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This paper concerns the analysis and the enforcement of cycle service levels. We consider multi-stage
supply chains that must respond to a stochastic customer’s demand. They seek to construct integrated
replenishment plans that satisfy strict stockout-oriented performance measures which apply across
a multi-period planning horizon, hereby referred to as cycle. We develop a modeling and solution
approach that can be uniformly applied to the ready rate, fill rate, and conditional expected stockout
cycle service levels. We propose new planning models, formulate the constraints corresponding to
the above cycle service levels, and, using the concepts of service level sufficient and efficient demand
trajectories, we derive a deterministic reformulation of the original stochastic planning optimization
problem. An extended computational study evaluates the efficiency of the solution approach on a
real-life problem faced by a chemical supply chain, and demonstrates its applicability to standard
and more complex supply chain networks. The scope of the approach is further widened by the fact
that it can handle most types of dependency structures between random variables. We also analyze
the degree of conservativeness of the three modeling approaches proposed for the ready rate service
level, compare stagewise versus cycle service levels, and study the joint enforcement of cycle service
levels limiting both the stockout probability and magnitude.

1. Introduction

1.1 Cycle Service Level

A stockout does not only cause the immediate profit loss of the canceled order, but it also harms the
long term profitability since it decreases the likelihood of receiving new orders from the customers
whose demand could not be satisfied (see [2] for a study about the effect of stockouts). This, com-
bined with the increased globalization and competition, has exacerbated the need to enforce highly
demanding service levels for supply chains, in particular for those operating in highly competitive,
military environments [24, 32], or for those in which a supply shortage triggers huge costs to set up
the production process and machines all over again. Such a scenario is illustrated by one of the 2007
Edelman Award Finalists, the calcium carbonate producer Omya Hustadmarmor [11], in which the
negative impact of a stockout is described. Shortage management is a key supply chain performance
driver and it triggers the enforcement of stockout-related cycle service levels. The importance of de-
veloping methods that allow for a better evaluation and control of the service level performance over
a mid-term planning horizon is also discussed in [45].

In this paper, we analyze cycle service levels that limit the probability or the magnitude of a
stockout across a multi-period planning horizon and study their enforcement by multi-stage supply
chains. The notion of a cycle here must be understood as the duration of the entire planning horizon
composed of a number of interdependent time-periods. It is very important to stress this point, since
the term cycle is sometimes used to describe the duration of the replenishment process. Accordingly,
Chopra and Meindl [9] (see also [5]) define the cycle service level as the “probability of not having



a stockout in a replenishment cycle”. As a marked difference to this, we define a cycle service level
(see also [26, 28, 42]) as one that requires the probability or magnitude of a shortage occurring across
the entire planning horizon to be lower than a small prescribed value. Hence, in the remainder of this
paper, the concept of cycle service level (CSL) must be understood along the above definition.

A cycle service level also differs from a stagewise (i.e., one-period t) service level p[t] that en-
forces non-stockout requirements at each period considered independently of each other. A cycle
service level provides a representative measure of the responsiveness of the supply chain across the
planning horizon [24], and ensures that, on average, 100p[t]% of customers are satisfied all the time.
A stagewise service level provides an expected value measure that reflects the steady-state nature of
the supply chain. A high probability of not having a shortage at any of a number of periods does not
strictly constrain the probability of not having a shortage over the planning horizon spanning across
these periods [37]. It follows that the enforcement of a stagewise service level could result in a very
low cycle service level, especially if the number of periods or entities in the supply chain is large
[28]. To illustrate this, we consider a one-year planning horizon decomposed into 4-month periods.
A stagewise (4-month) service level policy enforcing that

o the probability of not being in shortage in period 1 is at least equal to 90%,
o the probability of not being in shortage in period 2 is at least equal to 90%, and
e the probability of not being in shortage in period 3 is at least equal to 90%

guarantees a cycle service level (annual probability of no shortage) of only 72.9% (i.e., 0.9) in case
of independence between quarters. In case of dependence between quarters, the cycle service level
that can be guaranteed through the enforcement of stagewise service level constraints becomes much
more difficult to evaluate, and is possibly lower than under the independence assumption.

Service levels are modeled with chance also called probabilistic constraints [35]. Constraints rep-
resenting stagewise service levels take the form of individual probabilistic constraints, for which a
deterministic equivalent can be easily derived using the quantile of the associated (univariate) proba-
bility distribution [35]. By contrast, constraints enforcing cycle service levels require the computation
of multivariate probabilities, and they take the form of joint probabilistic constraints, for which it is
much more challenging to derive good deterministic formulations [12, 26, 28, 35, 36].

Beyond the distinction between cycle and stagewise service levels, it is important to also differ-
entiate service levels along the nature of shortages they aim at preventing. In this paper, we consider
the ready rate service level which limits the probability of having a stockout, and the fill rate and
the conditional expected shortage service levels, which both limit the shortage quantities (i.e., the
expected fraction of stockout for the former and the conditional expected shortage for the latter). The
ready rate service level is favored when customer satisfaction is primarily driven by the occurrence
or not of a stockout, while its magnitude is secondary [23]. The fill rate service level is most often
enforced when the focus is on limiting the expected proportion of demand that cannot be satisfied
using the immediately available inventory [23]. The conditional expected stockout [1, 39] represents
the quantity of products that will be short given that a stockout will occur. It is particularly important
to compute and limit this value when it is necessary to order the amount of non-available product
from a second source [1]. The reader is referred to [21, 23] for a discussion of the suitability of the
various kinds of service levels.



1.2 Contributions and Literature Review

The major contribution, as well as novelty, of this study is that it provides decision makers with a mod-
eling and solution approach enabling them to develop policies enforcing stockout-related CSL. A key
feature of our approach is its wide applicability. It is applicable to to several types of CSL and to mul-
tiple formulations (i.e., three models are discussed for the ready rate CSL). Moreover, the proposed
approach is not affected by any restrictive (independence) assumption about the random variables.
Our approach can handle stationary as well as non-stationary random demand, which implies that it
can account for demand seasonality.

First, we develop new models allowing for the construction of replenishment plans accounting for
the requirements of three types of CSL that limit the probability or the magnitude of stockout across
a multi-period planning horizon. The proposed models are multi-functional and define the optimal
production, distribution, and inventory decisions. We also model the simultaneous enforcement of
several of those service levels. The present study is an extension of [26, 28] which first introduced
the concept of CSL. In [28], the authors focus on the ready rate CSL. They formulate the associated
stochastic optimization problem for which they derive a deterministic reformulation using the concept
of p-efficient demand trajectory. In [26], several preprocessing and column generation algorithms are
proposed and evaluated to construct a replenishment plan enforcing the ready rate CSL. This study
has a broader scope in that it develops and solves models representing new quantitative cycle service
levels (fill rate and conditional expected stockout service levels in addition to the ready rate one).
Moreover, it also proposes two approximate formulations for the ready rate CSL. The approximations
are more conservative (i.e., enforce stronger requirements than those of the targeted ready rate CSL)
than the model studied in [26, 28], but do not require the tackling of a joint (multivariate) probabilistic
constraint. A comparison of the computational tractability and degree of conservativeness of the three
ready rate CSL models is presented.

Second, we develop a computationally tractable and general solution method that can be applied
uniformly to the stochastic optimization problems associated with the three CSLs mentioned above.
The solution method rests on the concepts of service level sufficient and efficient demand trajectories
which, respectively, represent a set of sufficient and minimal conditions that must be satisfied in order
to attain the prescribed cycle service level. These types of demand trajectories are extensions of
the p-efficient demand trajectory concept [28]. The service level efficient (resp., sufficient) demand
trajectory is instrumental to derive a deterministic equivalent (resp., approximative) reformulation of
the original stochastic planning optimization problem.

Third, the tractability of the proposed approach, the differences in reliability stemming from the
enforcement of stagewise and cycle service levels, the risk-aversion character of the proposed models
for the ready rate CSL, and the overall applicability of the approach, are evaluated through a com-
putational study. At first, the approach is used on a real-life problem faced by a North American
chemical supply chain to construct integrated replenishment plans that satisfy very strict service level
requirements. Then, in order to appraise the extendibility of our approach to most multi-stage supply
chains, we remove the assumptions particular to that supply chain and increase the dimensionality of
the problem (i.e., larger supply chain network, transportation fleet, and number of realizations that the
random demand can possibly take).



The review of the literature that follows focuses on models which explicitly account for the uncer-
tainty in the design of production-distribution systems. Paschalidis et al. [33] derive a base-stock
production policy for a multi-stage supply chain that faces a stochastic demand and whose one-
period probability of stockout must be below a prescribed level. Hall and Potts [20] develop an
integrated production-distribution model whose objective function accounts for customer service and
transportation costs. The model assumes that products can be delivered on the spot, without any
transportation time and does not consider routing decisions. Chen and Vairaktarakis [8] develop an
integrated production-distribution model in which the goods are directly delivered from the producer
to the end customer. A service level policy defining the time at which the products are supplied to
the customers is derived. Cardés et al. [5] calculate the attained cycle service level in an (R, S)
periodic review inventory system when the demand is discretely distributed. Yildirim et al. [46] use
stochastic dynamic programming to build a production and sourcing plan over a multi-period horizon.
Distribution decisions are not considered, and individual service level constraints that limit the proba-
bility of having a stockout at a single period are included. Tempelmeier [44] studies the uncapacitated
single-item dynamic lot-sizing problem with stochastic period demands and backordering. Models
that minimize the setup and holding costs, while including a service level constraint, are presented.
Kutanoglu and Lohiyaa [25] develop an integrated base-stock inventory-transportation model for a
single-echelon, multi-facility service parts logistics system with time-based service level constraints.
The study shows the savings obtained through the integration of the inventory and transportation deci-
sions. Nagar and Jain [31] use multi-stage stochastic programming to introduce a multi-period supply
chain model for the launching of new products with uncertain demand. The model allows for the ad-
justment of the production plan as uncertainties are progressively resolved. The determination of the
optimal safety stock levels needed to achieve predefined fill rate service levels in multi-stage networks
confronted with uncertain demands is studied in [4]. A simulation approach is employed to solve the
supply chain planning problem on a rolling horizon basis. We refer the reader to [7, 30, 40] for a more
detailed review of production-distribution models and to [18, 41, 43] and the references therein for
similar models considered in a stochastic context. Stochastic programming models for the attainment
of various objectives pursued by supply chains are proposed in [13].

