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Abstract

In this paper we consider Bayesian analysis of mortgage default rate. We
present models for the aggregate default data and develop Bayesian
inference procedures for analyzing these models. We illustrate
implementation of the models by analyzing real mortgage default rates.

1. Introduction and Overview

Increase in the residential mortgage default risk has significant impact on

financial markets in the U.S. and across the world, as witnessed during the recent

subprime mortgage loan crisis. The residential mortgage market is important to stability

of the U.S. economy.  The U.S. residential mortgage market has developed tremendously

in size over time. outstanding debt of single-family mortgage loansAs shown in Figure 1, 

in the U.S. has grown from around $2.6 trillion in 1990 to above $9.8 trillion in the

second quarter of 2006, representing an increase from about 45%  to 74.5% of  its share

in GDP during the period. With the exception of early 1980s, the U.S. national

homeownership rate has increased from around 63% to above 68%  in the last four

decades. Considering the  increase of the U.S. population during the same period, the

increase in homeownership, measured by absolute numbers, is tremendous. Therefore,
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any increase in the market risk, represented by mortgage default rate, will bring

significant losses to all entities in the markets.

Reliable estimation of  the default risk is of interest to government agencies to set

up effective policies for stabilizing the market and is important for mortgage lenders,

insurers and guarantors to develop financial instruments to mitigate the negative

consequences of an increase in the risk.  Besides, valid estimate of mortgage default risk

is essential for accurate pricing of the mortgage-backed securities (MBS), which in turn

protect the interests of investors in this secondary mortgage market.

U.S. S ingle -family M ortgage  Outs tanding &  GD P (in $millions )
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Figure 1:  Single-Family Mortgage Debt Outstanding

 

Different definitions of mortgage default have been used in the literature by

different researchers.  For example, Giliberto and Houston (1989) define mortgage

default as the "transfer of the legal ownership of the property from the borrower to the

lender either through the execution of foreclosure proceedings or the acceptance of a

deed in lieu of foreclosure." Others who focus on modeling of the mortgage default risk,

simply define the default as being delinquent in mortgage payment for 90 days; see for
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example, Capone and Metz (2003). In most default models it is assumed that "default is

synonymous with foreclosure" [Ambrose and Capone (1998)].

Research of mortgage default risk has started in late 60s with the aim of

predicting default rates, explaining differences in the default rates among mortgages and

across mortgage pools, for providing a better understanding of default behavior of

borrowers and for assessing the effect of  loan, property, and borrower characteristics on

default rates; see Capone (2002).  A thorough review of the literature can be found in

Quercia and Stegman (1992) and Leece (2004).

Initial work by von Furstenberg (1969) studied the default rate at aggregate level

using data from Federal Housing Administration (FHA) and Department of Veteran

Affairs (VA) mortgage loans. Iimportant factors  influencing the default decision of

borrowers are identified by works of  Herzog and Earley (1970), Williams et al. (1974),

Sandor and Sosin (1975). The factors  included the loan-to-value (LTV) ratio, interest

rate, mortgage terms and payment-to-income (PTI) ratio.  The main purpose of the

research during this period was to help lenders to assess the default risk of borrowers and

to predict default rates [Quercia and Stegman (1992)]. In late 70s focus of the research

shifted to studies from borrower's perspective and the default decision was considered as

one of the possible choices available to the borrower. The option theoretic basis was

recognized under which the default decision being viewed as a put option, and the

transaction costs, borrower characteristics and trigger events (such as divorce and loss of

job, which impact the ability to pay the mortgage loan) began to gain their importance in

residential mortgage default research [(Leece (2004)].

According to Quercia and Stegman (1992), starting in late 80s, researchers

became more interested in studying mortgage pools and developing theories for mortgage

and MBS pricing.  Therefore, the focus of the research was on estimating the probability

of default of a large mortgage loan pool.  Equity related factors such as housing price and

interest rate have been identified as the main factors  factors influencing the default risk
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by researchers such as Green and Shoven (1986), Schwartz and Torous (1989), Kau et al.

(1991, 1993) who used an option theoretic approach. On the other hand, some researchers

pointed out that non equity related factors, such as trigger events which influence

borrower's ability-to-pay for the mortgage loan, were more important in default

decisions; see Foster and van Order (1985), Gardner and Mills (1989), Giliberto and

Houston (1989), Lekkas  (1993). More recent work on mortgage default risket al.

includes duration analysis see Lambrecht  (1997) and competing risks theory whereet al.

default and prepayment risks are studied together as competing options see Deng (1997),

Pavlov (2001), Clapp  (2001), Calhoun and Deng (2002).et al.

