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In this paper, we conduct a quantitative analysis for a strategic risk management problem
that involves allocating certain available failure-mitigating and consequence-alleviating re-
sources to reduce the failure risk of system safety components and subsequent losses, respec-
tively, together with selecting optimal strategic decision alternatives, in order to minimize
the risk or expected loss in the event of a hazardous occurrence. Using a novel decision tree
optimization approach to represent the cascading sequences of probabilistic events as con-
trolled by key decisions and investment alternatives, the problem is modeled as a nonconvex
mixed-integer 0-1 factorable program. We develop a specialized branch-and-bound algorithm
in which lower bounds are computed via tight linear relaxations of the original problem that
are constructed by utilizing a polyhedral outer-approximation mechanism in concert with
two alternative linearization schemes having different levels of tightness and complexity. We
also suggest three alternative branching schemes, each of which is proven to guarantee con-
vergence to a global optimum for the underlying problem. Extensive computational results
are presented to demonstrate the efficacy of the proposed algorithm.
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Area of Review: Optimization.



1 Introduction

This paper addresses the strategic reduction of risk in a system that is characterized by a
decision tree. Such a tree contains two types of nodes that represent either event-points or
decision-points. At an event-point, some safety feature or measure is invoked that might
lead to one of several outcomes, each represented by an arc having a specified probability
of occurrence. For example, in the particular context of Bernoulli events, an event-point
7 would trigger either a failure or a success outcome state with respective probabilities p;
and 1 — p; corresponding to the particular safety feature applied at this stage. On the other
hand, the arcs emanating from each decision-point node are deterministic, and represent a
selection among different available alternatives. These choices might involve making certain
strategic decisions or system design selections at the particular stage in the process, which
then govern the subsequent sequence of events and decisions. The decision tree is rooted at a
root node or node zero that represents some component failure in the system under study or
an external hazardous occurrence, which triggers a cascading sequence of strategic decisions
and event outcomes based on applied actions or safety features that are invoked to control
the damage. Hence, each branch in the tree represents a specific sequence of decision choices
and event outcomes starting from the root node, and culminating in a final outcome or leaf
node of the tree, where the latter entails an associated consequence or loss.

Figure 1 displays a particular example of a decision tree pertaining to the rupture of
a gas-line in an offshore oil and gas platform, which has been adapted from a simpler event
tree representation (i.e., one having only event-point nodes) as described in Andrews and
Dunnett (2000), and that involves Bernoulli events. Here, each event-point, represented by
the nodes indexed 1,...,9, corresponds to applying some safety measure such as closing an
isolation valve to localize the damage or opening a blow-down (BD) valve to depressurize
certain critical sections of the system, and can lead to one of two immediate scenarios or
outcomes depending on the success or failure of this measure. Note that a particular safety

measure can be activated at different event-points in the tree to counteract the hazard at



that particular stage in the process. At any decision-point in the tree (nodes 10,...,13 in
Figure 1, depending on the situation at that particular stage as governed by the sequence
of events and decisions leading up to it, one of several strategic alternative options can be
selected, where each such option is represented by a binary variable that takes on a value
of one if this option is selected and zero otherwise. Hence, at the decision node 10 for
example, one of three choices can be made with respect to subsequently activating only the
closure of valve B, or the closure of valve B and the opening of the blow-down (BD) valve,
or neither of these, which are respectively represented by the binary variables ¢q, ¢9, and
¢3 with ¢ + ¢2 + ¢3 = 1. The binary variables designating the alternative choices at the
other decision nodes 11, 12, and 13 are specified in the legend of Figure 1 along with their
constraining relationships. For example, assume that the first option is chosen at decision
node 10. At the event-point represented by node 6, the valve B either fails or succeeds to
operate with respective probabilities pg and 1 — pg. Following the success outcome, the leaf
node 14 is reached, while the failure event leads to another decision node at which one of
two emergency response choices can be made, which are represented by the binary variables
¢4 and @5, respectively, with ¢4 + ¢5 = ¢1. Note that when ¢; = 0, the choice represented
at decision node 11 does not arise. In this fashion, the cascading sequences of events and
decisions lead to final leaf nodes 14, ..., 28, each entailing a particular loss or consequence.

Jiang et al. (2006) study maintenance selection and scheduling under tight budgetary
and labor constraints to maximize the risk reduction. A composite heuristic using linear
programming relaxations and dynamic programming is developed to solve the large-scale
integer programming problem. Based on this, a Lagrangian relaxation approach is adopted
to formulate a particular knapsack problem, and a sequence of such knapsack problems are
then solved using dynamic programming in concert with a heuristic. In another study, Dil-
lon et al. (2003) develop the Advanced Programmatic Risk Analysis and Management model
as a decision tool for allocating a limited budget amongst design and residual investments

that involve reinforcement (to mitigate technical failure risks) and initial budget reserves (to



mitigate managerial failure risk). For all levels of residual investments, the corresponding al-
locations of the budget between subcomponents are listed and the alternative that minimizes
the expected risk is chosen. Using sensitivity analysis, the value of additional investments
is assessed, which provides insights into the amount of additional budget levels required to
satisfy certain specific risk thresholds. Mehr and Tumer (2006) study resource allocation
in the form of a portfolio selection problem in which risk is related to both the likelihood
and consequence of an undesirable event, and each unit of resource allocation reduces the
risk by a random amount. Sherali et al. (2008) also study resource allocations to minimize
the expected risk in a given system. In contrast to Mehr and Tumer (2006), they differenti-
ate between investment decisions for failure-mitigation and consequence-alleviation. A logit
model is used to represent the relationships between investments and failure probabilities
instead of adopting a linearity assumption as in Mehr and Tumer (2006). Furthermore, the
probability of a final consequence is given via an event tree as a polynomial function of the
probabilities of cascading events as opposed to using an assigned probability. The overall
event tree optimization problem is modeled as a continuous nonconvex factorable program,
and an equivalent transformed reformulation of the problem is solved using the commercial
global optimization software BARON ( Sahinidis (1996)).

Several other risk management applications where decision trees of the type described
in Figure 1 arise are discussed in the literature. Beim and Hobbs (1997) utilize event trees
to estimate the lock closure risks due to vessel accidents and nonstructural failures, while
Acosta and Siu (1993) analyze steam generator tube rupture accidents in a power plant.
Alternatively, Ulerich and Powers (1988), Andrews and Bartlett (2003), and Hayes (2002)
adopt fault trees for modeling chemical processes, firewater deluge systems, and biological
invasions, respectively. Dugan et al. (2000) develop a fault tree modeling and analysis tool,
which decomposes the tree into static and dynamic subtrees that are solved using binary
decision diagrams and Markov models, respectively. Another such computer-automated

fault tree analysis tool that is applied in chemical process industries has been designed by



Khan and Abbasi (2000). For fault tree management problems, Rauzy (1993) proposes new
algorithms based on binary decision diagrams that enable an efficient computation of minimal
cuts along with deducing the probability of the root event. Dutuit and Rauzy (1996) describe
a linear-time algorithm to detect independent subtrees in a fault tree by which computational
costs can be reduced by means of a divide-and-conquer technique. Using the binary decision
diagram approach of Rauzy (1993) and Dutuit and Rauzy (1996), Sinnamon and Andrews
(1997a, 1997b) calculate the exact values of the top event parameters efficiently in contrast
with the approximations produced by using traditional kinetic tree theory approaches. In
addition, Furuta and Shiraishi (1984), Kenarangui (1991), and Huang et al. (2001) suggest
using the fuzzy-set approach in order to enable the use of verbal statements for possibility
measures instead of requiring the specification of event probabilities.

The remainder of this paper is organized as follows. In Section 2, we formulate a
mathematical model for the DTO problem and then develop a suitable reformulation along
with a tight lower-bounding representation through some transformations, polyhedral ap-
proximations, and valid inequalities in concert with two alternative linearization schemes.
In Section 3, we describe a specialized branch-and-bound procedure to solve the DTO prob-
lem and establish its convergence. Computational results for a hypothetical case study and
a set of simulated test cases are presented in Section 4. Finally, Section 5 concludes the

paper with a summary and some recommendations for future extensions.

2 Model Formulation: Analysis and Enhancements

To model the proposed decision tree optimization problem, we begin by defining the risk
associated with each possible final outcome or leaf node of the tree. Toward this end,

consider the following notation:
o [, ={1,...,1}: set of indices representing the event-point nodes.

e p; and (1 — p;): respectively, the conditional probabilities of failure and success associ-
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ated with the outcomes resulting from the application of the particular safety feature
at event-point 4, given that the sequence of decisions and events on the chain from the

root node to node ¢ has occurred, 7 € I..

Remark 1. Note that for the sake of notational simplicity and clarity in exposition, we
consider Bernoulli events in our model, although our analysis readily generalizes to multi-
state events. For example, we could consider multiple levels of failure indexed by r € Fj,
having respective probabilities p;.,r € F;,Vi € [., with the success probability given by
p;i = (1= >,cp, Pir) € (0,1). Some comments on accommodating this feature in the model

are provided in our discussion. []

e 7 = {j: node j is a final outcome or leaf node index of the tree}.

e d=1,...,D: indices for the collective set of decisions made over the entire tree.

1 if decision d is selected

$q =

0 otherwise.

e [: index set of decision-point nodes in the tree.

e J,. = {decisions d (with corresponding binary variables ¢, ) associated with the alter-

native option-based arcs that emanate from node k}, Vk € K.

e Bj = {ordered set of decisions d (with corresponding binary variables ¢4) that occur

on the (unique) path from the root node 0 to node k}, Vk € K U I, UT.
For each j € 7:

e (C; = {i: node i lies on the (unique) path from the root node 0 to node j, excluding

nodes 0 and j}.

e A;;= arc emanating from node ¢ € Cj; that lies on the path joining the root node 0 to

node j € 7.



e S1; ={i € C;N1.: the (conditional) probability associated with arc A;; is p;}, Vj € 7.

o S5; = {i € C;NI.: the (conditional) probability associated with arc A;; is (1 — p;)},

Vjer.
e S3; = {d: decision d is associated with arc A;;,Vi € C;N K}, Vj e 7.
e [;=loss or consequence (in dollars, say) associated with leaf node j € 7.

e ¢;= fixed cost associated with selecting decision d, Vd = 1,..., D. (Note that for the
sake of simplicity, we consider here only linear cost terms; however, the methodology
described below readily extends to the case where we might have polynomial cost terms
that are predicated on products of the ¢-variables that occur along (partial) paths from

node 0 to any leaf node.)