The present paper is organized as follows. In Section 2, we describe the probabilistic inventory-
production-distribution model permitting the construction of replenishment plans that meet the re-
quirements of CSL. In Section 3, we elaborate on the solution method. Section 4 comments the
results of the computational study. Section 5 offers concluding remarks.

2. Probabilistic Replenishment Planning Model

We develop a replenishment planning model for the taking of integrated inventory, production and
distribution decisions in a three-stage supply chain that faces a stochastic end-customer demand. The
following properties of the stochastic planning model warrant further explanation.

First, the replenishment plan is integrated and multi-functional. The decision variables of the
problem concern the: (i) production function (production levels of products at each supply chain node
and period ?); (ii) distribution function (scheduling and routing of the transportation fleet, quantity of
products supplied to each node at each period); (iii) inventory function (inventory levels of products
at each node and period).



Second, the proposed model does not attempt to quantify the cost of losing customers, but instead
imposes, through the use of service level constraints, the minimization of the costs subject to the
attainment of a prescribed service level, thus effectively limiting the risk of a loss of customers. This
contrasts with a profit maximization approach where a penalty cost (the quantification of which is
very difficult) for the unmet demand must be included in the objective.

Third, the model is developed for the enforcement of cycle service levels that must hold throughout
the whole planning horizon which comprises a finite number of periods. Fourth, we do not accept the
backlogging of the demand not satisfied from the on-hand stock. The rationale is that, very often,
the lagged satisfaction of an order is not accepted by demanding customers, those having a greater
negotiating power, or those suffering from high set up costs when there is a shortage [11]. Moreover,
if the demand cannot be met with the on-hand inventory, the delay to satisfy it will sometimes be
exceedingly long. Fifth, the constructed plan must be reproducible over the next planning horizon.
Constraints preventing the so-called end-effect errors [16], i.e., “what is optimal over the short horizon
may be suboptimal over the long run”, are introduced in order to avoid the depletion of the inventories.

The following notations are used in the paper: 7' is the set of periods in the planning horizon and
J is the set of distribution centers delivering to end-customers.

We denote by d[j, t| the stochastic product demand that can take, at each time ¢ € T and distributor
j € J, { different levels d'[j, t] with probabilities: p'[j,t] = P(d[j,t] = d'[,t]), I = 1,...,¢ such

¢
that >" p'[j,t] = 1. Without loss of generality, we assume that the levels of the random variables are
1=1

t
ordered: d'1[j,t] < d'[j,t],l = 2,..., (. The random cumulative demand £[j,t] = >_ d[j, '] has a
=1
discrete probability distribution and can take up to ¢¢ (¢ to power t) different levels at each period t.

The probabilistic planning model enforcing a cycle service level is formulated, in its most general
form, as a stochastic mixed-integer programming (MIP) problem, and its compact formulation is

min f(x) (1
subject to Ax > 2)
w @ § (3)

r=[2'2"] € Ry x Z4 4)

The vector of production, inventory, and distribution decision variables x can be partitioned into
[" z”]. Elements of 2" are restricted to be positive integer numbers. Elements of 2’ are real positive
numbers, and encompass all the other decision variables. The symbol R, refers to the appropriate
multi-dimensional space of positive real vectors, while the symbol Z, refers to the appropriate multi-
dimensional space of positive integer vectors. The objective function (1) represents the total costs
of the supply chain and is the summation of the inventory, production, and distribution costs. We
denote by (2) the set of deterministic constraints, while the set of stochastic service level constraints
is denoted by (3). The service level constraints are defined with respect to the cumulative demand w

(w is a component of x) and supply £. The notation w (ﬁ) & means that the cumulative supply must
satisfy the cumulative demand in a way that allows the attainment of the cycle service level p. The
supply chain does not intend to be able to handle all demand levels, since this would force its entities
to keep very large safety stocks and to support excessive costs. Instead, the supply chain wants to
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respond to the random customer’s demand with a given service level enforced through a service level
constraint. We shall see in the next sections that the service level constraint takes different forms,
depending on the type (ready rate, fill rate, conditional expected stockout) of CSL.

3. Unified Solution Method

We develop a solution method to construct integrated replenishment plans that satisfy the conditions
imposed by stockout-related CSLs. The method can be uniformly applied to any types of CSLs (ready
rate, fill rate, conditional expected stockout).

The solution method involves the derivation of a deterministic equivalent or approximation for
the stochastic optimization problem (1)-(4). The deterministic reformulation is obtained using the
concepts of service level sufficient and efficient demand trajectories.

The m'™ demand trajectory D, at distributor j is a |T'|-dimensional vector defined [28] as

Djm = [fm[j7 1]7 s 7’5m[j7ﬂ7 s 7£m[j7 ’T’H
whose components &,,[j,t],t € T are the cumulative demand quantities at distributor j until time ¢
characterizing D, ,. The notation |T'| refers to the cardinality of the set 7".

Definition 1 A demand trajectory D, is said to be

e service level sufficient if the satisfaction of the demand quantities ,,[j, t],t € T, characterizing

()
D, | ensures that w f— ¢ holds, and

jm’
e service level efficient if the demand quantities &,,[j,t],t € T define the minimal requirements

(p)
that must be satisfied for w f— & to hold.

The minimality of the demand requirements is understood as follows. If the trajectory D, _ is service
level efficient, then there is no other trajectory D; imposing less demanding requirements whose

satisfaction would ensure that w (Q ¢ holds.
The corollaries below follow:
Corollary 1 If a demand trajectory is service level efficient, than it is service level sufficient.
The reverse is not true.
Corollary 2 The set of constraints
20,0+ wlif] > Enliit], tE T
where &[], t] is the cumulative demand quantity of the service level sufficient (resp., efficient) demand
trajectory D, , define sufficient (i.e., minimal) conditions for the attainment of the prescribed CSL.
The proof is straightforward from Definition 1 and the definition of the service level constraint.

The next question to settle relates to the cumulative demand quantities defining service level suf-
ficient and efficient demand trajectories. For each type (ready rate, fill rate, conditional expected
stockout) of CSL and modeling approach, we shall formulate deterministic constraints to represent
the cumulative demand quantities characterizing service level sufficient and efficient demand trajecto-
ries. We shall show that, regardless of the type of CSL, there exists at least one service level efficient
demand trajectory, and that the number of service level efficient and sufficient demand trajectories, as
well as the values taken by the cumulative demand amounts characterizing them, is highly dependent
on the type of CSL and the modeling approach employed.
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3.1 Probability of Stockout

In this section, we consider the ready rate, also called non-stockout, cycle service level. This is an
event-oriented performance criterion that requires the probability of having a shortage, at any point
during the planning horizon, to be below a predefined level. The ready rate service level ensures that
all customer orders arriving over the entire planning horizon will be completely satisfied from the
available stock with a large probability.

The attainment of the ready rate CSL is modeled with joint probabilistic constraints [26, 28]
ensuring that the probability of the joint fulfillment of a system of linear inequalities with dependent
random right-hand side variables is above a prescribed probability level p, representing the ready rate
CSL. We formulate one joint probability constraint for each distributor j:

P(z[5,0] + wlj,t] = £l t], t € T) = pljl, € T (5)

These constraints require w(j, ] + z[7, 0] to be at least equal to £[j, t], with some probability p[j], for
all possible realizations of the right hand side £[j, t], and they give the supply chain the possibility
to provide a differentiated service level p|[j] to each client or distributor j. Substituting (5) for (3) in
(1)-(4), we obtain the stochastic integer programming problem

min ¢’z

subjectto Az > b
P(z[7,0] +w(j, t] > &[y,t], t € T) > pljl, j € J
xXr = [.’,C, .ZU//] & R+ X Z+

(6)

whose continuous relaxation is non-convex. The level of the random cumulative demand at time ¢ is
not independent of that at time (¢ — 1). Therefore, the joint probabilistic constraints have dependent
random variables located in the right-hand side, and the probability P(z[j, 0]+wl[j,t] > £[j,t], t € T)
is a |T|-variate one. We refer the reader to [28] for a detailed discussion of the reasons behind the
formulation of the service level constraints in terms of the cumulative demand and supply as opposed
to their formulation in terms of the demand and supply. In the next sub-sections, we derive three
modeling approaches for the ready rate CSL.

3.1.1 p-Efficiency Model

The modeling approach described in this section allows the direct handling of the multivariate proba-
bility distribution and was proposed in [28]. It rests on the concept of the p-efficient point of a discrete
probability distribution [35]. Let p € [0, 1] be a probability level, and F' be a discrete cumulative dis-
tribution function: F(v) = P(v > ¢§), £ € Z1 .

Definition 2 A point v € R? is p-efficient [35] for the probability distribution function F' if:
1. F(w)>p, and
2. Thereisno v' <wv,v" # v suchthat F(v') > p.

Denoting by e; the p-efficient point of the marginal distribution F;(-), i = 1,..., ¢, a direct conse-

quence of Definition 2 is that
v>e=(er,...,€p...,€q)

for every g-dimensional vector v such that F'(v) > p.



