

It follows from (2.13) and (2.14) that

Λ0(t2) = [Λ0(t2)−Λ0(t1)]+Λ0(t1) (2.16)

is a sum of two independent gamma random variables with different scale param-
eters. Thus, the distribution of (Λ0(t2)|β ,Di) can be simulated as the sum of two
gamma random variables. If the process was also observed during the interval [0, t1)
with, say, Ni(t1) = n0 then the distribution of Λ0(t1) would be updated as

(Λ0(t1)|β ,Di)G(cΛ∗0(t1)+n0,c+ eβ T Zi) (2.17)

and the distribution of Λ0(t2) would be the sum of two independent gamma random
variables with the same scale implying that

(Λ0(t2)|β ,Di)G(cΛ∗0(t2)+n0 +n1,c+ eβ T Zi).

It can be seen that conditional on β , the effect of the covariates is on the scale
parameter of the gamma distribution. As previously dicussed, sampling from the full
conditional of β can be done via the adaptive rejection sampling method of Gilks
and Wild (1992) as the joint density is log-concave.

The Gibbs sampler is used to sample from the joint posterior distribution of

(Λ0(t2)−Λ0(t1),Λ0(t3)−Λ0(t2),β |Di), (2.18)

using (2.13) and (2.14) whose sum is a sample point for [Λ0(t3)−Λ0(t1)], which in
turn yields a sample point from the full conditional distribution of β using adaptive
rejection sampling in an iterative manner.
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The conditional posterior distribution of Λ0(t) given β is known for t < t1 and
t > t3 and for the instants of traffic usage t2 and t3. However, as the number of failures
of the rail section up to traffic usage t is not known for t ∈ [t1, t2) and t ∈ [t2, t3),
the posterior distribution is not immediately available. This causes problems when
making predictive statements, such as in the optimal replacement problem discussed
in Section 5.

2.3.1.1 The Prediction Problem for a Single Rail Section

Suppose that the posterior distribution of Λ0(t∗) is required, where t∗ is in the inter-
val (t1, t2) and thus the number of failures between t1 and t∗ is unknown as shown
in Figure 2.2. One way to update the distribution of Λ0(t∗) is through a data aug-

FIGURE 2.2
The prediction problem for a single rail section.

mentation step within the Gibbs sampler. If Ni(t∗)−Ni(t1) = n∗ is known then the

distribution of Λ0(t∗) can be updated as the sum of two independent gamma random
variables as

Λ0(t∗) = [Λ0(t∗)−Λ0(t1)]+Λ0(t1), (2.19)

where (Λ0(t1)|β ,Di) is given by (2.12) and

(Λ0(t∗)−Λ0(t1)|β ,Di,n∗)G(c{Λ∗0(t
∗)−Λ∗0(t1)}+n∗,c+ eβ T Zi). (2.20)

Similarly, the updating for the other increments of the gamma process can be ob-
tained as

(Λ0(t2)−Λ0(t∗)|β ,Di)G(c{Λ∗0(t2)−Λ∗0(t
∗)}+(n1−n∗),c+ eβ T Zi), (2.21)

and Λ0(t3)−Λ0(t2) is still given by (2.14). The above results follow from the inde-
pendent increments property of the gamma process.

The implementation of the Gibbs sampler requires draws from (β | Λ0(t), Di, n∗)
and the adaptive rejection sampling algorithm can be used to draw samples from
this distribution. The final component of the Gibbs sampler is the full conditional
for (Ni(t∗)−Ni(t1)|Λ0(t),β ,Di). By using independent increments property of the
NHPP and adopting a well known result in NHPP’s given by Ross (1989, p. 242), it
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can be shown that

(Ni(t∗)−Ni(t1) = n∗|Λ0(t),β ,Di)∼ Bin
[

n1,
Λ0(t∗)−Λ0(t1)
Λ0(t2)−Λ0(t1)

]
, (2.22)

which is a Binomial distribution where the terms involving β are implicit in the
generated values of Λ0(•).