Then the risk associated with the leaf node j € 7 is the expected consequence/loss

that is conditioned on the binary decisions as given by:

vi=G [ e [T —p) [] da Vier, (1)

’iES1j iESQj dEng

and the overall risk is the total expected consequence given by > jer U5
Thus far, the only decisions identified with respect to the decision tree analysis involve

selecting binary values for the variables ¢4, d = 1,..., D, subject to the restrictions that

Y da=]] ¢a Vk €K, (2)

deJy, de By,

where H ¢q = 1 whenever B, = &, Vk € K. Now, as in Sherali et al. (2008), suppose

de By,
that we can additionally bring to bear certain preventive or protective event-related resources

such as investments in improved technologies or supporting equipment for the various safety

features involved so as to mitigate the conditional failure probabilities, p;,i € I., given



the sequence of preceding actions and events. Likewise, suppose that we can invest in
certain available consequence-related resources such as clean-up mechanisms and trained
emergency response personnel in order to ameliorate the potential consequences or losses [;
associated with the leaf nodes j € 7. Accordingly, the goal would be to determine how to
effectively deploy the available limited resources under some budgetary restrictions so as to
appropriately manipulate the failure probabilities and the resultant consequences, as well as
devise a plan for making suitable strategic decision option choices, in order to minimize the

overall risk. More specifically, consider the following related notation and concepts:

e m=1,...,M: index set for the available event-related resources.
e s, = total available units of the event-related resource m, Vvm =1,..., M.

e ¢;m= decision variable representing the quantity of event-related resource m that is
allocated to reduce the associated (conditional) failure probability p; of the safety

feature deployed at event-point or node i, Vi € I,, m=1,..., M.
e ¢;,= cost (in dollars) per unit of g;,.
e n=1,...,N: index set for the available consequence-related resources.
e t,= total available units of the consequence-related resource n, Vn =1,..., N.

e 7;,= decision variable representing the quantity of consequence-related resource n that
is allocated to reduce the loss magnitude /; associated with the leaf node j, Vj € 7, n =

1,....N.
e d;,= cost (in dollars) per unit of rj,.
e [ = total available budget (in dollars).

e Logit model for relating p; to {qim, m=1,..., M}, Vi € I.:

M
DPi . .
In L —pll = aio = > GimGim, Vi € L, (3)

m=1



where (a;g, ..., aipr) > 0.

e [pl, p]: lower and upper bounds on p;, where 0 < pl < p; < p¥ < 1, Vi € I, and where
these bounds are either imposed or are implied by (3) and the available resources; in
particular, we assume that p¥ = p;‘(?’) = %0 /(14-€e%0),Vi € 1., as implied by (3), i.e., the
model seeks further possible reductions in p; below p¥ by using suitable event-related

resource allocations as necessary.

o Model for relating l; to {rj,,n=1,..,N}, Vjer:

N
l]' == bj(] - Z bjnrjny vj eT (4)

n=1
where (bjo, cey ij) > 0.

Remark 2. As an alternative to (4), we could consider a diminishing marginal return loss
function of the type l; = bjoexp{— ij:l binTjn}t, Vj € 7, having nonnegative parameter
values. Our proposed algorithm can be identically applied for such loss functions upon
taking logarithms. Likewise, for the general multi-failure state scenario discussed in Remark
1, the corresponding logit model would take the form In|p;./p] = a0 — Zn]\le irmim, VT €

F;,i € 1., with the analysis described below following identically. [J

. [lé-, I¥] : lower and upper bounds on l;, where 0 < lé <l; <1f <oo, Vj € 7, and where
these bounds are either imposed or are implied by (4) and the available resources; in
particular, we assume that [} = l;M) = bjo,Vj € 7, as implied by (4), i.e., the model
seeks further possible reductions in [; below [} by using suitable consequence-related

resource allocations as necessary.

The decision tree optimization problem, DTO, can then be formulated as the follow-

ing 0-1 mixed-integer nonlinear programming problem:

D

DTO: Minimize chqzﬁd—l—le H Di H (1—pi) H ba (5a)

d=1 jET iESU iGSQj d653j
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subject to

Z%mgsma vm:lauM (5b>
i€l,
erngtn, Vn=1,...,N (5¢)
JET
M N
Z Z CimQim + Z Z djnrjn S 67 (5d>
iel, m=1 jer n=1
Di J
l . = Q0 — imYim Vi [e 5
n{l—pz} aio mzla q i€ (5e)
N
lj = boj — ijnrjna Vier (5f)
n=1
> ¢a= ][] ¢a VE€ K (52)
deJy, de By

O<pi<pi<pf<l, Viel,

(p, ) € Q=1 (p,1): . . (5h)
0<ll<l;<I¥<oo,Vjer

(¢.r) € & (51)

¢q binary, Vd=1,...,D. (5j)

In this formulation, the objective function (5a) seeks to minimize the total cost of
implementing decisions plus the consequent expected loss or overall risk. (Note that the first

term in the objective function is equivalent to the polynomial term Z Z cdgbd[ H gbd/}
keK deJy, d'eBy
because of Constraints (5g) and (5j)). Constraints (5b) and (5¢) impose the resource avail-

ability restrictions; Constraint (5d) enforces the budgetary limitation; Constraints (5e), (5f),
and (5g) follow from (3), (4), and (2), respectively; (5h) requires the (p,[)-variables to sat-
isfy the specified bounding restrictions; and & in (5i) is a polyhedron (embedded in the
nonnegative orthant) that includes any additional suitable constraints and variables in order
to further restrict the (g, r)-variables, or to relate them to other influencing technological or
operational decisions that are not explicitly stated in the above model. In the simplest case,

2 ={(q,r): (q,r) > 0}. Observe that the nonconvexity in Problem DTO arises due to the



polynomial function in (5a) and (5g), the logarithmic (factorable) term in (5e), as well as

the binary decision variables in (5j).

Remark 3. There is another related model that can be formulated to study a sensitivity
analysis issue in the context of decision trees, which is also of interest and can be handled
by the algorithmic process discussed below. Consider a decision tree in which the event
probabilities and loss values are not known with certainty, but might vary within intervals
as designated in (5h) (while not being strategically controllable). Given such variabilities
in the probabilities and the consequences, we might be interested in ascertaining the least
expected consequence or risk value, along with the maximum possible deviation from this
value that could occur due to the inherent uncertainties in the problem. Hence, we could
first minimize (5a) subject to (5g), (5h), and (5j), and then fixing the resulting ¢-variable
values, we could next determine the maximum of (5a) subject to (5h) in order to resolve
these two respective issues. Furthermore, as an alternative approach for making decisions
that hedge against this uncertainty, we could formulate and solve a corresponding robust
optimization problem in the spirit of Mulvey et al. (1995), or minimize the maximum risk
by solving

min max {(5a)}. U
¢:(58),(5§) (PJ)EQ{( )}

We next define the following auxiliary variables, along with their implied bounds, in
order to conveniently reformulate Problem DTO. To begin with, we transform the objective

function by denoting

0, =1; H Di H (1—p), Vjer. (6a)

iESlj iESQj
Thus we have,

l u
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where,

b =1 T ot JT (1 —pt)

iESlj iESQj

, VjerT. (6b)
oy =1 L et [T1=p)
i€S51; 1€852;
Furthermore, noting (1), (5a), and (6a), we denote
V; = 0jws,,;,Vj €T, (6¢)
where
ws,, = [] ¢a.¥j €7 (6d)

deSs;
Noting that the binariness of the ¢q-variables implies that of the wg,;-variables, Vj € 7, we

can linearize (6¢) by replacing it with the restrictions:
Oiws,, < ¥; < ws,, and 0%(1 — wg,,) < 0; — ¥; < 04(1 — wg,,), (6e)

by which it is readily verified that (6c) holds true whenever wg,, takes on binary values,
Vj € 7. In fact, because of the positive (unit) objective coefficients on v;, this relationship
will hold true even if we retain just the inequalities ¢; > lws,, and 1; > 6; — 0%(1 — ws,,)
from (6e) for each j € 7.

In the same spirit as wg,;,7 € 7, we define a new variable w; to represent H(bd

deJ
for some specific sets J C {1,..., D} as described below, which will be used in the sequel

for linearizing (5g). Here, whenever |J| = 1 with J = {d}, we will take the corresponding
wy = ¢q itself, and whenever J = &, we will take w; = 1. Now, consider any set Ss; for
j € 7 (in general, wg,, might be replicated for different j € 7), and assume that the indices
in S;; are arranged according to the order in which the corresponding decisions d (with
associated variables ¢4) occur along the path from the root node to node j. If |Ss;| > 2,

this will generate wj-variables via sets J defined by taking the first two indices from Ss;, the

11



first three indices from Ss;, and so on, up to all the indices from Ss; (finally yielding wg,,
as denoted above). Letting # denote the resulting distinct sets J generated, we define the

following identities:

wy =[] éaVIe 7. (7)

deJ
Note that (7) subsumes (6d) since S3; € #, Vj € 7.

Next, to linearize (5e), we introduce the variables
Y1 = In(p;) and yo; = In(1 — p;), Vi € L. (8a)

Note that,

v <y <yt and yh; < yor <y,
where yi; = In(pl), yi5 = In(p}), yh = In(1 —pY), and vy = In(1 —p)),Vi € I..  (8b)

Similarly, to linearize (6a) itself, we denote
zj =1In(0;), Vj €T, (9a)
where, based on (6b), we impose

l u
z-gzjgzj,

with 2} = In(6}) and 2} = In(6Y), Vj € 7. (9b)
Likewise, to accommodate the term In(l;) generated by taking logarithms in (6a), define

& =In(ly), vy e, (10a)
and impose the related bounds:

& <& <&, where & =In(lf) and & = In(l}), Vj € 7. (10b)
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Using the foregoing transformations and substitutions, we obtain the following equiv-

alently reformulated problem DTO(€2), which is predicated on the hyperrectangle .