Transposing the p-efficiency concept into the stochastic supply chain management problem dis-
cussed here, we define the ready rate (p) efficient demand trajectory as follows.

Definition 3 A demand trajectory D;, = [fm (7,1, ..., &mly, |T]H is ready rate p-efficient if
1. F(Dj,,)>p, and

&g t] < &nldt] teT
2. There is no D;, such that: { &,[7,t] < &nld, t] for at least onet € T
F(Dy,) > p

It is known [12, 28] that there exists at least one p-efficient demand trajectory for any discrete prob-
ability distribution regardless of the value of p. The ready rate p-efficient demand trajectories are
|T'|-dimensional unknown vectors that must be found prior to the optimization process. They can
be efficiently identified with a forward enumerative algorithm [26]. Clearly, the ready rate CSL is
attained if the cumulative supply z[j, 0] + w[j,t] satisfies all the conditions defined by at least one
of the p-efficient demand trajectories. Therefore, we replace the joint probabilistic constraints (5) by
disjunctive ones.

Theorem 1 Any joint probabilistic constraint (5) enforcing the ready rate cycle service level can be
substituted by the disjunctive constraint

\/ (Z[j,O] +W[j,t] > fl[]at] ANEERIA Z[],O] +W[j,t] > fsép)‘[jvt]) (7)

teT

where N\ and \ respectively denote the conjunction and the disjunction symbols, and S}p) denotes the
set of service level (p) efficient demand trajectories for distributor j.

The constraint above imposes that the cumulative supply z[7, 0] + w|j, ¢] satisfies all ( /\ ) conditions
teT
imposed by at least (V) one of the p-efficient demand trajectories and transforms (6) into a disjunctive

mixed-integer problem. It is well known that any disjunctive constraint can be reformulated by a set of
linear constraints involving binary variables. Thus, we replace constraint (7) by the set of constraints

2[7,0l + wli, t] = Buli] - &nlist], t€T )
s

> Balil 21 )
m=1

Bnljl € {0,1},m=1,..., SJ@)‘ (10)

which define the same feasible region. We denote by (3,,,[j] a binary variable taking value 1 if the
cumulative supply is large enough to cover the cumulative demand quantities &, [J, t] characterizing
the m'"* demand trajectory and 0 otherwise.

The substitution of (8)-(10) for (5) in the stochastic integer problem (6) transforms this latter into
a deterministic MIP problem. Since the number of supply chain p-efficient demand trajectories can be



extremely large, the reliance on a standard branch-and-cut algorithm could be insufficient for prob-
lems of moderate to large size. A specialized, congestion-relief column generation algorithm can be
efficiently used to solve the above large-dimensional MIP (see [26, 28]). The algorithm involves the
alternate optimization of a master and an auxiliary problems, which respectively consist in optimiz-
ing the production-inventory-distribution scheme for a given p-efficient demand trajectory and the
selection of an alternative one that reduces the risk of congestion.

3.1.2 Intersection of Events Model

The stochastic problem (6) is particularly complex, since it involves multi-dimensional joint probabil-
ity distributions. Instead, in this section, we attempt to solve (6) after having replaced the constraints
(5) that contain a multi-dimensional probability distribution with an expression involving the proba-
bility distribution functions of uni-dimensional random variables.

We introduce the intersection of events model, proposed by Prékopa [35, 36] and based on the
inclusion-exclusion principle, to derive an approximation of problem (6). This involves the constraint
substitution presented in Theorem 2 (whose proof is given in Appendix). We denote by p|j, t] the
stagewise service level attained at distributor 7 and time .

Theorem 2 The set of constraints

P(wj, t] + 2[5,0] > &[j,t]) > ply,t], t €T, jeJ (11)
> (1 =plj.t) < 1-plil, jeJ (12)
teT

ensures that the joint probabilistic constraint (5) enforcing a ready rate cycle service level holds.

A few comments are in order. First, the individual probabilistic constraints (11) can be replaced
by their deterministic equivalent

wlj, ]+ 2[4,0] = F ' (plj, 1)), je JteT, (13)

where the notation F, ' (p[j,?]) = min{v : F,(v) > p[j,t]} denotes the (p[j,t])-quantile of the
cumulative probability distribution of the cumulative demand of distributor j up to time ¢. Thus,
the intersection of events bounding model allows the derivation of a ready rate sufficient demand
trajectory D;, whose components &,,[j,t] = F, ' (p[j, t]),t € T are such that:

T
Dj, = | FT 0l ) B LA Figf 00 T = Y (U= pli ) <1 =plj]| - (14)
t=1
Second, constraints (12) can only be satisfied if p[j,t] > p[j], t € T, 57 € J. Clearly, the
intersection of events model implies the replacement of the |.J| joint probabilistic constraints (5) in
(6) by the |J| - (|T'] + 1) deterministic linear constraints (12) and (13), and is an approximation of the
stochastic problem (6). Indeed, the substitution of (12) and (13) for (5) shrinks the feasible region and
generates higher costs for the supply chain: the demand trajectories are service level sufficient but not
efficient. We note that, in the integer problem resulting from the above substitution, p[j, t| are non-
negative decision variables representing the attained stagewise service level, and p[j] are parameters
representing the prescribed cycle service level. The constraints 1 > p[j,t] > p[j] are induced by
(12) and can be added in the formulation.



3.1.3 Robust Model

Postulating that the solution of an optimization problem of form (6) is very computationally intensive,
it is proposed in [6] to simplify it by defining p[j, ¢] (which are decision variables in (6)) as parameters,
setting them equal to:

: . 1—=ply .
plictl=plil + 2 e rje . (15)
This leads to the definition of a unique ready rate sufficient demand trajectory [);, with components
_ 4 1—=ply _ . 1—=p[y
D = {Fl ' (pb] +T|H> N (p[y] + ‘T’H : (16)

It allows the replacement of (5) by the constraints
iy ]+ 203,00 = B wl5i ), € JteT

The a priori setting for the value of p[j, t| provides a simpler optimization problem, but does not offer
any guarantee of optimality. Indeed, as the intersection of events approach, the robust one generates
an approximate formulation of problem (6) and guarantees that constraints (12) and (13) hold, which
also implies the satisfaction of (5). While the robust modeling approach defines p|j, t| as parameters
to which a specific value is assigned and accepts a unique ready rate sufficient trajectory (16), the
intersection of events approach defines p|j, t] as decision variables and accepts a finite number (14) of
service level efficient trajectories (the robust modeling efficient trajectory (16) is one of them). Hence,
the robust approach shrinks the feasible region more than the intersection of events approach does.

3.2 Magnitude of Stockout

In this section, we consider the fill rate and the conditional expected stockout CSLs that both limit
the magnitude of the stockout. They are quantity-oriented performance measures requesting that the
proportion or the quantity of demand satisfied without delay from the stock on hand is above a certain
value.

3.2.1 Fill Rate Service Level

The fill rate service level p/, with p’ € [0, 1] and usually close to 1, is a major performance indicator
[23, 37] that requires the expected fraction of product demand that cannot be met from on hand
inventory to be lower than or equal to a certain proportion (1 — p’). The complement 1 — p’ of p/ is
called the unfill rate.

We calculate the expected shortfall as follows:

EE[j. 8] = (Wl 1] + 2[5, 0D]"

where z[7, 0] is the known initial inventory level at j. Normalizing the expected shortfall with respect
to the cumulative demand £[7, t|, we obtain

g, 1] — (Wi + 2. 0D

E : )
£l t]

Note that the expression above represents the fraction of expected shortfall at time ¢ and not the

expected shortfall until time ¢. The value of (17) could be equal to 0 at ¢,t = 2,...,|T| even if a
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shortfall ({[j, '] > z[j, 0] + w|j, t']) happened at a previous period ¢’, ¢ < t. Thus, in order to account
for the stockout that happened at each period across the planning horizon, the fill rate cycle service
level p’ imposes that the sum of the expected fractions of stockout is upper bounded by (1 — p’). It
follows that the demand trajectory D; = [{,[7,1], ..., &n7, |T]]] can only be fill rate (p') sufficient
if the constraint below holds:

0.
Therefore, when a fill rate CSL is pursued, we can replace the service level constraint (3) by (18) and

wlj, 1] +2[5,00 = &ulj,t], je JteT. 19)

ehl—6mlid] "
—m} is larger than or equal to 0, ensures

&t

% < 0,t € T is violated, is limited from

above by (1 — p'[j]). Hence, (18) can be replaced by the set of constraints

EFuﬂ—%uﬂr

The constraint (18), in which each component £ [

that the expected amount by which each inequality

<1-plt jetteT

&lj. 1]
> (1=pl 1) <1-pj] jed 20)
teT
0 <p'[j,t] <p'[j] jeJteT
Emli 1] >0 jeJteT

The optimal solution of the problem (1)-(4), where (19) and (20) are substituted for (3), defines the
fill rate efficient demand trajectory which represents the minimal quantities &,,[J, t], ¢ € T  of demand
to be satisfied in order to reach the prescribed fill rate CSL. The solution of this optimization problem
will greatly benefit from Theorem 3 (see the Appendix for its proof).