2.3.2 Analysis for Two Rail Sections

Analysis for Two Rail Sections Not Requiring Data Augmentation

Suppose that data from multiple, say m = 2, rail sections are observed. Let {N1(t)}
and {N2(t)} denote the corresponding NHPP’s with the same baseline cumulative
intensity function, Λ0(t). As in the previous section, given the Λi(t)’s, i = 1,2, N1(t)
and N2(t) are assumed to be independent. For illustrative purposes, consider the case
where a single interval is observed for each rail section i with ni failures in [ti,1, ti,2),
for i = 1,2. Then the likelihood function of Λ0(t) and β given D = {n1,1, [t1,1, t1,2),
n2,1, [t2,1, t2,2), Z1,Z2} is obtained as

L(Λ0(t),β ;D) =
2

∏
i=1

[
(Λ0(ti,2)−Λ0(ti,1))eβ T Zi

]ni,1

ni,1!

exp
{
−(Λ0(ti,2)−Λ0(ti,1))eβ T Zi

}
. (2.23)

The likelihood function for the case of multiple traffic usage intervals for each pro-
cess can be easily obtained by using the independent increments property of each
NHPP.

The posterior inference in the above case follows along the lines of the last section
if the observed intervals for the two rail sections are not overlapping as shown in
Figure 2.3. In this particular case, using the independent increments property of the

FIGURE 2.3
The case of non-overlapping intervals for two rail sections.
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gamma process prior, the full conditional posterior of Λ0(t) given β is obtained as

π(Λ0(t)|β ,D) ∝ (Λ0(t1,2)−Λ0(t1,1))
c(Λ∗0(t1,2)−Λ∗0(t1,1))+n1,1−1 (2.24)

×exp
{
−(Λ0(t1,2)−Λ0(t1,1))(c+ eβ T Z1)

}

×(Λ0(t2,2)−Λ0(t2,1))
c(Λ∗0(t2,2)−Λ∗0(t2,1))+n2,1−1

×exp
{
−(Λ0(t2,2)−Λ0(t2,1))(c+ eβ T Z2)

}

implying that

(Λ0(t)|β ,D) G(cΛ∗0(t),c), for t < t1,1

(Λ0(t1,2)−Λ0(t1,1)|β ,D) G(c{Λ∗0(t1,2)−Λ∗0(t1,1)}+n1,1,c+ eβ T Z1),
(Λ0(t2,1)−Λ0(t1,2)|β ,D) G(c{Λ∗0(t2,1)−Λ∗0(t1,2)},c), (2.25)

(Λ0(t2,2)−Λ0(t2,1)|β ,D) G(c{Λ∗0(t2,2)−Λ∗0(t2,1)}+n2,1,c+ eβ T Z2),
(Λ0(t)−Λ0(t2,2)|β ,D) G(c{Λ∗0(t)−Λ∗0(t2,2)},c), for t > t2,2.

Updating for other portions of Λ0(t) follows along the same lines as presented in the
last section. Similarly, sampling from the full conditional of β given Λ0(t) and D is
achieved via the use of adaptive rejection sampling.

Note that if both rail sections are observed for the same traffic usage interval, as
in Figure 2.4, then updating is again straightforward.

FIGURE 2.4
The case of identical intervals for two rail sections.

Analysis for Two Rail Sections Requiring Data Augmentation

In the railroad track data, there are cases where two rail sections are observed for
different but overlapping traffic usage intervals, as shown in Figure 2.5. Updating
Λ0(t) given β then requires the use of a data augmentation step in the Gibbs sampler
as discussed before.

As the intervals overlap, N1(t12)−N1(t11) and N2(t22)−N2(t21) are no longer
independent a priori. Thus (Λ0(t12)−Λ0(t11)) and (Λ0(t22)−Λ0(t21)) cannot be up-
dated separately. However, if the counts over the non-overlapping intervals [t11, t21)
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FIGURE 2.5
The case of overlapping intervals for two rail sections.

and [t21, t12) from N1(•) and [t21, t12) and [t12, t22) from N2(•) were available then
updating could be performed on each interval separately. This is possible due to
the independent increments properties of the Poisson and gamma processes. As-
sume that N1(t2,1)−N1(t1,1) = n∗1 and N2(t2,2)−N2(t1,2) = n∗2 as shown in figure 2.6.
Then it follows from the above that

FIGURE 2.6
The failure counts required for data augmentation.