Most of the previous work in modeling mortgage default risk can be classified as

the indirect and the direct approaches. The indirect approach is based on the option

theoretic framework and studies the default risk by comparing the value of the property

and the mortgage loan, while the direct approach uses hazard rate type models to analyze

time-to-default probability, or the event of default itself. Implementation of the indirect

approach requires individual loan performance data which is difficult to obtain due to

privacy issues. In fact any type of individual loan level data may not be readily available

for public use. Thus, in many cases the only type of  readily accessible default data may

be aggregated. Accurate estimation of mortgage default rate at aggregate level is of

interest for mortgage lenders, insurers and policy makers. A good estimate of aggregate

default rate of the mortgages in the pool underwritten is necessary for accurately pricing

the mortgage backed securities.

All of the previous work in mortgage default literature are based on sampling

theory methods for statistical estimation and inference. None of  these studies considered

use of Bayesian methods in modeling the mortgage default rate and thus they have

limitations in making probabilistic conclusions with regards to mortgage default risk. In

this paper we study residential mortgage default risk by developing Bayesian models for
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aggregate default data. In so doing, we use a direct approach for modeling default risk

and focus on discrete time models.

In Section 2 we present Bayesian models for analyzing aggregate mortgage

default rates over time. In so doing, we introduce logistic beta time series and a random

effects types extension of it. As an alternate modeling strategy a Markov modulated beta

process is presented in Section 3 for describing discrete time default rates.

Implementation of the models to real default data is presented in Section 4.

2.  Logistic Beta Time Series Model for Default Rates

In this section we introduce a Bayesian model for a time-series of aggregate

mortgage default rates. We consider this time-series as a discrete time beta process and

introduce a logistic beta time-series model and a random effects extension of  it.

Let the aggregate mortgage default rate at time  denoted by  for  = 1, 2, ...> ] >>

Since  is a proportion of defaulted mortgages at time , it is measured as a value in the] >>

Ð Ñ ]0, 1  interval. Thus, it is not unreasonable to assume that  follows a Beta distribution>

at time . More specifically, we consider a beta distribution denoted as  ~ ( ,> ] F/>+> >,!

,">), with density proportional to

 (1):Ð] l ß ß Ñ º ] Ð"  ] Ñ> > > >
"

>
"! " , ,! ,"> >

where parameters 0, 0 such that , and  is the precision! " ! " ,> > > >   œ "  !

parameter. The mean and variance of  are given by]>

IÒ] l ß ß Ó œ> > > >! " , ! (2)

Z +<Ò] l ß ß Ó œ> > >! " ,
! !

,
> >Ð"  Ñ

Ð  "Ñ
. (3)

Thus,  represents the expected default rate at time  and  represents our! ,> >

cetainty about it.  Time dependence of !>'s can be modeled by using a logit
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transformation and incorporating time dependent deterministic covariates \> ">œ Ð"\

\ á\ Ñ#> :"ß>
w as

6913>Ð Ñ œ 691 œ!> >
wÐ Ñ

" 

!

!
>

>
)\ (4)

where  is a 1  vector of  unknown regression parameters. We)w ! " :"œ Ð ß ß ÞÞÞß Ñ ‚ :) ) )

will refer to the above a logistic beta time-series model for the mortgage default rate.

Time series of proportions has been considered in Bayesian literature by several

authors such as Quintana and West (1988) who considered logistic-normal distributions

of Aitchison and Shen (1980) for the series and Grunwald et al. (1993) who modeled

Dirichlet distributed time-series in state-space form. In both papers some numerical

methods or approximations have been used for posterior computations. Our proposed

logistic beta time-series model is more similar to the setup of  Quintana and West (1988),

but unlike them because we assume beta distributed time-series.