D

DTO(9): Minimize Z Cqdq + Z )

subject to

d=1 JET

V; > hws,, and ¢; > 60; — 04(1 —wg,,), Vj €T

wy = [[éaVIe 7

deJ
Zqimgsm,szl,...,M

icl,
erngtn,\v’nzl,...,]\f

JEeT

M N
Z Z Cim%im + Z Z dj"rjn < ﬂ’

ie[e m=1 JET n=1
M
Y1i — Yoi = Qi — Z AimGim, Vi € I,
m=1
N
lj = bOj — ijnrjn,Vj cT
n=1
> ¢a=wp, Vke K
deJy
zp =&+ Z?/u—i- Zym,WET
1€51; €S2,

y1i = In(p;), Vi € I,

yoi = In(1 —p;), Vi € I,
z; =1In(6;),Vjer

& =1In(l;),Vjer
(p,1) € Q

(1) e &

0 <0; < 07,2 <z <2, and € <& < VjeT

yh <y <yl and yh, <o <yl Vi€ I,
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¢q binary, Vd =1,...,D, and 0 <w; <1,VJ € 7. (11r)

Here, Q is as specified in (5h), and we note that the bounds in (11q) depend on {2
(even as 2 will be modified via a partitioning process in our proposed algorithmic approach
below) and are given by (6b), (8b), (9b), and (10b), respectively. For the sake of convenience
in discussion, we shall denote the set of variables in Problem DTO((2), with obvious vector

notation, as:

T = (pal7Q7 T, ¢7w7¢7‘97y17y27z7£)7

where, in particular, y; = (y14,Vi € I.) and yo = (y2i, Vi € I.). Observe that DTO(S?) is, in
general, a mixed-integer 0-1 factorable program (see Sherali and Wang (2001) for continuous
factorable programs). However, in our case, DTO(2) is linear except for the complicating
identities (11¢) and (11k) - (11n).

We next discuss some suitable polyhedral outer-approximation mechanisms to handle
the univariate, monotone logarithmic functions in (11k) - (11n). Toward this end, generically

denote any identity in (11k) - (11n) as:
f=1In(y), where 0 < ' <y <" < o0. (12)
We then replace each such constraint (12) by the following affine convex envelope:

£ 2 () + %wnw (), (13a)

along with some H > 2 tangential supports:

(v =)

L forh=1,...H, where /' =y < v < ... <y =% (13b)
Th

[ <in(y)+

In order to prescribe some judicious alternatives for selecting the points of tangency

{v2,...,vr—1} (other than the interval end-points) in (13b), consider the following result:

14



Proposition 1. Consider any 0 < 4 < 4 such that in(y) — in(7) = A. Then, for v € [¥,4],
the maximum error, E, between the function [n(y) and its piecewise linear approximation

defined by the tangential supports at 4 and 4 depends on A alone and is given by

E =In[e® —1] — In(A) +

— 1. 14

Proof. By the monotonicity of both the logarithmic and the affine tangential support-
ing functions, the stated maximum error, E, occurs at the point of intersection +* of the

tangential supports as given by v* = 3yA/(§ — 7), with

Y

Substituting for v* in (15), and writing In(y) = In(3) + A, we get

E:ln<%—1>—ln(A)+ _1,

A
[(5/7) = 1]
which, upon using /5 = €2, yields (14). O
Corollary 1. Given any € > 0, let A = A, be the solution to (14) when we set F = ¢. Now,
suppose that we approximate the function f = In(~) on [y!,7%] C (0,00) by H tangential

supports constructed at points uniformly distributed along the f-axis including the end-

points, where

[ PnWU)A:mWW ey (16)

Then, the maximum approximation error will be bounded above by e.

Proof. By Proposition 1 and since 0E/0A > 0 for A > 0 in (14), the maximum approxi-

mation error will be bounded above by € provided

In(y") — In(+")
<
H—1 < A

15



which yields (16). O

Accordingly, we define the Bounded Error Strategy (BES) for selecting points for
generating the tangential supports (13b) as that prescribed by Corollary 1, given any error
tolerance € > 0. For example, utilizing (14), the maximum approximation error will be
bounded above by ¢ = 0.01 (respectively, 0.001), if we select A, = 0.28 (respectively, 0.09).
The number of tangential supports generated would then further depend on the bounding
interval [y!,v"] as given by (16). Alternatively, in order to control the number of tangential
supports generated, we shall also apply BES with a prespecified value of H. In this case,
we generate (13b) at some H uniformly distributed points along the f-axis, including the

interval end-points. This yields

h—1 o
_ l _
,yh_ea:p{ln(y)+ (—_1)ln {—71}}, forh=1,... H.

We shall refer to this strategy as BES(H). We recommend the value H=4 based on our

computational results reported in Section 4, where we investigated using H=4,. .., 20.
Next, in order to generate a linear programming relaxation LP(2) for computing lower

bounds in a branch-and-bound framework, we additionally adopt the following alternative

linearization strategies for (11c) as identified in Section 2.1 below:

2.1 Linearization of (1lc)

In this section, we shall discuss two alternative schemes for linearizing (11c) that differ in
their size or complexity and the relative tightness of the resulting LP relaxation. These
are respectively denoted as linearization methods LM1 and LM2, and, together with the
polyhedral outer-approximation (13) applied to (11k)-(11n), produce corresponding LP re-
laxations LP1(Q2) and LP2(€2), respectively. We shall also use the terminology LP(2) to

refer generically to either of the foregoing relaxations LP1(Q2) and LP2().

16



2.1.1 Linearization Method LM1:

This is a standard linearization technique that utilizes the following constraints for each

J € ¢ such that |J| > 2 (noting (11r)):

wy < ¢g,Vd € J, and wy > Y " da—|J] + 1. (17)
deJ

Note that as portended by (11c), and using (11r), when ¢4 = 0 for any d € J, then (17)

implies that w; = 0, whereas when ¢4 = 1, Vd € J, then (17) implies that w; = 1 as well.

2.1.2 Linearization Method LM2:

In this method, consider any decision-point node £ € K. Recall that B denotes the ordered
set of decision indices that occur on the path from node 0 to node k. If By = &, then no
additional constraints are generated for this node k. Else, suppose that |Bg| > 1. Then, we

generate the restrictions:
Wp,+d = Qa, Vd € Ji, (for each k € K : By # @), (18)

where we denote wp,+4 = wp,ufqy, With the index d appearing last in the resulting set

B, U{d},Vd € Jy.

Proposition 2. The constraints (18) are valid and together with (11i) and (11r), imply that
(11c) holds true.

Proof. First of all, note that (18) is valid since if ¢4 = 0 for any d € Ji, then we must have
wp,+4 = 0 by its interpretation, and if ¢4 = 1 for any d € Ji, then by (11i) and (11r), we
must have wp, = 1, so that again the interpretation of wp, 4 implies that we must have
wp,+a = 1.

Next, let us establish that (11c) holds true by induction on |J|. Consider any k € K

such that By = {d'} and d € Ji so that |J| = 2 with J = {d’,d} (the case |J| = 1 is trivial
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by definition). Now, if ¢4 = 0, then (11i) implies that ¢4 = 0, so that (18) yields wgq = 0.
On the other hand, if ¢y = 1, then (11i) implies that ¢4 = 0 or 1, which respectively yields
waq =0 or 1 via (18).

Inductively, to complete the proof, consider J = {di,...,dy}, where h > 3, and
assume that (11c) holds true for any strict subset of this set. Hence, there exists k € K such
that By = {d1,...,dp_1}, with dj, € Ji. Let us show that (11c) is satisfied for any such J. If
¢q =0 for any d € {d,...,dy_1}, then by the induction hypothesis, we have that wg, =0,
which implies by (11i) that ¢4 = 0, Vd € Jy. Therefore, ¢4, = 0, which implies by (18) that
wy = 0. Else, if ¢4, = ... = ¢q,_, = 1, then wp, = 1 by the induction hypothesis, and so
by (11i), ¢4, = 0 or 1, which respectively yields w; = 0 or 1 via (18), and so (11c) is again
satisfied in either case. [

The next result demonstrates that LM2 yields a tighter representation than LM1 in

the continuous (LP) sense.

Proposition 3. The constraints represented in (18), (11i), and ¢ > 0 of LM2 imply those

in (17) of LM1.

Proof. Consider any J' € ¢ and assume without loss of generality that J' = {1,...,h},
with ¢, ..., ¢n occurring in this order along the path from node 0 to some node j. Hence,

by (17), LM1 generates the constraints

wJ/Sgbd, \V/d:L...,h, (19&)
h

wy =Y ¢a—(h—1). (19Db)
d=1

Now, by (18) applied to the node from which the arc having ¢, emanates, LM2
directly produces wy = ¢y, and (11i) yields ¢, < wy_xy, which, by (18) applied at the node
from which the arc having the variable ¢j,_; emanates, produces wy _g5 = ¢,—1. Hence,
wy < ¢p_1 as well. Continuing in this fashion along the chain from node j to node 0 yields

that (19a) is implied.
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To complete the proof, we next show that (19b) is implied as well. Note that (18)

yields for any j; € Ji, k € K, that

WB+j1 = ¢j1 > wp, + ¢j1 -1, (20)

where the last inequality follows from the fact that wp, < 1in (11r). Hence, applying (20)
at the node from which the arc having the variable ¢; emanates with By + j; = J' and
J1 = h we get,

wy > Wy —{n} + ¢h —1. (21)

Repeating this at the node from which the arc having the variable ¢;_; emanates yields

Wy—gpy = Wy —hh—1} + Gn—1 — 1, which, together with (21), implies that

Wy > Wy {hh-1} T On + Pro1 — 2. (22)

Continuing (22) along the chain from node j to node 0, we get

Wy > Wy (hh1,.2 T O+ 1+ ...+ Pa—(h—1)= Z ¢qg — (h —1),

where the last equality follows by noting that wy g, p-1,.. 23 = w1 = ¢;. Hence, (19b) is also
implied. [J

Now, for any j € K U I, U, let d(j) be the first decision index that is encountered
in the (reverse) path from node j to the root node (whenever d(j) does not exist, we define
¢aqj) = 1). Then, we can simplify LM2 by eliminating the wj-variables upon using (18),
which effectively equates ws,;, = ¢a(;),Vj € 7 in (11b) and wp, = dar), Vk € K in (11i).
Hence, by Proposition 2, LM2 can be equivalently written by using these substitutions in
(11b) and (11i), and eliminating (11c) and the w;-inequalities in (11r). The following result

reveals a partial convex hull representation inherent within LM2.
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Proposition 4. Consider the following polyhedral set defined by the constraints of LM2.