(Λ0(t21)−Λ0(t11) |β ,n∗1,D)
∼ G(c[Λ∗0(t21)−Λ∗0(t11)]+n∗1,c+ eβ T Z1),

(2.26)

(Λ0(t12)−Λ0(t21)|β ,n∗1,n
∗
2,D)|β ,n∗1,n

∗
2,D)

∼ G(c[Λ∗0(t12)−Λ∗0(t21)]+(n1,1−n∗1)+(n2,1−n∗2),c+
2
∑

i=1
eβ T Zi ]) (2.27)

and

(Λ0(t22)−Λ0(t12) |β ,n∗2,D)
∼ G(c[Λ∗0(t22)−Λ∗0(t12)]+n∗2,c+ eβ T Z2).

(2.28)

In implementing the Gibbs sampler, data augmentation is needed on the number
of failures of the railroad tracks in the non-overlapping periods. Again, using the
properties of the Poisson process, it can be shown that

(N1(t2,1)−N1(t1,1) |n1,1,
Λ0(t2,1)−Λ0(t1,1)
Λ0(t1,2)−Λ0(t1,1) )

∼ Bin(n1,1,
Λ0(t2,1)−Λ0(t1,1)
Λ0(t1,2)−Λ0(t1,1) )

(2.29)
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and
(N2(t2,2)−N2(t1,2) |n2,1,

Λ0(t2,2)−Λ0(t1,2)
Λ0(t2,2)−Λ0(t2,1) )

∼ Bin(n2,1,
Λ0(t2,2)−Λ0(t1,2)
Λ0(t2,2)−Λ0(t2,1) ),

(2.30)

where (2.29) and (2.30) are independent binomial random variables.

2.3.3 A General Data Augmentation Algorithm

The data augmentation is not overly complex for the case of two rail sections with
only one overlapping interval. If the number of overlapping intervals increases, de-
ciding which intervals upon which to data augment is more complicated and, there-
fore, requires a systematic approach. One alternative is to break the possible traffic
usages in to a partition defined by the endpoints of all intervals, such as in Figure 2.7
for the case of three NHPP’s. For any observed interval that has now been broken up

FIGURE 2.7
The case of three overlapping intervals.

in to sub-intervals, data augmentation is used on all but the one of these sub-intervals;
the number of failures in the remaining interval is known given the total number of
failures in the whole interval and the number of failures in the other sub-intervals.
The distribution of the augmented failure counts will be a multinomial distribution.
We now describe a general data augmentation algorithm that follows this approach.

We are given data D = (Di; i = 1, . . . ,m) from m rail sections where Di = {Ni(t) =
ni(t), j = 1, . . . ,ri,Zi}. Our data consists of ri inspection runs for the i-th rail section
where the inspections are performed at ti,0, . . . , ti,ri MGTs and ni(ti,1)−ni(ti,0), . . . ,
ni(ti,ri)−ni(ti,ri−1) failures are discovered. In order to generalize the algorithm that
we have presented in the previous sections, we need to first determine the intervals
that will be used for the data augmentation steps within the Gibbs sampler.

Let t∗1 , . . . , t∗q denote the ordered list of q unique values amongst the interval end-
points ti, j for j = 1, . . . ,ri and i = 1, . . . ,m. The ordered values t∗k for k = 1, . . . ,q
will be used for the data augmentation. Also, let N∗

i,k denote the unknown number of
failures in the interval [t∗k , t∗k+1) for rail section i and B∗k = {i : ∃ j | t∗k ≤ ti, j < t∗k+1}
for k = 1, . . . ,q− 1, denote the set of all rail indices i that have a failure count that
spans the interval [t∗k , t∗k+1). Furthermore, let S∗i, j = {k : ti, j ≤ t∗k < ti, j+1} be the set
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of all interval endpoints for all rails that fall within the j-th observed interval for the
i-th rail and define m∗

i, j = |S∗i, j| be the number of interval endpoints in this set. We

will also define the ordered list of members of S∗i, j by {l1
i, j, . . . , l

m∗i, j
i, j }.

