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Abstract

Current opinion regarding the selection of link function in binary discrete choice
models is that the probit and logit links give essentially similar results in terms of fit.
This seems to be true for univariate binary choice models; however, for multivariate
binary choice models it appears to be an oversimplification. We examine the relation-
ship between link function selection and model fit in two classes of multivariate binary
discrete choice models. We find model fit can be improved by the selection of the
appropriate link, even in more modestly-sized data sets. In multivariate link function
models, the logit link provides better fit in the presence of extreme independent vari-
able levels. Conversely, model fit in random effects models with moderate size data
sets is improved by selecting the probit link.

Key Words generalized linear models, link function, Bayesian inference, Markov
chain Monte Carlo (MCMC), DIC.

1. Introduction

Probit and logit models are among the most widely used members of the family of generalized
linear models. In probit models, the link function relating the linear predictor η = xβ to the
expected value µ is the inverse normal cumulative distribution function, Φ−1(µ) = η. In the
logit model the link function is the logit transform, ln(µ/1−µ) = η. The conventional wisdom
for modeling is that in most cases the choice of the link function is largely a matter of taste.
For example, Greene (1997, p. 875) concludes his discussion of the issue with the summary
“in most applications, it seems not to make much difference.” Gill puts it especially plainly;
in discussing link functions including the cloglog, he indicates that they “provide identical
substantive conclusions” (Gill 2001, p. 33). Elsewhere, similar advice appears regularly
when the topic is discussed (e.g., Maddala 1983; Davidson and MacKinnon 1993; Long 1997;
Powers and Xie 2000; Fahrmeir and Tutz 2001; Hardin and Hilbe 2001). Thus, the selection
of the link function tends to be driven more by what we might call contextual factors, such as
interpretability, because the models are presumed to be essentially equivalent. For example,
one might select the logit link because a log odds ratio is a parameter of interest.

Empirical support for the recommendations regarding both the similarities and differences
between the probit and logit models can be traced back to results obtained by Chambers and
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Cox (1967). They found that it was only possible to discriminate between the two models
when sample sizes were large and certain extreme patterns were observed in the data. We
discuss their work in greater detail below. Since the time of Chambers and Cox, a great
number of developments have occurred in the area of binary choice models. Increasingly,
interest has turned to instances where there is more than one binary choice variable to
consider. For example, Ashford and Sowden (1970) proposed a multivariate probit model.
More recently, the linear mixed models framework has been extended to binary choice data
(Stiratelli et al. 1984). Despite these developments, the properties of link functions for binary
choice models in the multivariate realm remain largely unexplored. This seems unfortunate,
as it turns out that the impact of link function on model fit is affected by the form of the
model considered.

In the current paper we address this gap by examining model fit for two families of
multivariate binary discrete choice models. In so doing, we take a Bayesian point of view
and use fit measures such as Deviance Information Criterion of Spiegelhalter et al. (2002) and
marginal likelihoods. In §2.1, we review the bivariate probit model of Ashford and Sowden
(1970) and propose an approximate bivariate logistic model by exploiting the relationship
between the logistic distribution and the t distribution with degrees of freedom ν = 8. As
an alternative dependence structure, a random effects model is presented by introducing
a common intercept term across the response variables using the marginal link functions.
Factors that are expected to influence the fit of these models are discussed in §2.2, while
measures of model fit are presented in §2.3. Three research propositions are stated in §2.4
and the methods used in the study are described in §3. Our findings are presented in §4
while in §5 we examine link function selection in the context of real-world multivariate binary
choice data involving a study of consumer behavior regarding personal finances. We discuss
our findings and draw conclusions in §6.

2. Link Function and Model Fit

2.1. Multivariate Binary Choice Models

Many models for multivariate binary choice data are possible (e.g., Fahrmeir and Tutz 2001).
Here, we review two of the more widely used frameworks. The first involves specifying a
joint multivariate link function for the multiple binary responses. For example, the bivariate
probit model described in Ashford and Sowden (1970) can be written as

p(Yi,j = 1|xi,j) = Φ(ηi,j), j = 1, 2

p(Yi,1 = 1, Yi,2 = 1|xi,j) = Φ2(ηi,1, ηi,2, ρ) (1)

where Φ2 is the bivariate standard normal cumulative distribution function, and i and j
index respondents and dependent variables respectively. This approach could be applied di-
rectly to obtain a bivariate logistic model. However, the various extant multivariate logistic
distributions have properties such as restrictions on possible values of correlation coefficients
and asymmetric non-elliptical distributions (Kotz et al. 2000, ch. 51) that make such a direct
approach less practical. For example, the Type II distribution of Gumbel (1961, Eq. 6.3)
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is among the more attractive of the bivariate logistic distributions as it is not asymmetric.
However, as Smith and Moffatt (1999, p. 318) recently pointed out, the correlation is re-
stricted such that |ρ| < 3/π2 ≈ .304. Therefore, an attractive alternative is to capitalize on
the logistic distribution’s relationship to the t distribution.