A={0>0:) da= ),k € K}. (23)

deJy

Then, A is nonempty and compact with binary-valued extreme points.

Proof. The compactness of A follows readily by noting that the constraints in A imply that
0<¢s<1,Vd=1,...,D, recalling that ¢gu) = 1 whenever d(k) is null. Now, to complete
the proof, let us show that for any arbitrary objective vector (Cy,d = 1,..., D), the linear

program

D
Minimize {Z Cada: ¢ € A} (24)

d=1
has an optimal solution for which ¢4 is binary-valued.

We solve (24) sequentially as follows. Consider any decision node k € arg max{|Bx|},
and notice that the variables ¢4 for d € J, appear only in the single corresponding constraint
for k in (23). Hence, there exists an optimal solution in which ¢; = ¢au), where d €
argmin{Cy}, and ¢4 = 0, Vd € J, — {ci} This eliminates the variables ¢4 for d € J,, from
(QZe)Jkatlong with the associated constraint for this k£ in (23), where, whenever By # @ (so
that d(k) exists), we also update the objective coefficient Cy for the upstream (toward the
root node) variable ¢qxy according to Cy) < Cyuy + C;. Repeating this step, we will finally

solve separable problems for decision nodes k € K having By, = &, for which the reduced

linear program is given as follows for some transformed objective coefficients (C’d, de Jy):

Minimize {Z Cada: Y _ ¢a=1,¢a>0,Vd € Jk} :

deJy, ded
and for which there exists an optimal binary solution for ¢4, d € J;. By back-substituting
these binary values for the recorded solutions for the downstream decision nodes, we will get

a binary optimal solution for ¢g4, d € Ji,Vk € K. [J
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2.1.3 Illustrative Example

Consider the illustration of the decision tree in Figure 1 that contains the restrictions (5g):

¢1+ G2+ 93 =1, (25a)
Ps+ &5 = @1, (25b)
P6 + o7 = @3, (25¢)
Ps + P9 = P307, (25d)

along with product terms of the type (7) for J € # as given by:

G104, 105, G306, D307, G3d7¢Ps, and P3¢70y. (26)

For this situation, the methods LM1 and LM2 will produce the following additional con-
straints and variables to replace (11c) in Problem DTO:
LM1 (Equation (17)):

For d = 4: {wiy < ¢1, wig < ¢y, w1y > $1 + ¢4 — 1}

d =5 {wis < ¢1, wis < P5, w1z > P+ ¢5 — 1}

d=6: {wss < Pz, wys < P, wyg > P33+ g — 1}

d="T: {ws; < ¢3, wsr < d7, wyr > g3+ ¢r — 1}

d = 8: {wsrg < @3, wars < P7, Warg < Ps, Warg > Pz + 7 + Pz — 2}

d=9: {wsrg < @3, wsrg < Pr7, Warg < Py, W39 > 3+ P7 + P9 — 2}.

LM2 (Equation (18), where these identities are substituted into (11b) and (11i)):
For k = 11: {ws = ¢4, w15 = ¢5}
k=12: {wss = ¢¢, wsyr = ¢7}
k=13 {wsrs = ¢5, warg = Po}.
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Remark 4. Observe that the size of the decision tree can be reduced whenever there ex-
ist consecutive decision-point nodes. If a decision-point node ki, having the variable ¢g4,

associated with an emanating arc is immediately followed by another decision-point node

ke having Jy, = {ds,ds,...,d,}, we can collapse node ks into k; and define new variables
Ddydys Pdydss - - - » Pdyd,, associated with corresponding arcs emanating from k; to replace the
variables ¢q, , Pdy, - - ., Pa,. Compared to the original decision tree, we reduce the number of

decision-point nodes and the number of decision alternatives by one for each such step. To
illustrate this for the decision tree of Figure 1, note that we can collapse both nodes 12 and
13 (sequentially adopting the foregoing step) into node 10, and generate path-based arcs
connecting node 10 to nodes 21, 22, and 23, having respective associated variables ¢34, @373,

and ¢379. The constraints (5g) in this case would then be written as follows:

1+ Q2 + P36 + G378 + P379 = 1, (27a)

P4+ @5 = 1, (27b)

and the product terms of the type (7) for J € _# would be given by

$1¢4 and ¢1¢5. [ (28)

2.2 Structure of optimal solutions

Let 7 = (p,1,q,7, ¢, w, v, 0,171, Z,€) represent an optimal solution to LP(£2). To reduce the
size of this relaxation, we a priori identify constraints that would be inactive at optimality
by analyzing the structural behavior of optimal solutions. In this spirit, Proposition 5 below
establishes that the affine convex envelope for the constructed outer-approximation of the

functional form z; = In(6;),j € 7 can be omitted without affecting optimality.

Proposition 5. In Problem LP(€2), the affine convex envelope of In(6;), for any j € 7, will

not be active at optimality unless if the optimal 6;-value is at its lower or upper bound.
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Moreover, at least one of the tangential supports will be active.

Proof. Given a feasible solution z’, let the variables (p,l,q,r, ¢, w,y1,y2,&, 2) be fixed in
LP(Q) according to /. The resulting linear program in ¢ and 6 effectively bounds 6; as
& < 0; < Q_j, V) € 7, where & and @ are respectively determined by some tangential
support (13b) and the affine convex envelope (13a), corresponding to the left-hand side in
(13a, 13b) fixed at zj. By the nature of the objective function (11a) and the constraints
(11b), we would therefore have 6; = @, V) € 7, at an optimal solution. Hence, for each
j € 7, some tangential support is active at optimality and the affine convex envelope is

inactive at optimality unless 2}, and therefore 0;, equals its original lower or upper bound.

O

Remark 5. By the nature of the objective function (11a) and the constraint relationships
(11b), (11g), (11h), and (11j) in LP(2), the yi-, yo-, and &-variables tend to be at their
lower /upper bounds at optimality. Although removing the tangential supports associated
with the corresponding functional forms (11k), (111), and (11n) other than those at the
interval end-points might worsen the lower bound obtained via the relaxed problem, the
total computational time may improve as a result of the decrease in the size of LP(2) that
is solved at each node of the branch-and-bound tree. Hence, in our computations, we shall

experiment with this reduced modeling strategy. [J

2.3 Further Properties of LP((2)

The next set of results lay the groundwork for composing our proposed global optimization
strategy for solving Problem DTO. Henceforth, for any Problem P, we shall denote its optimal

value as v[P].

Proposition 6. v[LP(Q2)] gives a lower bound for v[DTO(2)]. Moreover, if Z solves LP({2)

and satisfies (11k) - (11n) and (11r), then z also solves DTO(S2) with the same objective
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value.

Proof. Follows from the construction of LP(2), noting that under the hypothesis of the

proposition and the validity of LMr, r=1,2, we also then have that (11c) holds true. OJ

Proposition 7. Let & solve LP(Q2). Let (Z,(j,f) = (I,q,7) and let p be computed by (5e),
ie., p; = g;/(1 + g;) where g; = exp{a;p — Zn]‘le imGim }, Vi € I.. Furthermore, set éj =
l}- Hz‘eslj D HieSQj (1—p;),Vj € 7, and let ¢ be a binary optimal solution to the linear program

composed in Proposition 4 as given by:

D
LP: Minimize {Z caba+ Y Oidag) ¢ € A} . (29)
d=1

JjeT
Then, (p, Z, q,7, QZS) is a feasible solution to Problem DTO with objective value U[LP].

Proof. From (11q) (as in (8b)), we have In(pl) < 7y; < In(p¥) and In(1—p¥) < o < In(1—
M
ph). Thus, from (11g), In(p}) —In(1—ph) < G = Pai = @io — Y GimGim < In(p) —In(1—p}).
m=1
Hence, since p has been computed by using the constraint (5e), we have

l A M u

D; Di N _ b
lTL(l —pé> < ZTL(l —ﬁi> = ajp — Zaz‘m%‘m < ln<1 —qu>’

m=1

which results in p! < p; < p%. Thus, from the constraints of LP(Q), we have that (p, 1,4, ) is
feasible to (5b)-(5f), (5h), and (5i). Furthermore, by the structure of LM2 and Propositions
2 and 4, LP defined by (29) then yields a binary optimal solution ¢ that represents the best

optimal completion (p, f, q,7, é) to the foregoing partial solution. [J

Proposition 8. Let Z solve LP(2) with objective value v[LP(€2)]. If each of the variable
values p;, l_j, and éj equals either its corresponding lower or upper bound and ¢ is binary-

valued, then Z solves DTO(2) with objective value v[DTO(Q)] = v[LP(£2)].

Proof. From the construction of LP(2), it is sufficient to show that = satisfies (11c) and

(11k) - (11n). For the generic case (12), if v equals either of its bounds, then Constraints
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(13a) and (13b) imply that f = In(vy). Likewise, if each of the variable values p;, I;, and 6,
equals either of its corresponding bounds, then (11k) - (11n) are satisfied. Moreover, as
established for LMr, r=1,2, in Section 2.1.2 and Proposition 2, if ¢ is binary-valued, then,

(11c) is satisfied. Thus, Z is feasible to DTO(Q2). O

Proposition 9. Let Q be such that pl = p¥,Vi € I, and lé- =1%,Vj € 7. If 7 solves LP(Q2)

with ¢ being binary-valued, then z also solves DTO((2).