Theorem 3 If the univariate random vector £ is discretely distributed, taking a finite number of pos-
— Hul™"
o[
§

is piecewise linear and convex in R, with H denoting the technology matrix.

sible values, then the function

: 1
Theorem 3 shows that every function £ [%] is piecewise linear and convex. It is linear on
the successive intervals [€71[5, 1], €4, t]],1 = 1,..., %, where £'[3, 1] denotes the [*" level that &[5, ¢]
4 . ST+
3 l gl [j7t]_§'m []vt}
can take at ¢, and is equal to zzzl P [—ﬁl G }

3.2.2 Conditional Expected Stockout Service Level

The conditional expected stockout p” service level [1] ascertains the level of supply that is necessary
to ensure that, when a stockout occurs, the expected quantity of missing products is below a prede-
fined value. It bounds the conditional expected magnitude of product in stockout and is modeled by
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using conditional expectation constraints. In the stagewise case, which assumes that each period is
considered independently of the others, the conditional expected amount

E[&[j,t] = (i, 1] + 2[4, 00) | €[, t] > wlj, t] + 2[4, 0]] < s"'[j,t], je JteT (@2l

is constrained to be below a prescribed quantity s”” [7,t] that is here defined in such a way that the
quantity of conditional expected stockout does not exceed p”% of the demand received until time ¢:

Gt = €t — FTYQ"[jt]) , teT,jeJ.

The notation &[4, ¢] indicates the maximum level of the cumulative demand until £ and F,*(p"[j, t]) is
the p”[j, t]-quantile of the cumulative random demand at time ¢.

As for the fill rate service level, the value of the left-hand side in (21) could be equal to 0 at the last
period |T'|, while being strictly positive at earlier periods. Hence, the conditional expected stockout
cycle service level is modeled by the constraint

> B[l t] = (i, ] + 2[5,00) | €5, 1] > wls, t] + 2[5, 0)] < s*"[4], j € J, where

teT
"' [] = €6, 1T = Fy (0", 1T, G € T
We define sP"[j] as the difference between the maximum possible demand &[5, |T'|] at j over the entire
horizon and the p”-quantile F‘;‘l (p"[4, |T]) of the probability distribution of the demand at the end of
the planning horizon.
Thus, D;,, = [£nld, 1], - ., &nld, |T]]] is conditional expected stockout sufficient if the constraint

> (E[El 1] = &nld ] | 1.1 > &nli tl]) < s7[5], G € T,

where each term F [£[7,t] — &[4, t] | €[4, t] > &nlJ, t]] is at least equal to 0, holds. Hence, the substi-
tution of the set of constraints

wlj, t] + z[7,0] > &nld, t] jeJteT

EEl 1) = &mli 11 €6 1] > &nli ) < 7' [jt] jeJteT

> st < s7[) jed 22)
teT

0<s”[j,t] <s"[j] jeEJteT

Emli t] >0 jeJteT

for the constraint (3) ensures the attainment of the prescribed conditional expected stockout CSL.
The optimal solution of the optimization problem (1)-(4), where (22) replaces (3), determines the
conditional expected stockout efficient demand trajectory that represents the minimal amounts of
demand to be satisfied for the conditional expected stockout service level constraint to hold.

4. Computational Study

The computational study has the following objectives: (i) to study the overall applicability and com-
putational tractability of the models and the solution approach developed in this paper; (ii) to compare
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the reliability level that a supply chain can reach through the enforcement of cycle versus stagewise
service levels; (iii) to compare the requirements imposed by a CSL limiting the probability of a
stockout versus one limiting the magnitude of a stockout; (iv) to verify the applicability of the solu-
tion method to construct a plan that satisfies the conditions imposed by two CSLs: one limiting the
probability of a stockout and one limiting the magnitude of a stockout; (v) to appraise the degree of
conservativeness of the three models proposed for the ready rate CSL.

The computational study is divided into two main parts. First, the above questions will be investi-
gated in the context of a real-life problem faced by a three-stage supply chain selling various forms of
calcium chloryde throughout North America. In the second part of the study, in order to evaluate the
overall applicability of the proposed approach, we apply it to solve more complex and more general
planning models in which the constraints and assumptions specific to the supply chain studied in the
first part of the computational section are removed.

The problems are modelled with the AMPL mathematical programming language and solved with
the 11.1 CPLEX and the open-source Bonmin [3] solvers. Each problem instance is solved on a
64-bit Dell Precision T5400 Workstation with Quad Core Xeon Processor
X5460 3.16GHz CPU, and 4X2GB of RAM. When optimality cannot be proven, the optimization
process is stopped after one hour of CPU time.

4.1 Real-Life Problem

We describe below the real supply chain to which we first apply our approach. A more detailed
description can be found in [28].

The supply chain operates in North America and is one of the five largest worldwide producers of
soda ash and calcium chloryde. It is a three-stage supply chain with one supplier in Michigan, two
manufacturers in Michigan and Ontario, and thirteen distributors in harbour cities such as Montreal,
Quebec, Cleveland, Oswego, etc. It generates approximatively $300 million of revenue, about $100
million of which stemming from the calcium chloryde market. Very large and heterogeneous tank
ships and barges are used to transport products over the Great Lakes between supply chain entities.
Large ships are very expensive to operate; transportation costs represent about 50% of the total prod-
uct costs. Contracting out transportation capacity with external logistics service providers is possible.
The raw material is brine and the products are several forms (liquid, flake, pellet) of calcium chlo-
ryde. The demand for calcium chloryde is non-stationary and very seasonal - the product is used, for
example, for motorways maintenance (de-icing of roads, etc.). Demand shortages lead to customer
dissatisfaction that could be disastrous in a market with a few very large distributors. Shortage man-
agement is the key supply chain performance driver and provides the supply chain an incentive to
construct replenishment plans that satisfy the conditions dictated by a stockout-related CSL.

The supply chain seeks to minimize the sum of its inventory, production, and distribution costs
over a one-year planning horizon decomposed into monthly time-periods (|7°| = 12), without violat-
ing any constraints. In order to do that, the supply chain must take optimal decisions pertaining to
the production (production levels of raw material, semi-finished and finished products at each facility
and period), distribution (selection of carriers to be used, scheduling and routing of each carrier in the
transportation fleet: number of shipments from any supplier or manufacturer facility to any distribu-
tor or manufacturer at each period, cumulative supply: amount of product delivered to each facility
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at each period; periods at which the carriers owned by the company are maintained), and inventory
(inventory levels at each facility and period) functions.

The supply chain must satisfy the following standard constraints in effect for most supply chains.
The production and inventory capacities are limited at each supply chain facility (suppliers, manu-
facturers, distributors). The sustainability of the planning strategy requires that, at each facility, the
inventory levels at the last period of the planning horizon are at least equal to the initial ones. The
flow balance constraints set the ending (i.e., at the end of a period t) inventory levels equal to the
initial ones (i.e., at the start of the planning horizon) increased by the cumulative (up to time t) supply
minus the cumulative demand.

We provide below the formulation of the constraints involving integer decision variables as well as
those that are specific to the studied chemical supply chain. The specifics of these constraints pertain
to the fact that the supply chain uses a maritime distribution network. The following set notations are
used in the paper: V is the set of transportation carriers, V' C V is the set of carriers owned by the
supply chain, I is the set of production facilities, X' = I U J is the set of supply chain nodes, and
K (t) is the set of supply chain nodes that are not accessible at time t.

The constraints

o> bi ko) - xfi kot <afut] veViteT (23)

i€l keK

xli, kv, t] € Z, iel,ke K,veVteT, (24)

represent the limited time availability a[v, t] of carriers at each period ¢, and account for the total lead
time b[i, k, v] to deliver from facility ¢ to & with carrier v. The total lead time is defined as the sum of
the loading, unloading, delivery, and backhaul times. The decision variable x[i, k, v, t| represents the
number of shipments between ¢ and k at time ¢ with carrier v and is defined (24) as a positive general
integer variable. The maintenance of the carriers owned by the supply chain is enforced by:

xli,k,v,t] < M- Sv,t] iel ke KiveV' teT (25)
St =T -1  wveV (26)
teT

d[v,t] € {0,1} veV'iteT 27

Constraints (25) and (26) are the carrier maintenance constraints imposing that each carrier belonging
to the supply chain is not used in at least one period, allowing for its maintenance during (part of) that
time. We denote by M the maximum number of shipments between ¢ and & that can be done at ¢ with
v, and we introduce a binary variable J[v, ] (27) equal to 1 if the carrier v is chartered at ¢, and equal
to 0 otherwise. The distribution time-window constraints

zli,k,v,t]=0,ie€l,teT ke K(t),veV

account for the fact that some facilities k& are not accessible at some time ¢, due, for example, to bad
weather conditions. For instance, no transportation to Cleveland is allowed during the winter, since
the chemical product is then likely to freeze. The constraints

qli, k,v,t] = c[v] - x[i, k,v,t], ie Lke KveViteT, (28)

where ¢[i, k, v, t] denotes the amount of products delivered to k at ¢ with v leaving from ¢, and c[v]
is the loading capacity of v, enforce a full-load and direct (i.e., a single loading and discharging
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location) shipment policy. This distribution policy results from the fact that the demand is much
larger than the ships’ maximal loading capacity, and from the very high cost of operating a ship. Such
a policy appears to be frequently used in maritime distribution [22]. For an in-depth discussion of the
advantages of resorting to direct shipments, we refer the reader to [17].