Albert and Chib (1993) examined the choice of link function in binary choice models
from the Bayesian perspective. They discussed the similarities between the logistic distri-
bution and the t distribution with degrees of freedom ν = 8. In particular, their plot of
the logistic quantiles against the quantiles of the t(8) distribution shows an approximately
linear relationship between the two distributions. Albert and Chib (1993) determined that
a t(8) variable is approximately .634 times a standard logistic variable. Futher, a Q-Q plot
(described below) also shows there is almost a one-to-one relationship between these two dis-
tributions with the appropriate parameterization. The logistic pdf with location parameter
c and scale parameter d is

p(x) =
exp[(x− c)/d]

d
{
1 + exp

[
(x− c)/d

]}2 .

Note that the t(8) distribution has variance 4/3 and that the standard logistic distribution
with c = 0 and d = 1 has variance π2/3. We may therefore equate the variances of the
two distributions by setting the logistic distribution’s scale parameter to 2/π. With c = 0
the first three moments of the two distributions are then identical, with standardized fourth
moments being very close (γ2 = µ4/µ

2
2 = 4.2 in the case of the Logistic(2/π) and γ2 =

4.5 for the t). Thus, we can see the t(8) has approximately the same distribution as the
Logistic(2/π) but is just marginally more leptokurtic. Figure 1 displays a Q-Q plot of this
relationship. We find the linear relationship between these quantiles is described by the
equation tq = 5.6616× 10−17 + .9976× lq, where tq is the t(8) quantile and lq is the quantile
for the logistic distribution with scale 2/π. Hence, the t(8) distribution provides a quite
close approximation to the Logistic (2/π) distribution. As such, we propose the following
approximate multivariate logistic model

p(Yi,j = 1|xi,j) = Ft(8)(ηi,j), j = 1, 2

p(Yi,1 = 1, Yi,2 = 1|xi,j) = Ft(8)(ηi,1, ηi,2, ρ) (2)

where Ft(8) is the t(8) cdf and Ft(8) is the bivariate t(8) cdf. Chen and Dey (1998) developed
a Bayesian multivariate logistic model using a scaled multivariate t proposal distribution
involving somewhat heavier tails (ν = 5). Given the close fit of the t(8), we expect that their
formulation would yield essentially equivalent results to the current one. We note here that
other symmetric link functions are possible; however, we confine our attention to the probit
and logit links since they were the focus of Chambers and Cox and moreover are the most
commonly used link functions.

Another frequently used model for multivariate binary choice data is the random effects
model. Here, individual-specific terms are introduced to account for heterogeneity at the
individual level. In the current context, the random effects model can be written as

p(Yi,j|x) = g(ηj + bi), i = 1, . . . , n j = 1, . . . , J (3)

3



-4 -2 0 2 4
Logistic Quantile

-4

-2

0

2

4

t
Q
u
a
n
t
i
l
e

Figure 1: Quantile values of Logistic(2/π) versus t(8) for probabilities from .001 to .999

in which the probability of observing the response on variable j in individual i is related
both to the linear predictor ηj as well as an individual-specific random intercept, bi. The
intercepts are specified to arise from a common distribution. Thus, in the random effects
model, dependence is introduced at the respondent level by the presence of a shared intercept
term across the J dependent variables. We can see therefore that the link function g(·)
does not need to be given a multivariate characterization. This is especially convenient as
multivariate link functions are more computationally expensive to evaluate and sometimes,
as in the case of the logistic distribution, are simply unavailable in a sufficiently flexible form.
As such, random effects approaches may be more widely used for multivariate binary choice
data. Zeger and Karim (1991) provided an early Bayesian development of the model in the
context of a Gibbs sampling approach, while Train (2003) provides a contemporary overview
of Bayesian and likelihood-based approaches.

2.2. Factors Influencing Fit

As mentioned above, Chambers and Cox (1967) established that under certain conditions
it was possible to distinguish the results from probit and logit models. In particular, they
were able to distinguish between the link functions when sample sizes were large (e.g., n ≥
1000) and where there were what can be termed extreme independent variable levels. An
extreme independent variable level involves the confluence of three events. First, an extreme
independent variable level occurs at the upper or lower extreme of an independent variable.
For example, say the independent variable x were to take on the values 1, 2, and 3.2. The
extreme independent variable level would involve the values at x = 3.2 (or x = 1). Second, a
substantial proportion (e.g., 60%) of the total n must be at this level. Third, the probability
of success at this level should itself be extreme (e.g., greater than 99%).