Proof. If p, = p{ and [} = I%, we have that 65 = 6 by (6b). The proof now follows from

77

Proposition 8. [

2.4 Optimality-Induced Valid Inequalities

In order to further tighten the model representation, we introduce in this section certain
valid inequalities (denoted VIs) that are implied by optimality (rather than feasibility)

considerations.

Proposition 10. There exists an optimal solution to Problem DTO satisfying the following
inequalities:

Qim S Sm(bd(i); Vi € Ie7 m = 17 e '7M7 (30&)
rjngtn¢d(])7 VjET, n:17“'7N‘ (SOb)

Proof. First of all, note that Problem DTO has an optimal solution since it is bounded and
feasible (the solution (¢,r) = (0,0), with p; = p¥ = p;L(3)’ Viel, [; =1} = l;(4), Vjer,
and any ¢ satisfying (5g) and (5j) gives a feasible solution). Now, for any i € I, if ¢qp) = 0,
then event ¢ is inconsequential to the problem, and so, we need not allocate any event-related
resources to reduce p; below p¥ in (5e). Hence, we can set ¢, = 0, Ym = 1,..., M, i.e.,
(30a) is valid. On the other hand, if ¢4y = 1, then (30a) is again valid because it is implied
by (5b). Likewise, (30b) is satisfied at an optimal solution because for any j € 7, if ¢q;=0,

then consequence j € 7 does not arise (or does not impact the objective function), and we
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can therefore set r;, =0, Vn =1,..., N, while if ¢4;y = 1, then (30b) is implied by (5c). O

Henceforth, we shall assume that the inequalities (30a) and (30b) are incorporated
within Problem DTO, and hence, within DTO(2) and LP(£2), VQ. In addition, we shall
perform the following variable fixings in Problem DTO(2) and LP(£2) as prompted by Propo-
sition 11 below. This strategy will become relevant in the sequel when we revise the bounds
on the p- and [-variables in a branch-and-bound framework. Naturally, if any such fixings

render a particular node subproblem infeasible, then we can fathom this node.

Proposition 11. Consider any (node subproblem) DTO() predicated on a set of imposed
bounds 2 (and incorporating the VIs (30a) and (30b)). Then,

pi < pf(g) = ¢g=1, Yd € B;, foreach i € I, (31a)

1< 18" = ¢,=1, ¥d € By, for each j € 7. (31D)

Proof. Consider any ¢ € I., and suppose that the currently imposed upper bound p}' on
p; satisfies p¥ < p?(?’). Then, by (11g), (11k), and (111), we have that ¢;,, > 0 for some
m € {1,..., M}, and so, (30a) and (11r) imply that ¢4; = 1. But since the constraints
(11c, 114, 11r) imply (18), we hence have ¢4 = 1,Vd € B;. Similarly, for any j € 7, if the
currently imposed upper bound [¥ on [; satisfies ¥ < l?(@, then (11h) implies that 7;, > 0

for some n € {1,..., N}, and then (30b) and (18) yield ¢4 =1, Vd € B;. O

2.5 Upper Bounding Scheme: Procedure UB

In this subsection, we use Proposition 7 to develop a method for computing upper bounds
on Problem DTO based on the solution of any lower bounding relaxation LP(2). (If any
optimization problem is detected to be infeasible in this process, we abort the procedure.)
Procedure UB:

Step 1: Solve LP(2) (including Constraints (30)) and obtain an optimal solution Z. Apply

Proposition 7 to obtain the solution (p, R (;3)
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Step 2: Fix ¢ = é, resolve LP(Q2) to obtain an optimum Z, and apply Proposition 7 to
derive a possibly revised solution (p, L, q,T, (;AS) Repeat this step until no further improvement
is obtained in the objective function value for Problem DTO.

Step 3: Fix ¢ = qB, and use a nonlinear programming (local search) solver to optimize
DTO(S), starting with the solution obtained at Step 2 as an initial solution. (We used
SNOPT Version 7 (Gill et al. (2005)) for this purpose.) Output the resulting solution value
as an upper bound on Problem DTO, and update the incumbent solution z* and its objective

value v*, if necessary.

2.6 Range Reduction

The imposed range for each ¢-, p-, [-, and #-variable can be tightened by sequentially solving
a pair of linear programs that minimize and maximize each variable in turn over the feasible
region of LP(2), while additionally restricting the original objective function to take on
values lesser than or equal to the best known upper bound v* obtained by Procedure UB.
Starting with the ¢-variables, note that if the minimum value of ¢, is positive for any
d € {1,...,D}, then we can fix ¢4 = 1, and likewise, if the maximum value is less than one,
we can fix ¢4 = 0. Next, considering the p-variables, the foregoing pair of associated linear
programs is used to update the lower and upper bounds on each p;-variable in turn, where
we also update the bounds on the affected 6;-variables using Equation (33), for each j such
that ¢ € S1; U Sy;. Moreover, noting that the bounds on the p- and #-variables define the
bounds on the y;-, yo-, and z-variables according to (8b) and (9b), if any of the bounds on
the former variables are revised, then the bounds on the corresponding latter variables are
also updated. The same procedure is followed for [;, j € 7, during which the bounds on 6,
along with the bounds on the corresponding 2- and {-variables are also updated using (33),
(9b), and (10b). Finally, a pair of linear programs is solved to directly tighten the bounds on
0;,Vj € 7. Following this range reduction process, the polyhedral outer approximations for

the logarithmic relationships are constructed based on the revised bounds on the variables.
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Next, LP(2) is (re-)solved and the lower and upper bounds on Problem DTO are updated
as possible. Note that at each node of the branch-and-bound tree, we invoke range reduction

only once.

3 Global Optimization Branch-and-Bound Algorithms

We now design three alternative approaches to solve Problem DTO via DTO(Q2) and its
relaxation LP(€2). In Algorithm A, we utilize a specialized branch-and-bound process based
on partitioning the hyperrectangle (2, where the bounds on the variables (¢, 0, y1, y2, 2, §)
are accordingly computed by (6e), (6b), (8b), (8b), (9b), and (10b), respectively. For any
node subproblem DTO(2) that is associated with a particular €2, we construct the relaxation
LP(Q) and solve it to compute a lower bound. Let Z solve LP(Q). If the conditions of
Proposition 6 hold, we will have also solved subproblem DTO(f2). Otherwise, we apply
Procedure UB to find a feasible solution to Problem DTO and update the incumbent solution
and the associated upper bound if possible, perform range reductions to update Q and (11q),
and as necessary, we branch at this node by partitioning €2 as follows:

Branching Rule A: While selecting the branching variable, priority is given to the ¢4-
variables. Thus, we first check if ¢ is binary-valued. If not, then we define the set K’ = {k €
K : (¢q, d € J},) is not binary-valued} and find k € argljéal)gnin{\Bk], grelbrkl |pa—0.5|}. We then
branch on ¢4, where d € argmin{|¢, — 0.5}, by using the dichotomy that ¢; =1V ¢; = 0.
Note that Constraints (11§)€J§nd (11i) together with Equations (17) and (18) are invoked
to fix additional (¢,w)-variables as possible whenever we branch on a ¢-variable. On the
other hand, if ¢ is binary-valued, then we find a variable p; or [; having the largest bounding

interval according to:

max{(p" — pl), (i — lé),‘v’i,j}, (32a)
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where ties are broken by favoring the variable that gives the largest discrepancy in

max{|y1; — n(p:)], |[g2i — In(1 — p;)|, |§J - ln(l_j)],w,j}, (32b)

where the first two terms in (32b) relate to p; and the third term to [;. If the identified term
in (32) relates to p;, then we branch on this variable by partitioning its interval according
to the dichotomy that p; € [p}, (p! + p*)/2] V pi € [(p} + p¥)/2,p¥]. If the identified
term corresponds to /;, then we partition its interval according to the dichotomy that [; €
5, @+ 1/2] v ol e (I +1y) /2,1 O

Algorithm B is the same as Algorithm A, except that we also include 6; in the
partitioning process, as motivated by Proposition 8. In this case, given any imposed bounds
[6’;,9;‘] on the variable 0;, V5 € 7, we update these bounds based on the implied bounds

derived via (6b) according to:

Qé. — ma:z:{@é», lé» Hieslj pi Hieszj(l —p})}

0% — min{0, 1 Tlics, ¥ [lics, (1= P))}

Vi e (33)
Now, define ' as

and let DTO(§Y) be identical to DTO(2), except that we primarily impose the bounds
(p,1,0) € ', and then compute the bounds on the variables (¢, vyi, y2, 2, §) using (6e),
(8b), (8b), (9b), and (10b), respectively. Whenever range reduction is performed, all these
bounds are updated accordingly.