In our model we assume that given and , 's are conditionally independent! ,> >]

over time.  Therefore, given time-series data  = , , ... ,  for  periods, theH Ð] ] ] Ñ X" # X

likelihood function can be expressed as proportional to

PÐ ß ÞÞÞß ß à HÑ º ] Ð"  ] Ñ! ! ," X >

>œ"

X
"

>
"$ ,! ,"> > (5)

where

!>

w
>

w
>

œ
/B:Ð Ñ

"  /B:Ð Ñ

)

)

\

\
. (6)

In other words, (5) is the likelihood function of  and given data .  In specifying the, ) H

prior distribution of the unknown parameters,  and , ) can be assumed to be independent

of each other, that is, .  :Ð Ñ œ :Ð Ñ:Ð Ñ, , ,, Uncertainty about the precision parameter ,) )

can be described by a gamma prior denoted as
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, µ Ð+ , ÑGam7+ , ,, (7)

where , 0 are specified prior parameters.  For the regression parameter vector + , , , )

we can assume a multivariate normal distribution denoted as

) .µ QZ RÐ Ñß[ (8)

where the mean vector  and the covariance matrix  are known quantities.. [

The Bayesian analysis of the requires the jointlogistic beta time-series model 

posterior distribution

:Ð Ñ º, , ,, , ) ) )lH :Ð Ñ:Ð ÑPÐ àHÑ (9)

where PÐ àHÑ, !,  is obtained from (5) by substituting 's with (6).  ) > The posterior

distribution 9  can not be obtained in any analytically tractable form, but it can beÐ Ñ

evaluated using Markov chain Monte Carlo (MCMC) methods, which will be

implemented using the winBUGS programming environment of Spiegelhalter, Thomas,

Best, and Gilks (1996).

Once the posterior joint density ,:Ð Ñ, )lH  is obtained via use of the MCMC

methods we can develop various posterior inferences using Monte Carlo estimates. Given

ÒÐ Ð ÑÓ K :Ð Ñ, , ," K, , ,) ) )" KÑ á lH, , , a posterior sample of  size  from , the marginal

posterior distributions of  covariate parameters 's, for , can be)3 3 œ !ß "ßá ß Ð:  "Ñ

obtained using histogram or density estimates from the marginal samples.  Similarly,

posterior samples for 's can be generated using!>

!1
>

w 1
>

w 1
>

œ "!
/B:ÐÐ Ñ \ Ñ

"  /B:ÐÐ Ñ \ Ñ

)

)
( )

for , and posterior distributions of 's can be obtained density1 œ "ßá ßK !> using 

estimates.  Any posterior moments of the parameters can be computed by Monte Carlo
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averages. For example, we can obtain the posterior mean vector via the MonteIÐ Ñ)lH

Carlo integral approximation

IÐ Ñ) )lH ¸
"

K
"
1œ"

K
1. (11)

Posterior probabilities such as T<Ð   l Ñ! !‡
‡

> !  , can be evaluated asH

T<Ð   l Ñ ¸   Ñ! ! ! !‡ ‡
‡ ‡

>

1œ"

K
1
>! ! ,H

"

K
Ð"" (12)

where  takes the value 1 if event  occurs and 0 otherwise.  Similarly we can obtain"ÐEÑ E

a %  for  [see for example, Bernardo and Smith (1994), p."!!Ð"  Ñ! credible interval !>

259] which can be considered as Bayesian interval estimator of  !>.  Predictive inference

about the future default rate is made by using ther posterior predictive distribution]X"

:Ð] lHÑ œ :Ð] l Ñ :Ð lHÑ . .X" X" X" X" X"( ( , ! , ! , !, , (13)

where ,  is given by the beta density (1).  The integral in (13) can not be:Ð] l ÑX" X", !

evaluated analytically but we can obtain  via the Monte Carlo approximation:Ð] lHÑX"

:Ð] lHÑ ¸ :Ð] l Ñ
"

K
X" X"

1œ"

K
1 1

X"
" , !, , (14)

where  is defined in terms of as given by (10).!1
X" ) 

We note that the logit model given by (4) implies a deterministic model for !>'s

given the covariate vectors over time.  Hence, the time variation of 's is due to the\> !>

time dependent covariate vectors in the model.  Often there may be possible sources of

unknown variation that can not be captured by the covariates given by . This problem\>

can be solved by including a random effects type term associated with each time period

into the model.  Thus, the logit model can be modified as
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6913>Ð Ñ œ! %> > >
w)\  , (15)

where We assume that % %> > is the random effects term.  's are conditionally independent

normal random variables denoted as

% 7>
"l µ RÐ!ß Ñ7 % (16)

where the unknown precision is described by the gamma prior, 7% 7 7µ K+77+Ð+ ß , Ñ,

with specified parameters  and .  Furthermore, + ,7 7 we assume a priori that ,  and 's, %) >

are independent of each other.