While the conditions under which univariate probit and logit models could be distin-
guished were established by Chambers and Cox, the conditions under which the two link
functions can be distinguished in multivariate binary choice models have not been exam-
ined. Here, we examine this issue using two major families of models: the multivariate link
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function models such as (1) and (2), and the random effects models of (3). We consider the
bivariate case here. As such, we utilize the bivariate probit model, first considered from a
Bayesian perspective by Chib and Greenberg (1998). We also consider the new formulation
of the multivariate logit model proposed in (2). We also consider the random effects model
under the probit link as well as under the Logistic(2/π) link. We explore the behavior of
these models in the presence of extreme independent variable levels as well as in the absence
thereof. We also explore these models’ behavior in the context of both moderate and high
levels of dependent variable correlation. Thus, our study involves a 2×2×2×2×2 factorial
examination of model fit in multivariate discrete choice models, as we describe in more detail
in §3. It may seem that, for a given level of dependent variable correlation, numerous data
sets will need to be randomly sampled and analyzed via a Monte Carlo study to ensure the
robustness of the findings. However, note that bivariate binary data can be expressed as
a contingency table with four cells: a, b, c and d. The measure of association for the con-
tingency table for any given n can be calculated deterministically via Pearson’s phi, which
is

ϕ =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
.

It is easy to show that for any fixed values of n and ϕ, at most one data set can be generated
up to a relabeling of the cells. A somewhat similar argument applies to the generation of a
predictor with extreme independent variable levels. A predictor with an extreme independent
variable level as described by Chambers and Cox (1967) has a fairly well-specified set of
properties. Deviating from these properties will likely lead to a predictor that does not have
extreme independent variable levels. Thus, we examine here data sets that either do or do
not have the property of extreme independent variable levels as defined by Chambers and
Cox. Moreover, we examine data sets with a particular moderate or high level of dependent
variable correlation. Details regarding these data sets appear in §3.

2.3. Measures of Fit

Traditional Bayesian model comparison is performed using Bayes factors (Kass and Raftery
1995). More recently, Spiegelhalter et al. (2002) introduced the Deviance Information Crite-
rion (DIC) which combines measures of both model fit and model complexity. Specifically,

DIC = D + pD (4)

where D is the posterior mean of the total deviance and D itself is the sum of the deviance
contributions of the individual observations, i.e., D =

∑n
i=1 di. Moreover, pD is a measure

of model complexity which may be termed the effective number of parameters. In fixed
effects models, pD should approximately equal the actual number of model parameters. In
random effects models, pD will typically be less than the actual number of model parameters.
Nonetheless, pD gives an indication of how much these terms are contributing to the model’s
overall performance. pD itself is defined as D −D(θ), where D(θ) is the deviance evaluated
at the posterior means of the parameters. Models with greater values of pD are penalized for
their greater complexity ceteris paribus as smaller values of DIC are preferred. Thus, DIC
is similar in interpretation and in spirit to another information-theoretic model comparison
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criterion, AIC (Akaike 1973). Based on this similarity, Spiegelhalter et al. (2002) cite work in
Burnham and Anderson (1998) which suggests that models with a DIC which is 3–7 greater
than a ‘better’ model deserve less consideration. We adopt this criterion here for assessing
model fit.

It is perhaps natural to want to compare the more recently-developed DIC measure
with the traditional Bayes factor, although Spiegelhalter et al. (2002) caution against this
since the two methods have different purposes. Specifically, the Bayes factor summarizes
how well the prior has predicted the obtained data whereas DIC summarizes how well the
posterior might predict future data that had been generated by the same process as that
which generated the obtained data. Therefore another way of describing two approaches is
that the Bayes factor has a prior predictive emphasis while DIC has a posterior predictive
emphasis as a measure of a model’s out-of-sample predictive ability. Thus, for comparative
purposes we calculate both the DIC values and the log marginal likelihoods for the different
models examined here. The log marginal likelihoods can be used to construct Bayes factors.
We use the Laplace-Metropolis method of Lewis and Raftery (1997). The Laplace method
is known to perform well with regard to accuracy for marginal likelihood calculations even
in the presence of small sample sizes. For example, in probit models with a sample size
approximately half of what we consider here Chib (1995) compared the performance of his
method with the Laplace method. He found agreement between the two approaches up to
the second decimal place.

2.4. Research Propositions

We present here three research propositions derived from the theoretical development above.

Research Proposition 1 The presence of extreme independent variable levels in consumer at-
tributes will lead to increasingly pronounced differences in fit across the two link functions.