At each node of the branch-and-bound tree for Algorithm B, we proceed exactly as in
Algorithm A except that we now solve the relaxation problem LP()’) for computing lower
bounds, and also, for the partitioning scheme, the Branching Rule A is substituted by the

following, where Z solves LP(€):
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Branching Rule B: We apply the same scheme as in Branching Rule A in case ¢ is not

binary-valued. Else, we find a variable that yields the maximum discrepancy according to:

max{[g1; — In(pi)], 52 — In(1 = pi)l, 1€ — In(l;)], 125 — In(0;)], Vi, 5}, (35)

where ties are broken by favoring the variable having the largest bounding interval. If the
maximum is attained by one of the first two terms, then we branch on the corresponding
variable p; by partitioning its interval according to [pl, §;] V [ps, p¥]. Similarly, if the maximum
is attained by the third or fourth term, we branch with respect to [; or 6;, partitioning their
intervals as [I!, ;] v [I;,1], or [6L,6] v [0;,60"], respectively. [

The third alternative, called Algorithm C, can be viewed as a combination of Al-
gorithms A and B. Motivated by Propositions 8 and 9, we adopt the following partitioning
scheme:

Branching Rule C: If ¢ is not binary-valued, then we apply Branching Rule A as before.
Else, we select a variable having the largest bounding interval among the set of variables
having at least a d-deviation from their associated logarithmic functions, where 0 < § <
1071, The value of § changes through the optimization process depending on the number of

variables that violate the exact corresponding logarithmic relations. Specifically, we select a

variable p; or [; having the largest bounding interval according to:
max{(p} — p}), (14 = I),Vi e I',Vj € 7'}, (36)
where the index sets I’ and 7" are defined by
I'={i: |y —In(p)| > 63U g — In(1—p;)| > 6} and 7" = {j : |§; — In(l;)] > 6} (37)

If both I’ and 7' are empty, we set 0 « §/10” for the smallest integer v > 1 such that

at least one of these index sets becomes nonempty, and then apply (36). For the selected
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branching variable, we split its interval at the geometric mean, i.e., if the identified term in
(36) corresponds to some p;-variable, then we partition its interval according to [pl, \/plp¥] v

[v/plp¥, p¥], and if it corresponds to some [;-variable, then we partition its interval according

to [, (J11] v [ J1ke, 1), O

Remark 6. Note that, for a function f = In(y),0 < 7 < v < 4% < oo, splitting the
~v-interval at its geometric mean corresponds to bisecting the implied bounds on the f-
variables at its arithmetic mean, i.e., at [In(y') + In(y*)]/2. Figure 2 displays this feature,
and exhibits the evident potential for generating improved bounds via the child-nodes by
using the geometric mean splitting technique. For the sake of comparison, we shall also
implement the interval partitioning technique predicated by Branching Rules A and B within

Branching Rule C. [J

Now, we formally describe the branch-and-bound procedure Algorithm A for solving
Problem DTO. At each stage s of this algorithm, s = 0,1,..., we define A, as the set of
non-fathomed, or active nodes. Each active node a € A, is associated with a hyperrectangle
Q% A lower bound LB, on an active node is obtained by solving the linear programming
relaxation LP(Q%) to yield LB, = v[LP(Q%)]. At each stage s, we define the global lower
bound on Problem DTO by

LB(s) =min{LB, : a € A}.

Whenever LP(Q2%) is solved for a node a € Ay, we apply Procedure UB to possibly find
a feasible solution for updating the upper bound for Problem DTO, and perform range
reductions as necessary. These bounds are used in concert with a least lower bound node

selection rule and the aforementioned partitioning schemes as detailed below.
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3.1 Branch-and-Bound Algorithm A for Problem DTO

Step 0: Initialization. Set s =0, A; = {0}, a(s) = 0,a = 0, and Q° = Q. Solve LP(Q°)
and let z° be the optimal solution obtained. Set LB, = v[LP(Q")]. Apply Procedure UB
of Section 2.5 with # = 2° to derive an incumbent solution z* with objective value v*.
Invoke the range reduction scheme of Section 2.6 to revise LBy and (x*,v*) as possible. If
LBy > v*(1 — ¢€) for some optimality tolerance € > 0, then stop with the incumbent solution
as (€)-optimal to Problem DTO. Otherwise, proceed to Step 1.

Step 1: Partitioning Step. Invoke the Branching Rule A to partition the selected node
a(s) into two subnodes a + 1 and a + 2 with associated hyperrectangles Q%' and Q42
respectively. Replace A; «— As;U{a+1,a+ 2} — {a(s)}.

Step 2: Bounding Step. Solve the relaxed problems LP(Q"!) and LP(Q%2) after fixing
¢-variables as possible using Proposition 11. Apply Procedure UB to the solutions found at
each node and update the incumbent solution if possible, and perform range reductions as
necessary.

Step 3: Fathoming Step. Fathom any non-improving node and update Ag;1 <+ As—{a €
As: LB, > v*(1 —¢€)}. Increment s by 1.

Step 4: Termination Check and Node Selection Step. If A, = &, stop with the
incumbent solution as an e—optimum. Otherwise, select a node a(s) € arg min{LB, : a €

Ag} and return to Step 1.

Proposition 12. (Main Convergence Result)

Algorithm A (with € = 0) either terminates finitely with the incumbent solution as an
optimum to DTO, or else, an infinite sequence of stages is generated such that along any
infinite branch of the tree, any accumulation point of the (p,1,q,r, ¢)-variable part of the

sequence of linear programming relaxation solutions solves Problem DTO.

Proof. The case of finite termination is clear. Hence, suppose that an infinite sequence

of stages is generated. Consider any infinite branch of the tree having a nested hyper-
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rectangle sequence Q%) for s belonging to some index set S. For each stage s, we have
LB(s) = LBy = v[LP(Q%¥)],Vs € S. For each node a(s), let %) solve LP(Q%®)). By the
compactness of the feasible region, there exists a convergent subsequence for {z%*), Q*®)} q.
Without loss of generality, assume that {z%®), Q¥®)} g — (2*,Q*). We must show that the
(p*, 1*, q*,r*, ¢*)-variable part of z* solves Problem DTO.

Note that LB,y = min{LB, : a € A,} < v[DTO],Vs € S, which is also preserved in
the limit:

v* = lim SLBQ(S) < v[DTO]. (38)

§—00,8€

Since we can only branch on the ¢-variables finitely often, we have that ¢**) is binary-
valued for all s € S sufficiently large. Hence, along the infinite branch, at least one of the
pi- or l;-variables is chosen as the branching variable infinitely often. Since we bisect the
corresponding interval at each step, the length of the interval for a such variable converges
to 0. Therefore, according to Branching Rule A, we have in the limit as s — 0o, s € S that
pl = pr*, Vi, and l;-‘l = [7",Vj. By Proposition 9, we thus have that z* is feasible to DTO
with objective function value v* =  lim SLBQ(S), and so, v* > v[DTO]. Together with (38),

§—00,5€

we have that x* solves DTO with objective function value v*. [J

3.2 Branch-and-Bound Algorithm B for Problem DTO

This alternative branch-and-bound procedure is the same as Algorithm A, with the excep-
tion of the branching variable selection at each stage s along with the partitioning of the
hyperrectangle ) associated with each active node a € A, where €' is defined by (34). The

following result establishes the global convergence of Algorithm B.

Proposition 13. Similar to the main convergence result of Algorithm A stated in Proposi-

tion 12, Algorithm B (with € = 0) solves Problem DTO.

Proof. The case of convergence in a finite number of steps is clear. For the case of infinite

stages, taking any infinite branch of the tree where the stages s are indexed by a set .S, we
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have as in the proof of Proposition 12 that {z%®), )} s — {z*, "}, and that LB(s) =

LBy = v[LP(Q%®)] < v[DTO],Vs € S, which also holds true in the limit:

v*= lim LB, < v[DTO]. (39)

§—00,8€8

We now show that x* is feasible to Problem DTO. Along the convergent subsequence, for s
large enough, ¢*(*) = ¢* is binary-valued, and so some p;-, l;-, or f;-variable is partitioned
infinitely often at stages s € Si, say, where S; C S. From Branching Rule B, this variable
equals one of its bounds in the limit, and therefore, the discrepancy related to it in (35)
approaches zero. Since this variable has the maximum discrepancy in (35), Vs € Sj, the
discrepancies related to the other p-, I-, and #-variables also approach zero as s — oo, s € 5.
Consequently, by Proposition 8, z* satisfies Constraints (11c), and (11k)-(11n) with ¢} €
{0,1},¥d € D. Hence, x* is feasible to DTO with objective value v*, so that v* > v[DTO].

Together with (39), we have that z* solves DTO with objective value v*. [

3.3 Branch-and-Bound Algorithm C for Problem DTO

As described earlier in the section, this procedure follows the same scheme as that of Algo-
rithms A and B, while adopting a combination of these two methods for selecting a branching
variable and partitioning its interval, and including the alternative option of splitting the
interval of the selected variable at its geometric mean. As such, its global convergence proof
follows identically to that in Propositions 12 and 13 above, and is omitted for the sake of

brevity.

4 Computational Results

In this section, we study the effectiveness of the proposed branch-and-bound procedures for
solving Problem DTO. We begin by considering the gas-line rupture application illustrated

in Figure 1, and solve it using the proposed algorithms as well as the commercial global

34



optimization software BARON, Version 8.1.5 (Sahinidis (1996)). We further analyze the
sensitivity of the solution with respect to the budget and resource availability restrictions.
Next, using a suitable experimental design, we explore the best combination of algo-
rithmic features including the various branching variable selection schemes and partitioning
strategies. We also investigate the performance of the different proposed linearization meth-
ods and techniques for generating tangential supports, and assess the effect of incorporating
range reductions and VIs on CPU time. In addition, we explore the direct implementation
of the software BARON to solve the original problem formulation DTO (given by (5)) as
well as its transformed version DTO(S2) (given by (11)), in comparison with our best pro-
posed procedure. Finally, the special case of the event tree optimization problem (ETO)
introduced by Sherali et al. (2008) is solved using the best proposed algorithmic strategy,
and the results are compared with the solutions generated by BARON (which was used to
solve ETO by Sherali et al. (2008)). Runs with BARON have been made on a remote 1.6
GHz Intel Pentium M processor running Linux (courtesy of N. V. Sahinidis), whereas the
proposed procedures have been implemented on a local 2.33 Ghz Intel Pentium M processor

running Windows.

4.1 Gas-Line Rupture: Illustrative Hypothetical Case Study

Consider the scenario in which, in the aftermath of a gas leak (represented by node 0), cas-
cading sequences of probabilistic events and decisions result in consequences as depicted in
Figure 1. For this specific gas-line rupture application, we assume that five event-related
and five consequence-related resources are available to prevent failures and to alleviate con-
sequences.

The model coefficients a;,,, and b;, were generated uniformly in the respective inter-
vals [0.5, 1] and [1000, 5000]. Additionally, we set a;o = In(0.01/(1—0.01)), Vi, and generated
bjo, Vj, randomly on [100000, 200000]. The total available event-related and consequence-

related resources were set to s, = 10,Vm and ¢, = 50,Vn, respectively, where the corre-
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sponding per-unit costs of allocating resources, c¢;, and d;,, were generated uniformly on
20, 40]. The total available budget for resource allocation was initially taken as § = 3000.