Given the above setup, at each iteration of the Gibbs sampler, the full posterior
conditional distribution of Λ0(t) given β and D can be obtained by data augmenting
on N∗

i,k. Similar to the development in the previous sections, given N∗
i,k, β and D, we

can update Λ0(t∗k+1)−Λ0(t∗k ) by using the independent increments property of the
gamma process. More specifically, given N∗ = (N∗

i,k; i = 1, . . . ,m,k = 1, . . . ,q), we
can easily show that

(Λ0(t∗k+1)−Λ0(t∗k ) |N∗,β ,D)G(c[Λ∗0(t
∗
k+1)−Λ∗0(t

∗
k )]+ ∑

iεB∗k

N∗
i,k,c+ ∑

iεB∗k

eβ T zi)

(2.31)
for k = 1, . . . ,q. Note that for t < t∗1 we still have (Λ0(t)|β ,D)G(cΛ∗0(t),c). In order
to obtain the distribution of N∗

i,k’s we define the vector N∗
i, j = (N∗

i,k;kεS∗i, j) containing
N∗

i,k’s that lie in the interval [ti, j, ti, j+1). Given ∆ = {Λ0(t∗k+1)−Λ0(t∗k ); k = 1, . . . ,q},
using the properties of NHPPs we can obtain the full conditional of N∗

i, j’s as

(N∗
i, j|∆,β ,D) Mult(ni(ti, j+1)−ni(ti, j), p∗i,1, . . . , p∗i,m∗i, j

) (2.32)

which is a multinomial of order m∗
i, j−1, where

p∗i,l =
Λ0(ll+1

i, j )−Λ0(ll
i, j)

Λ0(l
m∗i, j
i, j )−Λ0(l1

i, j)
. (2.33)

Note that N∗
i, j’s are drawn as independent multinomials at each iteration of the Gibbs

sampler.

2.4 Block Replacement of Railroad Tracks with Minimal Repair
Under the block replacement protocol, all units are replaced at time points tB, 2tB, . . .,
irrespective of their ages and an in-service replacement or repair is made whenever
failures occur; see Cox (1962). However, under the block replacement with mini-
mal repair protocol of Barlow and Hunter (1960)items are minimally repaired upon
failure but replaced at times tB, 2tB, . . ., irrespective of their ages. The replacement
problem involves optimal choice of the interval tB typically by minimizing a cost
function.

To introduce some notation let cP to denote the cost of a planned replacement
and cR to denote the cost of a minimal repair such that cR < cP. As pointed out by
Mazzuchi and Soyer (1996), the cost per unit time for the i-th rail section is given by

C(tB,Ni(tB)) =
cP + cRNi(tB)

tB
, (2.34)
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where Ni(t) represents the number of in-service failures for the i-th section that occur
in an interval of length t, Assuming that m rail sections will be replaced at time tB,
the total cost per unit time is given by

C(tB,N(tB)) =
m

∑
i=1

C(tB,Ni(tB)), (2.35)

where N(tB) = (N1(tB), . . . ,Nm(tB)) .The optimal block replacement strategy t∗B is
determined by minimizing E[C(tB,N(tB))] when a model is specified for the Ni(tB)’s.
The expectation E[C(tB,N(tB))] is taken with respect to the unknown quantity N(tB)
in C(tB,N(tB)). It is important to note that the counting process Ni(t) is based on an
unknown parameter vector Θ and it is more appropriate to write down E[C(tB,N(tB))]
as

E[C(tB,N(tB))|Θ] =
mcP + cR ∑m

i=1 E[Ni(tB)|Θ]
tB

. (2.36)

Thus, a Bayesian optimal block replacement interval is determined by minimizing

E[C(tB)] = EΘ{EN(tB)[C(tB,N(tB))|Θ]}
with respect to tB. The above requires evaluation of

E[C(tB)] =
∫

EN(tB)[C(tB,N(tB))|Θ] π(Θ|D) dΘ, (2.37)

where D denotes the information available when the decision is made and π(Θ|D) is
the probability distribution that represents the analyst’s uncertainty about Θ when D
is available and is referred to as the posterior distribution of Θ.