Under the random effects logit model, the joint posterior distribution of interest is

:Ð ßá ß ß ßá ß ß lH º :Ð] l ß Ñ:Ð Ñ:Ð Ñ:Ð l Ñ:Ð Ñ! ! , % % 7 ! , , % 7 7" X " X > > >

>œ"

X

, )% % %$ ) (17)

which can also be written as

:Ð ß ßá ß ß lH º :Ð] l ß Ñ:Ð Ñ:Ð Ñ:Ð l Ñ:Ð Ñ) ) ), % % 7 , , % 7 7, )" X > >

>œ"

X

% % %$ (18)

using the identity

!
%

%
>

w
> >

w
> >

œ
/B:Ð Ñ

"  /B:Ð Ñ

)

)

\

\




. (19)

As in the original logistic beta time series model, the joint posterior can not be obtained

analytically.  Thus, MCMC methods will be used for posterior and predictive inferences.

3. A Markov Modulated Beta Process

The logistic beta time series model and its random effects version introduced

above assume that the expected default rate  depends on covariates .  Due to the!> \>

aggregate nature of the data, components of vector will typically include macro\> 

socioeconomic variables such as interest rates, housing price index, national

unemployment rate, etc. Since such macro factors can not adequately reflect the complex
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environment influencing borrowers' default decisions, an alternate modeling strategy is to

relate the default rate to the state of an unobservable environmental stochastic process.

By assuming the latent process is a Markov process, the class of models are referred to as

Markov modulated processes hidden [see for example, or Ozekici and Soyer (2003)] 

Markov models.  The motivation for this class of models in our case is the fact that

factors influencing aggregate default rate are too complex to be captured by few

covariates.  Thus, we assume that the default rates depend on a random environment

which evolves over time according to a Markov process.

Hidden Markov models have been previously considered in the finance literature

in modeling commodity returns.  For example, this class ofRoss (1976) points out that, 

models can be motivated by the arbitrage pricing theory which states that changes  in

commodity prices are related to unknown underlying factors.  More recently, Ryden et al.

(1998) presented empirical evidence supporting hidden Markov models for daily return

series and presented likelihood based inference methods.

In modeling the aggregate mortgage default rate, we consider the beta time series

model (1)

:Ð] l ß Ñ º ] Ð"  ] Ñ> > >
"

>
Ð" Ñ"! , ,! , !> > (20)

and define

! !> >œ ÐW Ñ (21)

where  is a latent state variable.  More specifically, we let  denote the state of theW W> >

environment at time  and given the state of the environment at time  is , (20) can be> > 3

written as

Ð] lW œ 3 Ñ µ F/>+Ò Ð3Ñ Ð"  Ð3ÑÑÓ> > , , . (22), ,! , !

We assume that the environmental process  is a Markov chain with timeW œ ÖW À >   "×>

homogeneous transition matrix on a discrete state space .  In our development weC I
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assume that only the expected default rate, that is,  depends on the enviromental!>

process. Given the environmental process and the precision parameter, we assume that

]>'s are conditionally independent random quantities, that is,

:Ð] ß ] ßá ß ] l W Ñ œ :" # X

>œ"

X

, , ! ,$ Ð] l ÐW Ñ Ñ> > , . (23)

Bayesian analysis of hidden Markov models (HMMs) has been considered by

many authors, but most of these considered observation models such as Bernoulli and

Gaussian distributions where the implementation of MCMC methods is straightforward.

As discussed by Robert et al. (1993), a Gibbs sampler can be easily implemented in these

cases.  However, Markov modulated beta processes have not been previously considered

in the Bayesian HMMs literature.