The lower bound on [;,Vj € 7, was determined depending on the scenario produced by
the unique path connecting the root node to the leaf node j. More specifically, a contribution
to lé» of 1000(k)?%) was set to be incurred for each failure event on the path from node 0 to
the leaf node, where k£ is the nodal-distance between the failed event and the leaf node. The
lower bound on [; for any leaf node that has no failure event along the path to it from node
0 was set to 10. The upper bound was determined as l;(4),Vj € 7, whereas the lower and
upper bounds on p; were set to 0.0001 and p?(?’), respectively, Vi € I,. Moreover, the direct
cost for each selected decision alternative d = 1,..., D = 9 was generated randomly on [2,
4]. (The online supplement provides the complete data set.)

We solved the gas-line rupture problem with 10 randomly generated decision cost
vectors (on the interval [2, 4]) using e=0.001. Table 1 displays the results obtained. The
proposed algorithm solved all 10 problem instances to optimality exploring 9-23 nodes within
1.1-2.6 CPU seconds. On the other hand, using default settings, BARON (Version 8.1.5)
optimized four of these 10 problems within 0.9-1.9 CPU seconds and yielded the same ob-
jective value as given by the proposed algorithm, while for four other problem instances,
it terminated with a slightly worse (3-8 %) objective value as well as with different binary
decisions. (Table 1 provides the ratio zj,gon/2* of the best solution values produced by
BARON and the proposed algorithm.) Moreover, when we re-ran BARON after fixing the
binary decisions as given by the proposed algorithm, it found exactly the same optimal solu-
tion value. For the remaining two problems, BARON terminated with the maximum limiting
CPU time (1000 seconds) without satisfying the specified optimality gap restriction.

Using five levels of the budget, # € {1000, 2000, ...,5000}, and four levels of event-
related resources, s € {1,2,3,4}, we computed the optimal objective function value as
plotted in Figure 3. As expected, the objective function value improves significantly with

initial additional event-related resources, but further resource increases result in diminishing
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marginal returns. On the other hand, the relation between the number of nodes explored
and the budget level is not readily evident. Analyzing the optimal solution for s=3, it was
observed that for 5 =1000, 2000, and 3000, we obtained the same optimal (p,q)-values,
and the additional budget increments were used to acquire and allocate consequence-related
resources. Concomitant with the budget increase, the state space of the ¢g-variables increased,
which resulted in a higher number of nodes explored. However, for g = 4000 and 5000, the
failure probabilities of critical events and loss amounts at critical outcomes were readily

minimized to their lower bounding values, thus resulting in fewer enumerated nodes.

4.2 Random Test Cases

We next generated random decision tree problem instances to assess the effectiveness of the
proposed solution techniques as well as that of the global optimization software BARON.
The two inputs provided to the tree generation process are the desired decision node density,
as defined by the ratio of the number of decision nodes to the total number of nodes, and the
size of the tree as measured by its depth. Each tree was accordingly generated by initially
constructing nodes 0 and 1 as in Figure 1. Then, while sequentially generating additional
nodes (including the case of node 1), we first checked whether the node was at the maximum
depth, in which case it was labeled as a leaf node. Else, we determined the type (event or
decision) of the node randomly, depending on the desired and current ratios of the number
of event and decision nodes. If the node turned out to be a decision node, we randomly
determined the number of decision alternatives emanating from it. Finally, the leaf node
representing the direct consequence of a failure at node 1 was created.

To complete the instance specification, we randomly generated the logit coefficients
@im and bjy, the cost coefficients ¢;,,, and d;,,, and the decision costs ¢4 as explained in Section
4.1. We set bjo equal to the sum of the lower bound on /; and a uniformly generated random
variable over the interval [100000, 150000]. The budget and the decision node density were

respectively 3000 and 0.2-0.4 (specified desired value = 0.3) for the first five instances, and
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1500 and 0-6-0.7 (specified desired value = 0.7) for the last five instances.

In the following runs, we define the base case approach as the one that incorporates
the linearization scheme LM2 (Section 2.1.2), the valid inequalities VIs (Section 2.4), and
invokes range reduction (Section 2.6) while generating four tangential supports for each
functional form f = In(y) using the BES (H = 4) strategy, and utilizes an optimality gap
tolerance of € = 0.001.

Using the base case approach, we first studied the efficiency of the three branching
variable selection rules (A, B, and C) together with the three splitting rules (arithmetic mean,
geometric mean, and the current optimal value), for a total of eight combinations as displayed
in Table 2. (Note that Rule A combined with the current optimal value partitioning strategy
is not included because the current optimal value could be at the lower or upper bound of
the selected branching variable, which would consequently not produce valid child-nodes.)
Observe also that Algorithm A is defined by the branching variable selection rule A and
the arithmetic mean splitting rule (Combination 1), whereas Algorithm B is defined by the
branching variable selection rule B and the current optimal value splitting rule (Combination
5). Algorithm C is (principally) defined by the branching variable selection rule C and the
geometric mean splitting rule (Combination 7).

The branching variable selection rule C and the arithmetic mean splitting rule out-
performed the other combinations and was used for further evaluating various algorithmic
variants as discussed next. (Algorithm C defined by Combination 7 comes a close second,
and is also further evaluated in subsequent runs. In fact, with BES(H=5) used in lieu of
BES(H=4), the mean CPU times for Combination 6 and 7 were 26.4 and 26.0 CPU seconds,
respectively.) In each of the ensuing experiments, one of the features in the base case was
varied and its best setting was determined with respect to CPU time using the randomly
generated problem instances. Tables 3-7 provide results for the following experimental stud-

ies:

e Table 3: Comparison of linearization methods LM1 versus LM2.
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e Table 4: Effect of the number of tangential supports: BES with e = 0.01,0.05,0.1, and
0.2 versus BES(H) with H=4, 5, 10, and 20.

e Table 5: As in Remark 5 in Section 2.2, the y;-, yo-, and z-variables tend to be at their
lower /upper bounds at optimality. Hence, we tested generating only H=2 tangential
supports at the two interval end-points for these variables, but used BES(H=4) for

the remaining variables.
e Table 6: Effect of implementing range reductions.

e Table 7: Effect of incorporating the valid inequalities VIs (30) of Proposition 10 and

conducting the related tests (31) of Proposition 11.

The results displayed in Tables 3-7 indicate that utilizing the linearization method
LM2, generating H=4 tangential supports via BES(H=4), and invoking range reduction and
valid inequalities outperformed other alternatives. Note that the relative efficiency of the
linearization methods depends on the decision node density as indicated in Table 3. Whereas
both linearization schemes were comparable for the first five instances (low decision node
density - LM2 consumed 2.5% lesser effort), we observed a 13% improvement in the CPU
time for the last five instances (high decision node density) with LM2 over LM1. This is to be
expected because higher decision node density instances involve more complex binary sub-
structures in the model, which therefore benefit more substantially by using the improved
representation LM2 over LM1. We use these settings in further runs with our proposed
algorithm, hereinafter referred to as Algorithm Best. We also explore the efficiency of
Combination 7 (Algorithm C) along with Algorithm Best since the difference in performance
between these two algorithms is not significant as displayed in Table 2.

The decision tree optimization problem can alternatively be directly solved by us-
ing off-the-shelf commercial software on the original model (5) or on the better-structured,
equivalently transformed formulation (11). The global optimization software BARON was

therefore used to solve problem instances modeled alternatively as in (5) or (11) using LM2,
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as well as via (11) while using both LM2 and the proposed VIs (30), in order to assess their
direct solvability. Table 8 displays the results obtained, and also includes the performance of
Algorithm Best for comparison purposes. Using the original DTO formulation (5), BARON
terminated prematurely for four of the 10 problems (with optimality gaps of 98.8%, 1%,
1.2% and 0.3%, respectively), whereas the proposed algorithm optimized all the problems
within the maximum limiting CPU time. On average, it took 79 CPU seconds for BARON to
solve Problem DTO (ezcluding the early termination cases), while the same set of problems
were optimized in 15.5 CPU seconds with the proposed algorithm. We also mention here
that Algorithm C solved these instances in 23.6 CPU seconds on average, where this value
decreases to 15 CPU seconds when the same two premature termination cases are excluded
(detailed results are not displayed for the sake of brevity). Moreover, we observed premature
termination for all problem instances using BARON on the transformed DTO formulation
(11) with LM2, which may be due to the increase in the number of variables as well as the
number of nonlinear constraints. However, when we further invoked the valid inequalities
VIs, BARON managed to solve eight of the 10 problem instances using this transformed
formulation.

Finally, we solved some 15 random instances of Problem ETO (having event nodes
only) as a special case of Problem DTO using the proposed algorithm (Algorithm Best), and
compared the results against applying BARON to solve Model DTO(Q2) as given by (11),
which is tantamount to the strategy utilized by Sherali et al. (2008). The experimental design
and results are presented in Table 9. We set the budget equal to 3000, 4000, and 5000 for the
instances having 17, 33, and 65 leaf nodes, respectively. Algorithm Best successfully solved 13
out of 15 random instances of Problem ETO, whereas BARON solved only one of them within
the maximum allowable time limit. Although the final upper bounds derived by BARON
were very close to those obtained by Algorithm Best, the quality and the convergence rate of
the lower bounds resulted in its relatively poor performance. As the problem size increased,

the optimality gap produced at termination using BARON steadily increased. For the two
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instances that remained unsolved using the proposed algorithm within the 1000 CPU seconds
time limit, the optimality gaps at termination were respectively 0.7 % and 0.8%, versus gaps
of 2.9% and 3.4% for these same two problems when implementing BARON. Furthermore, we
explored the efficiency of Algorithm C for these test cases. The performance was comparable
to Algorithm Best, where the CPU times consumed for the three sets of instances were 20,
187, and 749 CPU seconds, as compared with 23, 188, and 736 CPU seconds, respectively

for Algorithm Best.