The objective function is linear and minimizes the sum of the distribution, production, and holding
costs incurred at each supply chain node % over the entire planning horizon. The production costs are
computed by multiplying the production levels of semi-finished products and end-products by their
unit production costs. The inventory costs are proportional to the ending stock levels. Most often, the
transportation costs are piecewise linear and defined as the sum of a fixed cost incurred if a carrier
is chartered (28) and a variable cost depending on the quantity of products loaded on the carrier
and the lead time between the delivering and receiving facilities. The full-shipment policy used in
this supply chain, which requires the delivery of a quantity equal to the capacity of the carrier used,

allows, however, the modeling of the distribution costs > >> > > g[i, k,v| - z[i, k, v, t], where
i€l keK teT veV
gli, k,v] is the total transportation cost incurred by chartering carrier v and by using it to transport a

product quantity c[v] from node 7 to node & at time ¢, as a function of the continuous decision variables

qli, k, v, ) |
> 2.2 %-Q[i,kw,t], (29)

i€l keK teT veV
which takes value 0 if there is no shipment between ¢ and & with v at ¢. The full-load shipment policy
implies that the ratios q[”c'[fﬁ’t] and 2 [z’[ij”] respectively indicate the number of shipments and the unit

transportation cost with carrier v leaving from ¢ and heading to £ at period ¢.
We use historical data to derive two probability distributions for the random demand. The first

(resp., second) probability distribution is symmetric (resp., positively skewed) and the demand d[j, t]
can take ¢ = 5 (resp., 10) different levels at each time-period. For these two probability distributions,
we consider three values 0.9, 0.95, and 0.97, for each service level. The following statistics give an
idea of the size of the problem: we have about 850 continuous variables, 500 general integer variables,
500 binary integer variables, and 2200 constraints. The exact numbers vary with the type of CSL, the
prescribed value of the service level, and the modeling approach. We complement the optimization
solvers by using a family of binary-integer cover inequalities [27] that are very efficient for dealing
with the distribution constraints containing integer variables (23).

4.2 Computational Tractability
4.2.1 Probability of Stockout

In this section, we study the performance of our solution method to solve the integer optimization
problems associated with the three modeling approaches for the ready rate CSL. As compared to the
robust model (Section 3.1.3), the one based on the intersection of events approach (Section 3.1.2)
comprises |J| additional continuous decision variables and linear constraints, while the p-efficiency

S (p)

model (Section 3.1.1) contains |.J| additional covering constraints and ) |S;

jeJ
decision variables. Table 1 shows that the number of p-efficient demand trajectories (and therefore
the number of additional binary variables) is a decreasing function of the value of p, and generally

additional binary

increases with the number of different demand realizations. It is worth noting that the value of ‘S ;p )
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does not increase exponentially with ¢. The very different number of p-efficient demand trajectories
per distributor is due to the non-stationarity (i.e., the specifics) of the distributor demands.

p CLE | DAR LIT | MON | MOR | NEW OSH OoSw OWE QUE SEP STE | THU

09 | 22 | 29 | 34 | 121 | 51 | 44 | 134 | 48 | 3 | 83 | 8 | 17 | 164

SP1 1095|1323 | 26| 8 | 35 | 33 [104| 32 | 1 | 68 | 6 | 13 | 130
¢=51097| 8 | 14 | 18| 40 | 16 | 8 | 53| 16| 1 | 38|43 |6l
09 | 30 | 32 [ 38| 129 | 50 | 45 | 142 | 68 | 8 | 92 | 9 | 22 | 162

‘Sj(”)‘ 095 | 21 | 24 [ 21| 99 | 28 | 20 |121| 52 | 6 | 58 | 6 | 10| 151
0=10]097 |10 | 11 | 8 | 44 | 14 | 15 | 64| 25| 6 | 28| 3 | 9 | 68

Table 1: Number of p-Efficient Demand Trajectories
To evaluate the computational tractability of the proposed approaches, we compute

o the integrality gap [ = M for the p-efficiency model: U B is the value of the best feasible
integer solution found. The value of LB is obtained by constructing and solving to optimality
the convexification of the continuous relaxation of the MIP problem associated with the p-
efficiency approach:

min f(x)
subjectto Az > b

)S(p)‘
21, 0] + w[j, 1] ZA |+ &mli, 1] jeJteT
5]
> dalil =1 jeJ
m=1
Am[j] = 0 jedm=1,..[S"
ZL’ERJr

e the optimality gap O = YB=LE for the robust and intersection of events models: BB is the best
bound identified by the solver.

For each combination of p and ¢ (Table 2), we have generated 10 problem instances and we have
solved them with each modeling approach. Entries in Table 2 report the value of the average optimality
and integrality gaps for each combination of p and ¢ and for each modeling approach, as well as the
average time (CPU seconds) needed to find the best solution throughout the one hour allowed.

The computational tractability of the solution approach, when applied to the robust and the inter-
section of events models, is attested by the very small values of the optimality gaps for each set of
problem instances. The same conclusion can be extended to the p-efficiency approach for which the
integrality gap is always very low. We do not report the value of the optimality gap for the p-efficiency
model, since the solution approach is a column generation algorithm. At each iteration, a particular
column, i.e., p-efficient demand trajectory D;, , is considered, and a best bound B can only be com-
puted with respect to that specific demand trajectory. The computational times for the intersection of
events and robust models are roughly the same and are lower than those for the p-efficiency model.
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Intersection of Events Robust Model p-Efficiency

¢=5 ¢ =10 (=5 ¢=10 =5 ¢ =10

»=09 O 0.38% 0.49% 0.29% 0.39% I 2.65% 2.92%
| Time 235 251 209 198 Time 561 489

=095 0 0.20% 0.34% 0.24% 0.33% I 2.81% 3.10%
Time 196 259 191 209 Time 444 648

=097 O 0.33% 0.30% 0.27% 0.46% I 2.67% 2.89%
' Time 226 184 178 165 Time 651 429

Table 2: Solution Quality and Computing Time with Intersection of Events, Robust and p-Efficiency
Approaches

4.2.2 Magnitude of Stockout

We proceed to the same analysis for the two CSLs that limit the magnitude of the stockout. Entries
in Table 3 report the average optimality gap (for each combination of service level magnitude and /)
corresponding to the best replenishment plan satisfying a fill rate (left side) and conditional expected
stockout (right side) CSL. The computational tractability of the proposed approach is attested by the
very small value of the average optimality gap and the very limited average computational time for
each set of problem instances. As above, we have generated and solved 60 problem instances (i.e., 10
for each combination of values taken by p’ or p” and /).

Fill Rate Conditional Expected Stockout
¢=5 | Time | /=10 | Time ¢=5 | Time | =10 | Time
P =90% | 0.84% | 154 | 093% | 154 | p"=90% | 0.77% | 161 | 0.76% | 142
P =95% | 0.39% | 180 | 0.73% | 181 | p" =95% | 0.65% | 176 | 0.85% | 187
P=97% | 054% | 172 | 0.66% | 184 | p"=97% | 0.63% | 198 | 0.71% | 174

Table 3: Average Optimality Gap and Computing Time with Fill Rate and Conditional Expected
Stockout Cycle Service Level

4.3 Stockout Occurrence and Magnitude with Stagewise and Cycle Service
Levels

4.3.1 Probability of Stockout

In this section, we investigate and compare the reliability level, defined as the probability of not having
any stockout across the planning horizon, with the three following approaches:

e P-EFF: cycle service level modeled using the p-efficiency concept;

e IPC: enforcement of a stagewise service level p[j,¢] at each period ¢t € T considered inde-
pendently of the other periods in the horizon. This is modeled with individual probabilistic
constraints in which the random independent right-hand side is the periodic demand d[j, t|:

P(z[j,t = 1]+ m[j,t] > d[j,t]) > pjs, t€T,j€J
The notations z[j,¢ — 1] and m|j, ] respectively denote the inventory levels at period (¢t — 1)
at facility j and the supply provided to j at the start of period ¢. Replacing d[j,t] by its uni-
dimensional, and therefore unique, p-quantile, the problem above turns into a deterministic
MIP;
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e EXP: replacement of the random demand £[j, ¢] by its expected value E[£[j, t]]. Thus, we obtain
a deterministic optimization problem in which the constraint z[j, 0] + w[j,t] > E[{[4,t]], j €
J,t € T is to be satisfied instead of the probabilistic constraint (5).

First, for each problem setting (i.e., value given to ¢ and p[j]), we construct the optimal replenish-
ment plan associated with each of the above approaches. Second, we generate 100 demand trajectories
(i.e., scenarios) for the considered distribution of the random demand and calculate for how many of
those a shortage happens with the optimal replenishment plan. We do that count for each of the three
approaches, which provides us with an estimate of the horizon-wide probability of a stockout with
the optimal plan of the three approaches. Figure 1 displays the results of the simulation study for the
problem instances in which ¢ = 5 and p[j] = 0.95 = p[j,t],j € J,t € T.

OEXP OIPC MP-EFF OEXP OIPC BP-EFF
Oshawa

@
3

@

S

IS
S
IS
S

| 1 L

CLE DAR uT MON MOR NEW OSH OSW OWE QUE SEP STE THU 1 2 3 4 5 6 7 8 9 10 11 12
Distributors Periods

N
S
N
o

Number of stockouts
Number of stockouts

Figure 1: Comparison of Modeling Approaches for the Ready Rate Service Level

The chart on the left side of Figure 1 shows that the supply chain experiences at least one stockout
over the entire planning horizon in many scenarios (at least 42%, at most for 59%) with the optimal
plan of the EXP approach. The IPC approach enforcing stagewise service levels does not reflect
the desired safety requirements either. It guarantees that, at each period, the probability of negative
inventory level is below 5%. Yet, the probability of having a shortout at least once in the planning
horizon varies between 10% and 27%, and remains much higher than the probability (5%) allowed
by the prescribed ready rate CSL. The plan constructed using the p-efficiency approach satisfies the
conditions of the desired CSL. The same comments apply for all problem instances.

The chart on the right side of Figure 1 displays the cumulative (up to period ¢) number of stockouts
experienced by the Oshawa-based distributor for the three evaluated approaches. We can see that
the cumulative number of stockouts increases fast (almost reaching its maximum) at periods 4, 5,
and 6 when the demand reaches its peak and the risk of congestion is the highest. This simulation
study illustrates the non-suitability of enforcing stagewise service levels if one seeks to have a small
probability of stockout over the entire planning horizon.