We arrive at this proposition directly from the work of Chambers and Cox (1967). Specif-
ically, to the extent that there are differences in model fit, they will be exacerbated by the
occurrence of extreme independent variable levels.

Research Proposition 2 Increasingly positive correlation among consumer choices will lead
to decreased differences in fit across the two link functions.

In describing this proposition, we may begin by describing the following self-evident
statement: all else being equal, any differences in model fit should become more pronounced
as the sample size increases. For example, part of Chambers and Cox’s work involved finding
at what sample size one may discern differences in binary choice model fit across the two
link functions. In Research Proposition 2 the observation is as follows: as the correlation
increases, what may be termed the effective sample size decreases since the amount of new
information provided by Y2 relative to Y1 decreases with increasing correlation. In the
limiting case when ρ = 1, the bivariate model could be replaced by a univariate one as Y2

provides no information that has not already been provided by Y1. Hence, differences in fit
will be diminished at higher correlations.
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Research Proposition 3 In random effects models, where consumer heterogeneity is directly
modeled, use of the probit link results in model fit that is as good or better than model fit
under the logit link.

This proposition does not directly stem from the work of Chambers and Cox but instead
can be obtained as follows. Recall that the logistic distribution is leptokurtic relative to
the normal distribution and so in fixed effects models having some overdispersion, we might
expect logit models to fit somewhat better. While in the current study the principal use for
the random effects terms is as a means for introducing dependence between the binary choice
variables, note that random effects terms also can be used as a device to model overdispersion.
Therefore, in a random effects model where the random effects terms are adequately modeling
any existing overdispersion, the logit link should likely not fit better than the probit link.
Clearly the random effects terms will already be capturing the overdispersion, so the heavy
tails of the logit will likely not contribute to further improvements in fit. Instead, we would
expect that the more compact normal distribution associated with the probit model to
provide a more precise fit.

3. Methods

We previously described how extreme independent variable levels were those in which the
ability to discriminate between probit and logit links are maximized. We now describe their
operationalization in the current study. Chambers and Cox (1967) investigated the case
where there were three levels for a single independent variable and found that the three
levels of x should be 1, 2, and 3.2 respectively. They also found that, depending on the
baseline link (probit vs. logit), either 11.7% or 16.7% of the total responses should be placed
at Level 1 (x = 1). Due to the constraints of needing to have an integer number of successes
in the data as well as of working with considerably smaller sample sizes, we approximate the
average of these proportions by placing 13.3% of the observations at this level when extreme
independent variable levels are desired. They also found that the proportion of successes
in the choice data at Level 1 should be either 21.5% or 17.1%. Here, our slightly crude
approximation of these proportions (resulting again from much smaller sample sizes) is that
the number of successes at Level 1 will be 16.7%. Note that, if anything, the crudeness of
this approximation (and any others we might consider) will make it more difficult for us to
demonstrate differences between the link functions since Chambers and Cox described the
optimal points at which discriminability was globally maximized. Level 2 should contain
either 21.4% or 26.3% of the responses, with the proportion of successes being either 78.5%
or 82.9%. Here, we place 20.0% of the observations at this level with 77.8% being successes.
Finally, Level 3 should contain either 66.9% or 57.5% of the responses, with the proportion
of successes being either 99.64% or 99.87%. We place 66.7% of the observations at this level
with 96.7% being successes.

For the case of non-extreme independent variable levels, we create choice data in such
a way that the exact opposite of the three conditions above are obtained. First, we divide
the data evenly among the levels so that each level contains n/3 observations. Second, less
extreme proportions of successes are placed at each level. In particular, the proportion of
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successes are 60.0%, 80.0%, and 86.7% for Levels 1, 2, and 3 respectively. Then the third
condition is also satisfied: given that all of the levels have equal sample sizes and more
modest proportions of successes, then the necessary conditions do not exist at the extreme
levels of the independent variable since they do not exist at any of its levels. We take the
three levels of x to be 1, 2, and 3. In a departure from the recommendations of Chambers
and Cox, we consider smaller sample sizes of n = 90 and n = 450. This is because in many
occasions sample sizes used in binary choice models have more modest sample sizes than that
considered by Chambers and Cox. Data sets having n = 450 were generated by stacking 5
copies of the respective n = 90 data set.