5 Summary and Conclusions

This paper addresses the strategic reduction of risk by allocating certain resources to reduce
failure probabilities of system safety components and subsequent losses related to final out-
comes, as well as by selecting optimal strategic decisions or system design alternatives in
the context of a hazardous event. Using a novel decision tree approach, the problem was
modeled as a nonconvex mixed-integer 0-1 factorable program. We developed a specialized
branch-and-bound algorithm in concert with polyhedral approximations, valid inequalities,
alternative linearization schemes, and range reduction strategies, and established its theo-
retical convergence to global optimality.

Among the various algorithmic variants tested, we advocate the strategy that imple-
ments branching variable selection rule C along with the arithmetic (or geometric) mean
splitting rule, while utilizing the linearization method LM2 (6% CPU time reduction over
LM1 on average, but 13% reduction on average for relatively higher decision node density
problems); generating tangential supports via the BES(H=4) scheme; invoking the range
reduction mechanism (all instances are solved to e-optimality with range reduction com-
pared to 100% early termination without range reduction), and incorporating the derived
valid inequalities (13% CPU time reduction on average). In our computational experience,

this proposed algorithmic approach outperformed the commercial software BARON (Version
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8.1.5). We also solved random instances of Problem ETO, introduced by Sherali et al. (2008),
for which the performance of the proposed algorithm greatly surpassed BARON (which was
the solver adopted in Sherali et al. (2008)).

This research can be extended in several directions. For instance, instead of mini-
mizing the overall risk, we could minimize the maximum risk in the system. Additionally,
as explained in Remark 2, we can use a diminishing marginal return loss function in lieu of
the linear correspondent given by (4), as well as replace Bernoulli events with more general
multistate events. Furthermore, as an algorithmic extension, we could explore a GUB-based
partitioning whenever we branch on a ¢—variable. Finally, it is of interest to investigate spe-
cific applications of the proposed generic DTO problem framework in event-decision contexts
that arise in various areas such as homeland security and health-care.

Notes:

[1]:Algorithm terminated with the maximum limiting number of explored nodes with-
out satisfying the specified optimality gap restriction.

, o . (UB—LB)
2]:The optimality gap is computed as “~55~

where UB and LB are the upper and
lower bounds on the optimal objective function value at termination.
Acknowledgement: This research has been supported by the National Science

Foundation under Grant No. CMMI-0552676.
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Figure 2: Partitioning at the arithmetic mean versus the geometric mean.
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Figure 3: Sensitivity of the objective function value and the number of nodes explored with
respect to budget and resources.
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Table 1: Results for BARON and the proposed algorithm for the gas-line rupture problem.
Proposed Algorithm  BARON (Version 8.1.5)

Problem

Instance CPU Time CPU Time z{ ron/?"
1 2.59 1.62 1.08
2 2.63 1.68 1.03
3 1.14 0.89 1
4 2.56 1.38 1
5 2.31 1.63 1
6 2.61 1000 1
7 2.47 1.88 1
8 1.7 1.36 1.03
9 1.64 1.42 1.06
10 1.28 1000 1
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Table 2: Performance of the eight combinations.

Branching Variable Problem Instance
Selection  Splitting 1 2 3 4 5 6 7 8 9 10 Mean
1 (Alg. A) Rule A Arith. 108 150 86 314 52 163 11.9 88 229 153 28.1
2 Rule A Geom. 104 1398 82 274 51 164 107 9 226 148 264
3 Rule B Arith. 116 1328 98 713 113 16.6 11.8 88 229 148 31.2
4 Rule B Geom. 10.9 187.7 121 1428 98 163 114 89 228 15 43.8
5 (Alg. B) RuleB Current 144 2152 123 1242 106 159 11.7 9.1 226 149 45.1
6 Rule C Arith. 10.1 1151 84 264 51 163 11.3 88 23 148 239
7 (Alg. C) Rule C Geom. 104 125 8 25.7 5 16.3 10.7 8.9 228 146 24.7
8 Rule C Current 10.5 1575 82 275 49 166 114 88 226 15 28.3
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Table 3: Performance of the two proposed linearization methods LM1 and LM2.

LM1 LM2
Problem CPU # of Nodes CPU # of Nodes
Instance Time Explored Time Explored
1 9.6 o7 10.1 o7
2 119.5 587 115.1 587
3 8.3 63 8.4 65
4 26.8 201 26.4 201
5 5.3 45 5.1 41
6 15.6 145 16.3 151
7 10.4 107 11.3 105
8 17.5 113 8.8 57
9 27.4 175 23 155
10 14.7 97 14.8 97
Mean 25.5 159 23.9 152
Mean (1-5) 33.9 191 33 190
Mean (6-10) 17.1 127 14.8 113
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Table 4: Effect of the number and placement of tangential supports on CPU time.

Problem BES

Instance (H=4) (H=5) (H=10) (H=20) (e=0.01) (e=0.05) (e=0.1) (e=0.2)
1 10.1 9.7 11.8 18.5 21.9 13.6 12.2 11.0
2 115.1 143.1 125.8 192.5 161.2 145.7 155.5 289.6
3 8.4 7.5 9.5 14.6 15.9 10.8 9.4 9.6
4 26.4 28.5 34.3 49.2 44.8 35.0 35.2 394
5 5.1 5.3 6.2 9.1 8.9 6.0 6.6 7.1
6 16.3 11.0 20.2 30.5 27.5 16.9 16.7 15.9
7 11.3 11.1 13.9 21.1 20.7 14.1 13.2 12.4
8 8.8 6.5 9.8 11.6 15.7 9.3 9.9 10.7
9 23.0 25.0 24.5 40.9 35.2 26.6 22.8 25.6
10 14.8 15.8 21.8 31.7 33.5 18.7 17.5 18.6

Mean 23.9 26.4 27.8 42 38.5 29.7 29.9 44
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Table 5: Two versus four tangential supports for the y;-, yo-, and &-variables.

Two BES
tangential supports (H=4)

Problem CPU # of Nodes CPU # of Nodes
instance  time explored time explored

1 9.6 57 10.1 57

2 108.1 587 115.1 587

3 8.3 65 8.4 65

4 26.0 201 26.4 201

5 4.8 41 5.1 41

6 15.6 145 16.3 151

7 10.8 103 11.3 105

8 9.7 61 8.8 57

9 21.4 155 23.0 155

10 15.2 97 14.8 97
Mean 23 151 23.9 152
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Table 6: Effect of the range reduction strategy.

With

range reduction

Without !

range reduction

Problem CPU # of Nodes CPU # of Nodes Optimality 2
instance  time explored time explored Gap (%)
1 9.6 57 226.4 2000 3.2
2 108.1 587 209.2 2000 10
3 8.3 65 215.8 2000 6.1
4 26.0 201 194.8 2000 4.1
5 4.8 41 212 2000 6.3
6 15.6 145 169.9 2000 1.1
7 10.8 103 169.5 2000 2.7
8 9.7 61 223 2000 0.6
9 21.4 155 202.9 2000 11.8
10 15.2 97 262.5 2000 0.6

Mean 23 151 208.6 2000 4.7
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Table 7: Effect of implementing the proposed valid inequalities Vls.
Without Vs

With VIs

Problem CPU # of Nodes CPU # of Nodes
instance  time explored time explored
1 9.6 57 7.9 43
2 108.1 587 153.2 587
3 8.3 65 5.7 47
4 26.0 201 14.6 89
5 4.8 41 2.8 21
6 15.6 145 7.5 45
7 10.8 103 11.3 81
8 9.7 61 10.7 53
9 21.4 155 29.3 155
10 15.2 97 21.5 7
Mean 23 151 26.4 120
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Table 8: Results for BARON using the original and the transformed DTO formulations,
versus Algorithm Best.

Original Transformed DTO (11) Transformed DTO (11) Algorithm
DTO (5) with LM2 with LM2 and VIs (30) Best
Problem CPU Obj. value CPU ODbj. value CPU ODbj. value CPU  Obj.
instance  time (Opt. Gap (%)) time (Opt. Gap (%)) time (Opt. Gap (%)) time value
1 11.8 29.00 1000 44.01 (50.2) 99.5 29.00 9.6 29.00
2 1000 2968.61 (98.8) 1000 65.49 (60.0) 1000 67.64 (61.2) 108.1 64.59
3 1000 38.1 (1.0) 1000 44.16 (33.8) 481.7 38.10 8.3 38.10
4 35.0 34.78 1000 48.1 (59.1) 512.2 34.82 26.0 34.78
5 1000 31.8 (1.2) 1000 37.69 (25.2) 56.2 31.80 4.8 31.80
6 1000  39.76 (0.3) 1000  39.66 (29.5)  238.7 39.27 15.6  39.24
7 10.5 40.62 1000 42.36 (39.6) 166.6 40.62 10.8  40.62
8 162.3 33.79 1000 34.0 (27.9) 125.7 33.84 9.7  33.79
9 212.3 69.83 1000 72.91 (52.2) 1000 71.22 (49.8) 214  69.82
10 424 32.57 1000 35.20 (38.6) 172.4 32.59 15.2  32.57
Mean 447 1000 385.3 23
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Table 9: Results for the BARON and the proposed algorithm for Problem ETO.
BARON Algorithm Best
# of CPU  Objective value CPU  Objective value
leaf nodes  time (Opt. Gap(%)) time (Opt. Gap(%))

3 43.26 24 43.26
1000  43.54 (1.4) 16 43.54
2441 1000 61.29 (1) 9 61.29
1000 54.46 (1) 18 54.46
1000 51.6 (0.9) 47 51.58
Mean 801 23
1000  72.92 (2.1) 32 72.92
1000  67.23 (1.8) 58 67.23
25+1 1000 58.07 (2) 50 58.07
1000  58.12 (2.4) 552 58.12
1000  54.25 (2.5) 249 54.25
Mean 1000 188
1000  78.26 (2.9) 1000 78.26 (0.7)
1000  78.72 (3.3) 347 78.72
2641 1000  99.23 (2.5) 564 99.23
1000  79.82 (2.8) 765 79.82
1000  74.10 (3.4) 1000 74.10 (0.9)
Mean 1000 736
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