4.3.2 Magnitude of Stockout

In this section, we compare the conditional expected stockout (resp., fill rate) cycle and stagewise
service levels. The fill rate stagewise service level constraints are formulated as

+
<1-9p[jt], jeJteT,

C €A = (@l ]+ 2[5, 0)
;p { €51
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while the formulation of the conditional expected stockout stagewise service level constraint is given
in (21). We construct the optimal replenishment plan satisfying a conditional expected stockout (resp.,
fill rate) cycle (resp., stagewise) service level (¢ = 5,p"[j,t] = p'[j,t] = 0.95,5 € J,t € T). We
then calculate in how many of 100 simulated demand trajectories the optimal cycle and stagewise
replenishment plans violate the requirements imposed by conditional expected stockout (resp., fill
rate) CSL (p”[j] = p'[j] = 0.95,5 € J). The left (resp., right) graph in Figure 2 shows the number of
demand trajectories, among the 100 simulated ones, for which the quantity (resp., fraction) of product
stockout exceeds s(*9)[] (resp., 5%).

Conditional expected stockout W Stagewise Fill rate W Stagewise
30 OCycle 20 OCycle

s
=

5

3

exceeding limit

Number of stockouts

Number of stockouts
exceeding limit

=)
=)

CLE DAR LT MON MOR NEW OSH OSW OWE OLE SEP STE  THJ CLE DAR LT MON MOR NEW OSH OSW OWE QUE SEP STE  THU
Distributors Distributors

Figure 2: Comparative Study of Stagewise and Cycle Service Levels

Figure 2 shows that the supply chain experiences a conditional expected amount of stockout (resp.,
proportion of product stockout) larger than s%")[j] (resp., p/[j]) in many scenarios with the replen-
ishment plan associated with the stagewise approach of the conditional expected stockout (resp., fill
rate) service level. The stagewise approach clearly does not permit the attainment of the targeted CSL
requirements.

4.4 Comparison of Cycle Service Level Requirements

In this section, we assess the requirements of the ready rate and fill rate CSLs, and we calculate:

e the ready rate CSL p attained by the optimal replenishment plan enforcing a fill rate CSL p/
equal to 0.95 (3rd row in Table 4);

o the fill rate CSL p/ attained by the optimal replenishment plan enforcing a ready rate CSL p
equal to 0.95 (5th row in Table 4).

Table 4 reports the detailed results for the case when the random demand can take 5 different
levels, and provides a clear empirical confirmation that the ready rate CSL is more demanding than
the fill rate CSL. The enforcement of a ready rate CSL p = 95% guarantees a fill rate CSL (p/)
higher than 99.9%, while a fill rate CSL p’ = 95% guarantees a very low, ranging between [33.67%,
74.64%], ready rate CSL. Similar conclusions apply for other values of p and p’ and for the other
probability distribution.

4.5 Model Conservativeness for Ready Rate Cycle Service Level

In Figure 3, we plot the stochastically efficient frontier of the ready rate CSL with each modeling
approach. A replenishment plan is said to be stochastically efficient if it is the least costly one that
allows the attainment of a given ready rate CSL p (with a certain modeling approach). We define
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‘ CLE ‘ DAR ‘ LIT ‘ MON ‘ MOR ‘ NEW ‘ OSH ‘ OSW ‘ OWE ‘ QUE ‘ SEP ‘ STE ‘ THU

p =0.95

D ‘ 33.67% | 53.54% | 34.35% | 49.02% | 61.22% | 4091% | 39.89% | 37.68% | 74.64% | 63.50% | 44.12% | 53.50% | 65.73%
p=0.95

]7 ‘ 99.94% | 9991% | 9991% | 99.92% | 99.91% | 99.93% | 99.92% | 99.94% | 99.92% | 99.92% | 99.97% | 99.92% | 99.91%

Table 4: Comparison between Fill Rate and Ready Rate Cycle Service Levels

the stochastically efficient frontier as the collection of stochastically efficient plans. In Figure 3, the
numbers associated with costs (7-digit numbers) are normalized (due to confidentiality requirements)
with respect to the most expensive plan constructed.
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Figure 3: Efficient Frontier

Figure 3 (right: ¢ = 5, left £ = 10) highlights that the p-efficiency approach results, for each
value of p, in a significantly less costly solution than the ones found with the robust and intersection
of events approaches. Figure 3 shows that the total costs obtained with

o the intersection of events approach for p = 0.90 (resp., 0.95) are larger than those obtained with
the p-efficiency approach for p = 0.95 (resp., 0.97);

e the robust approach for p = 0.90 (thus, also p = 0.95, 0.97) are larger than those obtained with
the p-efficiency approach for p = 0.97.

The reason for the above cost results is that the intersection of events approach is more constraining
and gives an upper bound, not always very tight, on the optimal solution of (6). Indeed, as it can
be inferred from constraints (11) and (12), the higher the dimensionality (value of |T'|) of the random
variable, the looser the bound provided by the intersection of events model. This observation evidently
carries over to the robust approach, since this latter is even more conservative than the intersection of
events model to approximate (6). Figure 3 shows that the total costs obtained with the robust approach
for p = 0.90 are almost as high as those obtained with the intersection of events approach for p = 0.97.
The rationale for using the robust formulation approach instead of the intersection of events approach
is that one obtains a less complex optimization problem: by setting p[j,t| = p[j] + 1]%“ ] (15), one
actually trades off solution quality for computational tractability. In this study, this trade-off is not
beneficial, since, for each instance, the best solution found with the intersection of events approach
is better than the one found with the robust approach, and both solutions are obtained in similar
computational times. Finally, Figure 1 highlights that the total costs with the robust model remain
stable, and are almost invariant to the value of the enforced CSL.
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The following analysis is another illustration of the conservativeness of the intersection of events
and the robust approaches and of their potential relevance for risk-averse decision-makers. For each
problem instance (i.e., for each value of p = 0.9,0.95,0.97 and ¢ = 5,10), we construct the best
possible plan using the three modeling approaches for the ready rate CSL.

Considering a sample of 100 simulated demand trajectories, we compare for each problem in-
stance and modeling approach:

e the enforced ready rate CSL pl[j];

e the obtained ready rate CSL p|j], which is the probability of not having any shortage across the

planning horizon by implementing the optimal plan built for the enforced service level p[j];
e the true ready rate CSL p[j], which is the fraction of the 100 simulated demand trajectories for
which there is no stockout if one implements the optimal plan.
Figure 4 displays the enforced, obtained, and true service levels for each solution approach when the

random stagewise demand can take ¢ = 5 demand levels at each period. Results are almost identical
for ¢ = 10.

O p-efficiency O Intersection of events M Robust O p-efficiency O Intersection of events M Robust O p-efficiency O Intersection of events M Raobust
! plj=0.9 1 pljj=0.95 ] pljj=0.97

0975

0.95 0.975 0.975
0.925 0.95 0.95
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0.875 0.925 0.925
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Obtained True Obtained True Obtained True

Figure 4: Comparison of Enforced, Obtained and True Cycle Service Levels

The true and obtained service levels with the robust and the intersection of events models are
significantly higher than the enforced ones, since the two approaches are approximations of (6), re-
quiring the satisfaction of stricter requirements than those of the ready rate CSL. The robust approach
results in a service level larger than the one obtained with the intersection of events model, confirming
the higher conservativeness of the robust approach. The fact that the obtained service level with the
p-efficiency approach is higher than the enforced one can, at first sight, appear surprising, but it is
the consequence of the full-load shipment policy that results in the delivery of quantities in excess to
those needed for the enforced service level.

As reported in the thorough review of the maritime transportation literature [10, 38], most pro-
posed maritime distribution models are deterministic [11, 14, 15, 34], although ship scheduling carries
much uncertainty. Our paper is, to the best of our knowledge, the first one to propose models and a
solution method that allow for the construction of a stochastic, integrated [41], and multi-period plan-
ning problem with maritime distribution policy.

4.6 Generalization to Standard and Larger Multi-Stage Supply Chains

This section is intended to verify the computational tractability and applicability of our approach to a
wide range of multi-stage supply chains. This will be accomplished by (i) relaxing the assumptions
(full-load shipments, cost function) that are particular to the chemical supply chain, and (ii) increasing
the dimensionality of the problem. This latter goal will involve the consideration of a more complex
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supply chain network, an extended fleet of distribution carriers, and a larger number of demand real-
izations at each period of the horizon.

The full-load shipment constraint (28), particular to the chemical supply chain analyzed so far, has
a strong impact on the formulation of the planning optimization problem. First, the decision to use a
carrier v at time ¢ for transporting products from ¢ to k fully determines the quantity of products (i.e.,
equal to the maximal loading capacity c[v] of the carrier v) delivered with this shipment. Second,
the transportation cost can be formulated as a continuous function (29). Third, the reason why we
distinguish the “obtained” and “enforced” service levels resides in the fixed quantity of products
delivered in each shipment. This results in the delivery of product quantities that exceed those that
would be needed to exactly reach the enforced service level.

The removal of the full-load shipment restriction and the allowance for partial-load shipments
requires the reformulation of the transportation constraint as:

qli, k,v,t] < cv] - xfi kv, t], ie Lke K,veV,teT, (30)

As a consequence, the objective function is modified and transportation costs are modeled as a piece-
wise linear function [30]:

ZZZZ hlv] - x[i, k, v, ] +ZZZZ rli, k,v] - qli, kv, ], (31)

i€l ke K veV teT i€l ke K veV teT

where h|[v] is the fixed cost incurred for chartering carrier v total and r[i, k, v] is the cost for transport-
ing one product form i to k with carrier v. The values of h[v] and r[i, k, v] are such that h[v] + c[v] -
rli, k,v] = gli, k,v].