We also consider two levels of dependent variable correlation among choices: moderate
and high. In the extreme independent variable level conditions, the correlation ϕ will be set
at .544 as a moderate amount of correlation, and .848 for a high amount. In the conditions
where independent variable levels are not extreme, ϕ will be set at .519 as a moderate
amount of correlation, and .819 for a high amount. The values of ϕ vary slightly across
the extreme/non-extreme conditions here because of the limitations of having to specify an
integer number of cases at each level for a smaller sample size. Nonetheless, the across-
condition correlations are quite close to one another; the differences are all less than 0.03.
Given these factors of interest, the Monte Carlo study design had a 2 (extreme or non-
extreme independent variable level) × 2 (small or large n) × 2 (moderate or high dependent
variable correlation level) × 2 (model type: multivariate link versus random effects model) ×
2 (logit or probit link) factorial structure. The first three of these factors involve differences
that may be encountered in data whereas the latter two factors involve model choice which
is under the control of the statistician.

We estimate the models in (1) and (2) as well as logit and probit versions of (3). To
further facilitate comparability, the logit version of (3) utilizes the Logistic(2/π) distribution
as opposed to the standard Logistic(1). This is easily accomplished by using the data aug-
mentation approach of Albert and Chib (1993). The probit version of (3) is also estimated
using data augmentation. We complete the specification of the multivariate link function
models (1) and (2) as follows

Yi,j ∼ Bernoulli(pi,j)

pi,j = g(ηi,j)

ηi,j = β1,j + β2,j xi

β1,j ∼ Normal(0, 0.02)

β2,j ∼ Normal(0, 0.02)

ρj ∼ Uniform(−1, 1),

where g(·) is the link function. In the random effects models of (3), we complete the speci-
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fication as

Yi,j ∼ Bernoulli(pi,j)

pi,j = g(ηi,j)

ηi,j = β1,j + β2,j xi + bi

β1,j ∼ Normal(0, 0.02)

β2,j ∼ Normal(0, 0.02)

bi ∼ Normal(0, τ)

τ ∼ Gamma(0.05, 0.05).

Under the high dependent variable correlation conditions, convergence of the random effects
models is improved by adopting mildly informative priors. Accordingly, the β parameters
were given normal priors with precisions of 0.02 (i.e., variances of 50) and prior means
of zero. These priors are not particularly informative (especially given the modest values
of β associated with binary response models) and they gave considerable leeway for the
parameters to move toward their posteriors. As mentioned previously, the bi parameters are
assumed to arise from a common distribution. The distribution used here for the bis is the
normal with mean zero and precision τ . The prior for τ was also a mildly informative Gamma
prior with prior shape and scale of 0.05. For consistency purposes, the βs in models (1) and
(2) were also given prior means and precisions of zero and 0.02. The correlation parameter,
ρ, in (1) and (2) was given a flat uniform prior over the interval [−1, 1]. Estimation was
conducted using MCMC. For all models, 5,000 iterations of burn-in were discarded and
150,000 samples from the posteriors were retained for use.

4. Study Results

We first examine the results for the multivariate link models. We see that fit as measured
by DIC under the non-extreme independent variable level conditions is comparable across
links since the differences in DIC across links are well below 3. As the dependent variable
correlation moves from moderate to high, we see the value of pD drop from around 4.8 to
the vicinity of 4.5. This reflects the increasing parameter redundancy under high dependent
variable correlation. In the extreme independent variable level conditions, the differences in
fit become slightly more pronounced but still well below the threshold. The heavier tails
of the logistic distribution seem to provide a minimally better fit under moderate or high
levels of correlation in the presence of extreme independent variable levels. The values of pD

suggest that the probit model is less susceptible to increased parameter redundancy under
high correlation and extreme independent variable level in small sample sizes.

For the random effects models, the DIC results are only clearly delineated in the high
correlation extreme independent variable level condition. There we see that the DIC differ-
ence is 3.8 with the probit model having a DIC of 42.0 versus a DIC of 45.8 for the logit
model. Nonetheless, under the other conditions the probit looks to be the more competitive,
although the differences are rather small due to the small sample size.
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Table 1: Model fit measures: Small sample size

Multivariate Link Random Effects
NEI NEI EI EI NEI NEI EI EI
Mod High Mod High Mod High Mod High

DIC logit 180.8 146.5 103.4 83.5 145.5 60.7 100.9 45.8
probit 180.6 146.3 104.8 84.0 143.2 59.0 98.0 42.0

D logit 176.0 142.0 98.7 79.1 100.5 38.8 79.9 28.9
probit 175.9 141.9 100.0 79.6 98.4 37.8 74.7 26.7

pD logit 4.79 4.50 4.72 4.40 44.9 21.9 21.0 16.9
probit 4.76 4.47 4.77 4.42 44.8 21.1 23.2 15.2

NEI indicates non-extreme independent variable levels; EI indicates extreme independent variable levels;

Mod (moderate) and High refer to dependent variable correlation levels.