 In the Bayesian setup in addition to the latent variables ß W > œ "ß #ßá ß X>, for ,

the transition matrix , the precision parameter and the expected default rates C , ! ,ÐW Ñ>

for  > œ "ß #ßá ß X are all unknown quantities  For the components of the transitionÞ

matrix, we assume that , the  row of follows a Dirichlet distributionC C3    3>2

:Ð Ñ ºC 13

4 −I

"
34

$
 

<34  (24)

with specified parameters 's and that the 's are independent of each other.  < C34 3 If we

assign  for all  in the above then the prior distribution (24) reduces to a joint<34 œ " 4

uniform distribution.  We denote the density in (24) as .C <3 34µ H3<3-26/>Ö à 4 − I×

Since for a given environment , we assume that!   "ß 3 − I!ÐW Ñ>

!Ð3Ñ µ F/>+Ð+Ð3Ñß ,Ð3ÑÑ (25)

where and are known quantities. Given the environmental process, 's are+Ð3Ñ ,Ð3Ñ Ð3Ñ!

assumed to be independent random quantities.  Furthermore, 's are independent of!Ð3Ñ
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C3. As in the previous discussion, the precision parameter  is assumed to be,

independent of all other quantities and its prior distribution is given by (7).

Given data , the observed default rates for  periods, we are interested in theH X

joint posterior distribution of all unkown quantities ( , , where , C !! !, , WÐXÑÑ œ Ð Ð3Ñà

3 − IÑ œ ÐW ß á ßW Ñ : lHÑand . The joint posterior ( , can be written asW WÐXÑ ÐX Ñ
" X , C!, , 

: lHÑ º ‚( , , C!, , WÐXÑ ’ “$
>œ"

X

> >" >
ÐW Ñ"

>
Ò" ÐW ÑÓ"1ÐW lW Ñ] Ð"  ] Ñ

,! , !> >

’ “$
3−I

: :Ð ÑÐ Ñ Ò Ð3ÑÓ Ò"  Ð3ÑÓC ! !3
+Ð3Ñ" ,Ð3Ñ" , , ( )#'

where  is the transition probability at time . 1 1ÐW lW Ñ œ >> >" W ßW>" >
The joint posterior

distribution in ( ) can not be evaluated in closed form. We can use MCMC methods to#'

develop posterior and predictive inferences for the Markov modulated beta process

model.

4. Empirical Analysis

In this section we implement the discrete time Bayesian models of Sections 2 and

3 using real mortgage default data from the U.S. residential mortgage market. Due to the

limitation of access to aggregate default rate data for specific mortgage pools, we use 90-

day past due national delinquency rate of FHA insured FRM single-family mortgage

loans, from National Delinquency Survey of Mortgage Banker's Association (MBA).

The data is recorded on a quarterly base, from quarter 1 of 1992 to quarter 4 of 2005.

In analyzing the aggregate default rates, we consider both the logistic beta time

series (LBT) and the Markov modulated beta process (MMBP) models. In the LBT

model, we consider equity factors and ability-to-pay factors as the covariates in the

model. Two key equity factors, the interest rate and the housing property prices, are

included. The interest rate used here is the U.S. Treasury securities at 10-year constant
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maturity given by The Federal Reserve Board, and housing prices included are the U.S.

Housing Pricing Index (HPI) declared by Office of Federal Housing Enterprise Oversight

(OFHEO).  Two ability-to-pay factors are also included in the analysis. These are the

Homeowner Mortgage Financial Obligations Ratio (FOR Mortgage) from The Federal

Reserve Board and the U.S. National Unemployment Rate from Bureau of Labor

Statistics.

In the LBT model we use independent normal priors for the logistic regression

coefficients with mean 0 and variance 100. The precision parameter  is assumed to have,

a Gamma distribution with mean 1 and variance 100. In the random effect extension of

the model the precision parameter  is also assumed to be a gamma with mean 1 and7

variance 100. Thus, our selection of the parameters imply proper but noninformative

priors for all the unknown quantities. A similar strategy is followed for the prior selection

in the MMBP model where we consider three environments. In implementation of the

MCMC methods the WinBUGS was used as the computing environment. In all cases,

simulations were run with 10,000 burn-in iterations followed by 10,000 (thinned)

iterations for posterior analyses.

Table 1 below summarizes the posterior results for the LBT model parameters

with columns labeled with 2.5% and 97.5% being relative percentiles of posterior

samples. Figure 2 below shows the posterior distributions of these parameters.

mean s d 2.50% median 97.50%

θ0 -5.218 0.9246 -7.05 -5.212 -3.435

θin t erest  rat e -5.253 7.077 -19.5 -5.178 8.428

θHP I 0.00611 0.001557 0.003052 0.006147 0.009101

θunem ploym en t  rat e    3.771 6.098 -8.182 3.749 15.77

θFOR M ort gage           -3.562 9.038 -21.14 -3.604 14.06

κ 250.4 48.93 164.1 247.2 356.8

Table 1 Posterior Inferences of the LBT Model
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  Figure 2. Posterior Distributions of  LBT Model Parameters

Estimates of aggregate mortgage default rate over all observed quarters are shown

in the Figure 3 from which we note that for a large proportion of all 56 quarters, the

estimated default rates are larger than the actual observed values from the residential

mortgage market. This suggests that besides the four factors included in the model, there

may exist other factors influencing  the aggregate default risk.