To assess the extendibility of the proposed approach to larger and standard supply chain networks,
we have generated 120 problem instances in which (i) we have removed the full-load shipment con-
straint and instead use formulations (30) and (31) for the distribution constraint and the distribution
cost function, and (ii) the supply chain network is of larger size and complexity (i.e., numbers |Q|, |.J],
and |L| of suppliers, manufacturers, and distributors, the number |V'| of carriers, and the number ¢ of
realizations that the demand d[j, ] can take at each period ¢ and distributor j). Tables 5 and 6 char-
acterize the problem instances. All the problem instances were solved with each of the approaches
proposed in this paper.

Table 5 reports the quality of the obtained solution as well as the time required to reach the best
feasible solution within one hour of computing time. This information is provided for the three
models proposed for the ready rate CSL. We have generated and solved 10 problem instances for
each combination of value taken by p and ¢. It appears clearly that our approach results in very
low optimality and integrality gaps for networks of larger size. We observe that the computing time
increases with the complexity of the network, but does so at a very reasonable rhythm.

Table 6 provides the same information as Table 5 for the two service levels limiting the magnitude
of the stockout. As for the ready rate CSL, the computational results show the applicability (i.e.,
quality of the solution obtained in reasonable computational times) of the proposed method for general
supply chain networks of larger dimensionality.
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Intersection of Events | Robust Model | p-Efficiency
QU IELITH VI € p O Time O Time I Time
2 [ 4 |15|10 15| 09 | 0.20% 320 0.24% | 287 | 221% | 625
2 |4 151020 09 | 0.38% 306 0.39% | 251 | 2.48% | 689
2 |4 | 15|10 |15]095| 0.14% 289 0.21% | 254 | 1.98% | 574
2 |4 11510 {20]095| 0.19% 387 0.23% | 326 | 2.96% | 722
4 | 4 |120] 10 [15] 09 | 0.32% 342 0.26% | 302 | 1.79% | 759
4 |4 (2010 [20] 09 | 0.29% 364 0.32% | 254 | 2.41% | 826
4 14 20] 10 [15]095| 0.31% 421 041% | 328 | 2.54% | 847
4 14 |20] 10 [20]095| 0.22% 389 0.29% | 341 | 3.03% | 956
4 8 |20 15 [15] 09 | 0.32% 542 0.35% | 490 | 2.23% | 1025
4 8 |20 15 (120] 09 | 0.36% 521 0.27% | 396 | 3.41% | 1109
4 8 |20 ] 15 [15]095| 0.24% 625 0.34% | 489 | 3.62% | 1274
4 8 |20 ] 1520|095 | 0.39% 642 0.29% | 525 | 2.10% | 1326
Table 5: Generalization - Part I: Probability of Stockout
' Fill Rate Conditional Expected Stockout

QUL U VI 4P —5T Time 5 Time

2 (4 1511015 09 |0.30% | 282 0.41% 305

2 |4 |15 10]20| 09 |046% | 250 0.48% 329

2 |4 |15 10|15 095 | 0.18% | 274 0.79% 287

2 |4 1510 (20] 095 | 0.28% | 235 0.39% 341

4 14 2010 |15] 09 |045% | 296 0.54% 369

4 | 4 [20]10 (20| 09 |0.63% | 347 0.29% 396

4 | 4 [20] 10 |15] 095 | 031% | 325 0.64% 421

4 | 4 [20] 10 [20] 095 | 0.58% | 365 0.59% 362

4 8 120 15 15| 09 |0.61% | 487 0.73% 589

4 8 120 15 120| 09 |049% | 536 0.82% 642

4 8 120 | 15 15| 095 | 038% | 479 0.41% 521

4 8 20| 15 (20| 095 | 0.46% | 548 0.58% 539

Table 6: Generalization - Part II: Magnitude of Stockout

4.7 Combination of Cycle Service Levels

In order to simultaneously ensure the attainment of the fill rate and ready rate CSLs (i.e., thus restrict-
ing infeasibilities to occur with no more than a probability (1 — p) and in no more than a prescribed

expected proportion (1 — p)), we solve the following problem

min

T

cx

subjectto Az > b
P(z[j, 0] + wlj, t] > €[, 1], t € T) > ply]

S|

f[],t] - Z[]> 0] - wU? t] i

teT
v=[r'2"] € Ry x 2,

£l 1]
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using the solution approaches discussed previously. For each problem instance, the optimal solution
turns out to be the same as the one obtained with the ready rate CSL. Indeed, the fill rate service level
constraints is redundant, imposing easier requirements than those of the joint probabilistic constraints
representing the ready rate CSL.

5. Conclusion

Demand shortage results in very damaging customer dissatisfaction and loss of goodwill, and is a key
performance driver for supply chains. In this paper, we consider multi-stage supply chains operating in
uncertain environments and whose goal is to construct an integrated replenishment plan that satisfies
stockout-related cycle service level requirements. The concept of cycle refers to the duration of the
entire planning horizon composed of a finite number of interdependent time-periods. A CSL requires
the likelihood (resp., magnitude) of a shortage happening at any point during the planning horizon to
be lower than a small prescribed probability (resp., quantity). Cycle service levels are very demanding,
and are increasingly needed by companies operating in global and highly competitive environments.

We use a discrete-time static stochastic programming framework to derive new integrated planning
models enforcing ready rate, fill rate, and conditional expected stockout CSLs. We propose a solution
approach that can be uniformly applied to each type of CSL. The solution approach rests on the
concepts of service level sufficient (resp., efficient) demand trajectory which is a multi-dimensional
vector representing a set of sufficient (resp., minimal) demand requirements that must be satisfied by
the supply chain in order to attain the targeted CSL.

We proceed to an extended computational study to evaluate the proposed models and solution
approach. The first part of the computational study is based on a real-life problem faced by a major
North American chemical supply chain using a maritime transportation network. It is shown that:
(i) the proposed approach is applicable to handle the very specific requirements of this supply chain
to build replenishment plans satisfying CSL requirements; (ii) the inadequacy of enforcing stagewise
service levels for supply chains aiming at satisfying more demanding, horizon-wide non-stockout
performance metrics; (iii) the three modeling approaches proposed for the ready rate CSL result in
true service levels of different magnitudes. We show that the p-efficiency model provides a true service
level which is the closest to the enforced one, and permits substantial cost savings. We show that the
intersection of events and robust modeling approaches are approximations of the model enforcing a
ready rate CSL. In particular, we show that the robust modeling approach is very conservative.

The second part of the study highlights the overall applicability and high computational perfor-
mance of the proposed approach. These conclusions are based on the results (low optimality/integrality
gaps, limited computing time) obtained by applying our approach to very general and larger multi-
stage supply chain networks. We consider more complex networks (i.e., higher number of nodes at
each level of the supply chain), a larger transportation network, and a larger number of levels that the
random demand can take at each distributor and at any period in the planning horizon.

The point above underlines another key aspect of the present study, namely its wide applicability.
The modeling and solution approach is appropriate and applicable for most multi-tiered communica-
tive, coordinated, and collaborative supply chains [29]. The scope of our approach is further widened
by the fact that the random demand is not restricted by any independence assumption. The proposed
approach can be used for time-dependent, stationary, or non-stationary (i.e., seasonal) demand.

24



Note that the proposed approach is general enough to cope with other cost functions. For example,
consider that (i) the production costs at a facility ¢ equal to o[i] + w[i] - u[i, t],t € T, where o[i] is the
fixed set-up cost and h[i] is the constant production marginal cost, and assume further that the facility
cannot be activated if it does not produce at least a prescribed minimal quantity w|:]; (ii) a production
facility ¢ can benefit from economies of scale and the production costs are accordingly defined as:

o'[i] +w"[d] - wli, t], if  wli,t] > W],

cli] = o"[i] +w'[i] - ufiyt], if 0 <wl[it] <[], teT,

0, if wli, t] =0,
with w”[i] < w'[i]. In both settings, which have been frequently studied in the literature [19], the
cost function takes the form of a concave and piecewise linear function and can be tackled with our
approach. We also show that the proposed approach can be used to simultaneously enforce several
types (i.e., limiting the probability or the magnitude of stockout) of CLSs without jeopardizing its
computational tractability.

We assume in this paper that the probability distribution of the demand is discrete. In case of a
continuous one, the planning models take the form of convex mixed-integer stochastic problems (for
most continuous probability distributions). In this case, the main challenge of the solution method is
the calculation of the cumulative distribution function and of its gradient values which involve numer-
ical integration or simulation in high dimensional spaces. Further research endeavors will concern
the construction of integrated plans enforcing CSL when the source of uncertainty originates from
another source (i.e., lead times, exchange rate for international supply chains, etc.) than the demand.
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Appendix

Proof of Theorem 2
Proof: We have that:

P (&7, t] Swlj, t] + 2[4,0,t € T) jeJ
—1-P (tGUT (&g, t] > wlj, t] + 2[4, 0])) jelJ 32)

>1-) PG >wl ] +20,0)  je.
teT
From (32), constraints (5) in (6) are always satisfied if the inequality

1= (1= P[j,t] 420,00 > €[5, 1)) > plj), G € J
teT
holds for each j. This requires that constraints

1= (1= P[]+ 205,00 > [, ) > 1= (1 —plj;t) jeJ

teT teT

1= (1 =plj,t]) > plj] jed

teT

25



hold jointly, which is guaranteed if
P(wlj, i) +2[5,0] = &[5, 1) = plj,t] jeteT
—pll = 2 (1 =plj;1]) jedJ

teT

Proof of Theorem 3

Proof: i) Piecewise linearity. Let p be the probability for ¢ taking value &, I C {1,2,..., ¢}, and

Y(I)_{ E-Ho oo er um,z’w}.
f '3
It can be seen that . z
EF_HW} :Zplf —le
5 lel 5

ifw € clY(I),cl Y(I)denoting the closure of Y (I). The above function is linear on each set ¢l Y (1),
and, since ¢/ Y'(I) is a convex polyhedronand |J ¢l Y(I) =R, is piecewise linear in R.