Table 2: Model fit measures: Large sample size

Multivariate Link Random Effects
NEI NEI EI EI NEI NEI EI EI
Mod High Mod High Mod High Mod High

DIC logit 864.4 690.0 477.5 373.8 720.0 303.2 475.1 205.5
probit 863.8 689.8 485.4 377.8 710.7 292.8 465.2 195.9

D logit 859.4 685.2 472.6 369.0 514.6 194.2 406.0 132.9
probit 858.8 685.1 480.5 373.1 503.1 188.4 383.2 127.4

pD logit 4.97 4.85 4.97 4.74 205.3 109.0 69.1 72.6
probit 4.93 4.79 4.93 4.74 207.6 104.4 82.2 68.5
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Table 3: Log marginal likelihoods

Multivariate Link Random Effects
NEI NEI EI EI NEI NEI EI EI
Mod High Mod High Mod High Mod High

Small logit -102.0 -85.8 -60.6 -51.0 -98.4 -76.1 -62.3 -46.3
sample size probit -102.5 -86.3 -62.8 -52.8 -99.2 -76.7 -62.5 -46.1

Large logit -448.0 -362.5 -251.8 -201.6 -443.8 -351.4 -262.3 -199.9
sample size probit -448.1 -363.0 -257.0 -204.7 -444.6 -352.2 -261.8 -200.4

Table 2 displays the results for the models when the sample size is larger (n = 450).
Consistent with expectations, we find here that differences between the two link functions
become increasingly distinct. For example, in the multivariate link models the logit model
becomes noticeably more preferred by DIC in the extreme independent variable level con-
ditions. Under moderate dependent variable correlation the difference in DIC in favor of
logit is 7.9; under high correlation the difference is 4.0. In the random effects models, the
probit link provides a considerably better fit with all of the differences in DIC favoring probit
by 9.3 or more. There is a notable amount of consistency in the DIC differences favoring
probit: the differences all lie within a relatively narrow band from 9.3 to 10.4 despite the
variation in the data across the four conditions. The values of pD are relatively similar in
the non-extreme independent variable level conditions. They become more dissimilar in the
moderate correlation extreme independent variable level condition. Here, the heavier tails
of the logistic distribution seem to allow the model to be estimated with a smaller amount
of effective parameters. By contrast, the more compact normal distribution generates a
greater number of distinct effective parameters. This offsets the relatively large reduction in
deviance (difference in D = 22.8) that the probit provides over the logit.

Table 3 contains the log marginal likelihoods for the models under consideration. We
first examine the multivariate link models. In the small sample size condition, there is little
to distinguish the logit and probit links in the two non-extreme independent variable level
conditions. In the extreme independent variable level conditions, the Bayes factors somewhat
tend toward the logit link over the probit with support of 8.57/1 in the moderate correlation
condition and 6.10/1 in the high correlation condition. In the large sample size condition,
this pattern is repeated with the extreme independent variable level condition Bayes factors
in support of the logit link being considerably larger (172.7/1 and 23.8/1 for the moderate
and large correlation conditions respectively). Thus, we see that DIC and the Bayes factors
are in agreement with respect to these fixed effects models: the logit is preferred in the case
of extreme independent variable levels. With the random effects models, however, DIC and
Bayes factors provide different pictures. As described earlier, the values of both DIC and
also D in Tables 1 and 2 are substantially smaller for the probit models, indicating that from
a minimum-deviance perspective probit models perform noticeably better. However, the log
marginal likelihoods for the random effects models in Table 3 are approximately equal across
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links, indicating little support for one link function over the other.

5. Application

We also consider the impact of link function selection in the context of real-world consumer
choice data. The data comes from the 2001 Survey of Consumer Finances commissioned by
the U.S. Federal Reserve and conducted by the National Opinion Research Center (NORC)
at the University of Chicago. In the study, 4442 U.S. households drawn from all economic
strata were surveyed regarding their personal finances and related personal financial decision-
making. Here in order to provide greater comparability with the more moderate sample sizes
examined previously we selected a random subset of 500 households. For the analyses re-
ported here, we examined the impact of education on two technologically-oriented behavioral
outcomes involving personal finances. In particular, Y 1 was coded 1 if the respondent indi-
cated that he/she or his/her spouse used computer software to help with managing money,
and was coded 0 otherwise. Similarly, Y2 was coded 1 if the respondent indicated that he/she
used internet banking to do business with his/her financial institution, and was coded 0 oth-
erwise. The simple Pearson correlation between Y1 and Y2 was 0.44. The number of years of
respondent education (in terms of grades of school plus years of post-secondary education)
was used as the predictor variable. In our n = 500 sample, this variable ranged from two
years to 17 years, the latter indicating graduate level education beyond the 16 years of pri-
mary, secondary, and college education. While in a more detailed analysis we might treat the
censoring mechanism occurring at 17 years of education, for the purposes of comparability
with the analyses in §4 we do not apply any special treatment to the independent variable.