Ni(tB) is described by a semi-parametric PIM with cumulative intensity function
Λi(tB). Determination of the optimal Bayesian block replacement interval requires
the evaluation of E[C(tB)] given by (2.37), which involves the conditional cumulative
intensity function Λi(tB|Θ). Using the gamma process prior for the baseline cumula-
tive intensity function, Λ0(t), E[C(tB)] can be evaluated by using posterior samples
from π(Λ0(t),β |D). The posterior samples are obtained using the Gibbs sampler
with a data augmentation step as discussed in the previous section and the expected
cost is evaluated as

E[C(tB)]≈ 1
S

S

∑
l=1

mcP + cR ∑m
i=1 [Λ0(tB)]l exp(β T

l Zi)
tB

. (2.38)

The above can be minimized to obtain the optimal replacement interval t∗B.

2.5 Application to Failure Data on Rail Sections
We have data on 132 sections of rail with observations varying over the life of each
section, ranging from 3 MGT to 800 MGT. Grinding has been performed on the rail
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FIGURE 2.8
The posterior distribution of the baseline cumulative intensity function under

the semiparametric model.

sections, but at different rates, varying from none to 1 mm per year. This a main-
tenance operation which is used for preventing derailments caused by rail fractures.
This was the only covariate used in the analysis.

We considered the semiparametric model and applied the general data augmenta-
tion algorithm. In so doing, a priori, we assumed that the baseline cumulative inten-
sity function took the power law form Λ∗0(t) = αtγ , with α = 0.0005 and γ = 1.5
are specified. This corresponds to an expected total of 11.3 failures over an 800
MGT lifetime with a moderately increasing failure intensity. However, to represent
our uncertainty about this prior assumption, we set c = 25. A diffused normal prior
was used for the covariate coefficient.In implementation of the algorithm we found
254 different interval endpoints and created a large data augmentation structure to
analyze the data.

Based on the posterior analysis, as expected, grinding had a negative effect on
failure intensity. Thus, higher levels of grinding and rail weight will result in less
frequent replacements of rail sections.

In Figure 2.8 we present the posterior distribution of the cumulative intensity func-
tion Λ0(t) for the semiparametric model. We can see the jumps in the cumulative
intensity as a result of using the gamma process prior.

To demonstrate our optimal replacement decision method, we assume that the cost
of a planned replacement is 10 times the cost of a minimal repair, thus cR = 1 and
cP = 10. We assume that we have two rail sections which must be replaced as a
block. One of the sections is ground at 0.75 mm per year, while the other is ground
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FIGURE 2.9
The expected total cost of repairs under the semiparametric model.

at 1 mm per year.
Figure 2.9 shows the expected total cost of curve for the semiparametric model.

The optimal replacement interval under the semiparametric failure model (the min-
imum of the curve in Figure 2.9) is found to be 400, whereas under a comparable
parametric model it is found to be 600 MGT. This is a reflection of the difference in
the wear characteristics under the two failure models.

Overall, the semiparametric failure model is not restricted in its representation of
the failure process. While the prior assumption takes the power law form, the poste-
rior distribution of the baseline cumulative intensity function does not have to. Thus,
the optimal replacement decision is driven by the actual characteristics of the failure
process, not the parametric assumptions. While the analysis is more complex with
the semiparametric model, our data augmentation algorithm simplifies this to itera-
tive sampling from known distributions, thus allowing a more represenative model
to be used in the optimal replacement decision.
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