IC{1,..6}
ii) Convexity. Since the one-dimensional function [2]™ is convex, it follows that
€ — HOwy + (1 — Nwy)]" ¢ —Hu]" ¢ — Hwy]"
{ 3 S e R e (33)
for any wy,ws € R, 0 < X < 1. Multiplying (33) by p' and summing the inequalities, we get
— H(\ 1—Nws)]" — Hw; " — Hwy]"
it sl el

References

[1] Adenso-Diaz B. 1996. How Many Units Will Be Short When Stockout Occurs? International
Journal of Operations & Production Management 16 (4), 112-118.

[2] Anderson E.T., Fitzimons G.J., Simester D. 2006. Measuring and Mitigating the Costs of Stock-
outs. Management Science 52 (11), 1751-1763.

[3] Bonami P, Biegler L.T., Conn A.R., Cornuéjols G., Grossmann LE., Laird C.D., Lee J., Lodi A.,
Margot F., Sawaya N., Wachter A. 2008. An Algorithmic Framework for Convex Mixed-integer
Nonlinear Programs. Discrete Optimization 5 (2), 186-204.

[4] Boulaksil Y., Fransoo J.C., van Halm E.N.G. 2009. Setting Safety Stocks in Multi-Stage In-

ventory Systems under Rolling Horizon Mathematical Programming Models. OR Spectrum 31,
121-140.

[5] Cardés M., Miralles C., Ros L. 2006. An Exact Calculation of the Cycle Service Level in a
Generalized Periodic Review System. Journal of the Operational Research Society 57, 1252-
1255.

[6] Chen W., Sim M., Sun J. 2007. A Robust Optimization Perspective of Stochastic Programming.
Operations Research. Forthcoming.

26



[7] Chen Z.L. 2003. Integrated Production and Distribution Operations: Taxonomy, Models, and
Review. In: Supply Chain in the E-Business Era. Simchi-Levi D., Shen Z.-J (Eds). Kluwer.

[8] Chen Z.L., Vairaktarakis G.L. 2005. Integrated Scheduling of Production and Distribution Op-
erations. Management Science 51 (4), 614-628.

[9] Chopra S., Meindl P. 2001. Supply Chain Management. South-Western Publishing Co, Upper
Saddle River, NJ.

[10] Christiansen M., Fagerholt K., Ronen D. 2004. Ship Routing and Scheduling: Status and Per-
spectives. Transportation Science 38 (1), 118.

[11] Dauzere-Péres G., Nordli A., Olstad A., Haugen K., Koester U., Myrstad P.O., Teistklub G.,
Reistad A. 2007. Omya Hustadmarmor: Optimizing the Supply Chain of Calcium Carbonate
Slurry to the European Paper Making Industry. Interfaces 37, 39-51.

[12] Dentcheva D., Prékopa A., Ruszczynski A. 2000. Concavity and Efficient Points of Discrete
Distributions in Probabilistic Programming. Mathematical Programming 89, 55-77.

[13] Dormer A., Vazacopoulos A., Verma N. Tipi H. 2005. Modeling and Solving Stochastic Pro-
gramming Problems in Supply Chain Management Using XPRESS-SP. In: Supply Chain Opti-
mization. Geunes J., Pardalos P.M. (Eds). Springer, Elsevier, 307-354.

[14] Erera A.L., Morales J.C., Savelsbergh M. 2005. Global Intermodal Tank Container Management
for the Chemical Industry. Transportation Research Part E 41, 551-566.

[15] Fagerholt K. 2000. Ship Scheduling with Soft Time Windows: An Optimization Based Ap-
proach. European Journal of Operational Research 131 (3), 559-571.

[16] Fisher M., Kamalani R., Yu-Sheng Z. 2001. Ending Inventory Valuation in Multiperiod Produc-
tion Scheduling. Management Science 45 (5), 679-692.

[17] Gallego G., Simchi-Levi D. 1990. On the Effectiveness of Direct Shipping Strategy for the One-
Warehouse Multi-Retailer R-Systems. Management Science 36 (2), 240-243.

[18] Geunes J., Pardalos P.M. 2003. Network Optimization in Supply Chain Management and Finan-
cial Engineering: An Annotated Bibliography. Networks 42 (2), 66-84.

[19] Ghiani G., Laporte L., Musmanno R. 2004. Introduction to Logistics Systems Planning and
Control. John Wiley and Sons.

[20] Hall N.G., Potts C.N. 2003. Supply Chain Scheduling: Batching and Delivery. Operations Re-
search 51, 566-584.

[21] Hausman W.H. 2002. Supply Chain Performance Metrics. In: Practice of Supply Chain Man-
agement. Eds: Billington C., Harrison T., Lee H., Neale J. Kluwer, Boston.

[22] Imai A., Nishimura E., Current J. 2007. A Lagrangian Relaxation-Based Heuristic for the Vehi-
cle Routing with Full Container Load. European Journal of Operational Research 176, 87-105.

[23] Kleijnen J.P.C., Smits M.T. 2003. Performance Metrics in Supply Chain Management. Journal
of the Operational Research Society 54 (5), 507-514.

[24] Kress M. 2002. Operational Logistics: The Art and Science of Sustaining Military Operations.
Kluwer. Boston.

[25] Kutanoglu E., Lohiya D. 2008. Integrated Inventory and Transportation Mode Selection: A
Service Parts Logistics System. Transportation Research Part E 44 (5), 665-683.

[26] Lejeune M.A. 2008. Preprocessing Techniques and Column Generation Algorithms for p-
Efficiency. Journal of Operational Research Society 59, 1239-1252.

27



[27] Lejeune M.A., Margot F. 2008. Integer Programming Solution Approach for Production-
Inventory-Distribution Problems with Direct Shipments. International Transactions in Opera-
tional Research 15, 259-281.

[28] Lejeune M.A., Ruszczyniski A. 2007. An Efficient Trajectory Method for Probabilistic
Inventory-Production-Distribution Problems. Operations Research 55 (2), 378-394.

[29] Lejeune M.A., Yakova N. 2005. On Characterizing the 4 Cs in Supply Chain Management.
Journal of Operations Management 23, 81-100.

[30] Muriel A., Simchi-Levi D. 2003. Supply Chain Design and Planning - Applications of Opti-
mization Techniques for Strategic and Tactical Models. In: Handbooks in Operations Research
and Management Science. Volume 11. Eds: de Kok A.G., Graves S.C., Elsevier, 17-93.

[31] Nagar L., Jain K. 2008. Supply Chain Planning Using Multi-Stage Stochastic Programming.
Supply Chain Management: An International Journal 13 (3), 251-256.

[32] Parlier G.H. 2006. Transforming Army at War. 2006 INFORMS Conference on OR/MS Practice,
Miami, FL.

[33] Paschalidis I.C., Liu Y., Cassandras C.G. and Panayiotou C. 2004. Inventory Control for Supply
Chains with Service Level Constraints: A Synergy between Large Deviations and Perturbation
Analysis. Annals of Operations Research 126 (1-4), 231-258.

[34] Persson J., Gothe-Lundgren M. 2005. Shipment Planning at Oil Refineries Using Column Gen-
eration and Valid Inequalities. European Journal of Operational Research 163, 631-652.

[35] Prékopa A. 1995. Stochastic Programming. Kluwer. Boston, MA.

[36] Prékopa A. 2003. Probabilistic Programming Models. Chapter 5 in: Stochastic Programming:
Handbook in Operations Research and Management Science 10. Ruszczynski A., Shapiro A.
(Eds). Elsevier, 267-351.

[37] Pyke D.F., Cohen M.A. 1993. Performance Characteristics of Stochastic Integrated Production-
Distribution Systems. European Journal of Operational Research 68, 23-48.

[38] Ronen D. 2002. Marine Inventory Routing: Shipments Planning. Journal of Operational Re-
search Society 53, 108-114.

[39] Rose M. 1972. The (S — 1, .5) Inventory Model with Arbitrary Back-Ordered Demand and Con-
stant Delivery Times. Operations Research 20 (5), 1020-1032.

[40] Sarmiento A.M., Nagi R. 1999. A Review of Integrated Analysis of Production-Distribution
Systems. IIE Transactions 31 (11), 1061-1074.

[41] Shen Z.-J. M. 2007. Integrated Supply Chain Design Models: A Survey and Future Research
Directions. Journal of Industrial and Management Optimization 3 (1), 1-27.

[42] Silva Filho G.S. 1999. An Aggregate Production Planning Model with Demand under Uncer-
tainty. Production Planning & Control 10 (8), 745-756.

[43] Swaminathan J.M., Tayur S.R. 2003. Tactical Planning Models for Supply Chain Management.

In OR/MS Handbook on Supply Chain Management: Design, Coordination and Operation.
Graves S.C., de Kok T. (Eds). Elvesier, 423-456.

[44] Tempelmeier H. 2007. On the Stochastic Uncapacitated Dynamic Single-Item Lot-Sizing Prob-
lem with Service Level Constraints. European Journal of Operational Research 181, 184-194.

[45] Van Landeghem H., Vanmaele H. 2002. Robust Planning: A New Paradigm for Demand Chain
Planning. Journal of Operations Management 20, 769-783.

[46] Yildirim 1., Tan B., Karaesmen F. 2005. A Multiperiod Stochastic Production Planning and
Sourcing Problem with Service Level Constraint. OR Spectrum 27, 471-489.

28