Table 4 contains the summaries of model coefficients for the consumer survey data. Dis-
played there are the posterior means for the coefficients as well as the posterior standard
deviations in parentheses. The model coefficient results indicate that years of education
is positively related to the occurrence of technologically-oriented consumer behavior across
models. For example, the results for β2,1 indicate that years of education are predictive of
an increased likelihood for a respondent to utilize computer software for managing finances.
Across models, the 95% posterior credible intervals for β2,1 and β2,2 exclude the value of zero
by a considerable margin.

Table 5 contains the model fit measures for the consumer survey data. For the mul-
tivariate link models, we find evidence of differences in fit consistent with the findings of
§4. The DICs under the probit and logit links were 951.7 and 948.5 respectively. These
results indicate DIC favors the logit model over the probit in the context of the multivari-
ate link formulation as was found previously. Similarly, the log marginal likelihoods for the
two respective models were -494.4 and -492.1, indicating a somewhat modest but nonethe-
less non-trivial support for the logit model in the multivariate link context. Again this is
consistent with previous findings. Switching to the random effects context, again we find
consistent evidence of considerable differences in fit for the two link functions using DIC.
Here, the DICs under the probit and logit links were 833.4 and 842.8 respectively, indicating
the fit under the probit model is considerably improved. The respective values of D were
617.4 and 629.6 while those of pD were 216.0 and 213.1. Hence, we can see that the improved
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Table 4: Coefficient summary statistics: Consumer survey data
β1,1 β2,1 β1,2 β2,2 ρ τ−1

Multivariate Link logit -0.85 0.17 -0.89 0.19 0.62 —
(0.07) (0.03) (0.08) (0.03) (0.06) —

probit -0.78 0.13 -0.81 0.15 0.64 —
(0.06) (0.03) (0.07) (0.03) (0.06) —

Random Effects logit -1.44 0.25 -1.56 0.31 — 2.23
(0.17) (0.05) (0.18) (0.06) — (0.61)

probit -1.30 0.22 -1.40 0.27 — 1.84
(0.15) (0.05) (0.16) (0.05) — (0.50)

Table 5: Model fit measures: Consumer survey data

Multivariate Link Random Effects
DIC logit 948.5 842.8

probit 951.7 833.4

D logit 943.5 629.6
probit 946.8 617.4

pD logit 4.93 213.1
probit 4.94 216.0

Log marginal logit -492.1 -490.0
likelihood probit -494.4 -490.7

DIC of the probit model is driven by the reduced deviance contribution from D. The log
marginal likelihoods for the two respective models were again essentially equivalent at -490.7
and -490.0, replicating the previous findings.

We have seen in both the study data of §4 and the real-world data of §5 that DIC and
Bayes factors lead to differing conclusions about fit in the random effects models. Specifically,
the Bayes factors suggest there is little to differentiate the logit and the probit link, while
DIC consistently favors the probit link. We examine this issue in more detail. With no loss
of generality we consider Yj for the moment and noting the Bernoulli likelihood,

DYj
= −2

n∑
i=1

(
Yi,j log pi,j + (1− Yi,j) log(1− pi,j)

)
.

Since
∂

∂pi,j

= −2
n∑

i=1

(
Yi,j

pi,j

− 1− Yi,j

1− pi,j

)
(5)
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and
∂2

∂pi,j

= 2
n∑

i=1

(
Yi,j

p2
i,j

+
1− Yi,j

(1− pi,j)2

)
(6)

the deviance gets increasingly large at an increasing rate as pj diverges from Yj. Note from
our discussion in §2.3 that in the multivariate context we can rewrite (4) as

DIC =
n∑

i=1

J∑
j=1

di,j + pD. (7)

Given the pattern of results in §§4 and 5 we know the sum of the individual deviance
contributions in (7) is greater in the context of the logit link than it is in the context of the
probit link because the values of pD are roughly equivalent. This in conjunction with the
behavior of the deviance function as described in (5) and (6) implies that values of pi,j that
are discrepant tend to be more discrepant under the logit link than under the probit link in
random effects models.