Posterior results from the random effects extension of the LBT model are shown

in Table 2. where three random effects parameters ( and ) are also included for% % %"' $# %)ß ß

illustrative purposes. We note that the posterior results are very similar to the previous

case.

Comparison of the actual and the estimated aggregate default rates for random

effects LBT model is given in Figure 4. We note that the extension does not provide a

significant improvement over the basic LBT model.
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Figure 3. LBT Estimates vs. Real Default Rates

mean s d 2.50% med ian 97.50%

θ0 -5.405 0.9961 -7.341 -5.422 -3.419

θ in t erest  ra t e -4.338 7.501 -18.94 -4.322 10.52

θH P I 0.006172 0.001685 0.002858 0.006183 0.009516

θun em p lo y m en t  ra t e     3.642 6.49 -8.951 3.639 16.3

θFO R M o rt gage            -2.367 9.258 -20.59 -2.287 15.83

κ 230.7 45.7 149.1 228.5 327.1

τ 31.88 13.41 12.61 29.49 63.85

ε 1 6 -0.00517 0.1835 -0.3775 -0.00371 0.3597

ε 3 2 -0.01293 0.1808 -0.369 -0.01341 0.3426

ε 4 8 0.03048 0.1749 -0.3136 0.03065 0.3793
            

Table 2.  Posterior Inferences of LBT Model with Random Effects
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Figure 4. LBT (with Random Effects) Estimates vs. Real Default Rate

The same data was analyzed using the MMBP model with no covariates included.

The posterior results were obtained for a three-state Markov model assuming diffused

priors.  Figure 5 shows the actual and the estimamted default rates based on the MMBP

model. We note that the MMBP model seems to provide a better fit but also yields  wider

posterior probability intervals.

To be able to assess the predictive performance of these two models we can use a

cross validation criterion by excluding some of the data and repeating the analysis. This

can be done by excluding the last four quarters and then use the posterior inferences to

predict the default rates for those four periods. In Table 3, we present the cross validation

results for the three models. Note that the MMBP model provides the best point forecasts

while having higher posterior predictive variation, represented by larger standard

deviation values in the parentheses. These are also shown in Figure 6.



17

0

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

0 .0 6

0 .0 7

0 .0 8

92Q
1

92Q
4

93Q
3

94Q
2

95Q
1

95Q
4

96Q
3

97Q
2

98Q
1

98Q
4

99Q
3

00Q
2

01Q
1

01Q
4

02Q
3

03Q
2

04Q
1

04Q
4

05Q
3

D
ef

au
lt 

R
at

es
Aggregat e Default  Rat e

M M BP  Est im at e

2 .5  P ercen t ile

97 .5  P ercen t ile

Figure 5. MMBP Estimates vs. Real Default Rates

 

(0.016415)(0.008194)(0.006404)

0.031737 0.035819 0.036584 0.03305Q4

(0.014389)(0.008042)(0.006387)

0.025947 0.034588 0.036026 0.028205Q3

(0.014895)(0.008113)(0.006167)

0.027629 0.035156 0.035877 0.026605Q2

(0.013878)(0.007722)(0.006111)

0.024419 0.031766 0.033237 0.028405Q1

MMBP Forecast
LBT F orecast 
(with Random 

Effects)
LBT F orecastReal Default RateQuarter

(0.016415)(0.008194)(0.006404)

0.031737 0.035819 0.036584 0.03305Q4

(0.014389)(0.008042)(0.006387)

0.025947 0.034588 0.036026 0.028205Q3

(0.014895)(0.008113)(0.006167)

0.027629 0.035156 0.035877 0.026605Q2

(0.013878)(0.007722)(0.006111)

0.024419 0.031766 0.033237 0.028405Q1

MMBP Forecast
LBT F orecast 
(with Random 

Effects)
LBT F orecastReal Default RateQuarter

Table 3: Comparison of Forecasts for 2005 FHA-FRM Default Rate
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