We provide here an example of the differences in deviance contributions and values of
pi,j across the two link functions. Our illustration involves the respondents with the two
largest contributions to the deviance. Respondent 93 was an atypical respondent who with
2 years of formal education nonetheless used computer software to manage money. His/her
deviance contribution was 5.9 under the logit model with predicted probabilities of 0.15
and 0.07 for the two outcomes. Under the probit model his/her deviance contribution was
4.9 with predicted probabilities of 0.19 and 0.08 for the two outcomes. While both models
were discrepant with regard to Yi,1, in this situation the logit model was more extremely
discrepant and less correct via pi,1 than was the probit by a notable margin. Furthermore,
the logit model was more extreme (as well as more correct) with regard to pi,2 than was the
probit. However, the relative deviance reduction garnered by the logit for pi,2 was rather
small, as would be expected by both the relative similarity of the probit estimate of pi,2 as
well as the behavior of the deviance as described in (5) and (6). Similarly, respondent 71
with 4 years of formal education nonetheless used both computer software to manage money
and additionally used internet banking. Under the logit model, he/she had a deviance
contribution of 4.8. This is because the logit model predicted the probabilities of these
behaviors as being 0.52 and 0.34 respectively. The probit model, by contrast, predicted these
probabilities as being 0.54 and 0.34, with the respondent having a deviance contribution of
4.4 under the probit. Here, we see the probit was less discrepant (and hence less incorrect)
than the logit model with regard to pi,1.

We note that for this data set, the probit and the logit models were both approximately
equal in their ability to correctly classify a respondent at the binary level using a threshold
of 0.5. The logit model correctly classified an observation as a 0 or a 1 approximately 86%
of the time for Y1 and 86% of the time for Y2. The probit model also correctly classified
an observation as a 0 or a 1 approximately 86% of the time for Y1 and 86% of the time
for Y2. However, as indicated by the deviance quantities and DIC, when the logit predicted
probability was discrepant from Y , it tended to be more so than the probit.
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6. Discussion

Tables 1 and 2 illustrate that the conventional wisdom about the relative similarity of the
logit and probit link functions in binary response models does not necessarily carry over to
the multivariate realm. In fact, some differences in fit can be found even in small sample
sizes. In summary, judicious selection of the link function seems likely to help improve
model fit in multivariate binary response models according to a deviance-based perspective.
Model fit in random effects models seems to be improved by selecting the probit link as
compared to the logit link. By contrast, the logit link seems preferable for multivariate
link models when there are extreme independent variable levels. However, we note that
when a perspective based on Bayes factors is adopted, the interpretation of the findings
becomes somewhat less clear cut. For the fixed effects multivariate link models, the findings
were consistent across the DIC and Bayes factor measures, namely the logit link is selected
by both approaches in the context of multivariate link models with extreme independent
variable levels. However, in the random effects models there were little differences to be
found between the link functions according to the Bayes factors. Given their prior-predictive
nature, this indicates that in the random effects models the prior predicted the data equally
well across the two link functions. So, from a prior predictive viewpoint, there is little to
differentiate the models. However, if we are interested in both in-sample predictive ability (as
measured by the deviance) and out-of-sample predictive ability (as measured by DIC), then
in the random effects models the probit is clearly preferable. We argue that performance
considerations should increasingly be considered in link function decisions, particularly since
some of the contextual factors influencing these decisions are less relevant given advances in
modern computing methods. For example, in an MCMC environment it is easy to specify the
odds ratio as a parameter of interest even in a probit model. It is well known that MCMC
permits straightforward estimation of functions of parameters, as the relevant function of a
parameter can be computed during the MCMC run such that its posterior distribution is
available from the output. The odds ratio associated with a probit coefficient is one such
function that may easily be computed during a probit run. Hence, there is less reason to
strictly prefer the logit link to satisfy this contextual reason alone.

It is not uncommon to find disagreements between the Bayes factors and deviance based
measures such as DIC. It was noted by Kass and Raftery (1995) that Bayesian Information
Criterion (BIC), another deviance based measure, does not approximate Bayes factors well
in cases where the number of parameters is large relative to the sample size. Similar findings
were reported by Carlin et al. (1992) where authors used random effects logistic models.
Furthermore, evaluation of Bayes factors in random effects models under the probit and
logit links poses computational challenges and therefore the disagreements may be attributed
to the accuracy of these results, although as discussed previously the Laplace method has
attractive performance properties. We consider this as a future research topic.

One might speculate as to whether the results presented here would replicate to other
situations. There appear to be relatively few instances of published analyses involving link
function comparison and the use of DIC in the context of multivariate binary response
models. However, at least one such analysis has appeared. In particular, Spiegelhalter et al.
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(2002, §8.3) also happened to provide an example in which results for random effects models
under the probit and logit link were contrasted (as were the results under the cloglog). The
data set was that of a real world study of the effects of air pollution. Interestingly, the probit
link was again preferred, in both the canonical and mean parameterizations (DICs 1411.3
and 1307.3 respectively), over the logit (DICs 1415.1 and 1335.3 respectively).
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