
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2007-8
May 22, 2007

Advances in Bayesian Software Reliability Modelling

Fabrizio Ruggeri
CNR IMATI
Milano, Italy

Refik Soyer
Department of Decision Sciences

The George Washington University
Washington, DC

Advances in Bayesian Software
Reliability Modelling

Fabrizio RUGGERIa,1, and Refik SOYERb

aCNR IMATI, Milano, Italy
b Department of Decision Sciences, The George Washingon University, USA

Abstract. This paper reviews recent developments in Bayesian software reliability
modeling. In so doing, emphasis is given to two models which can incorporate the
case of reliability deterioration due to potential introduction of new bugs to the soft-
ware during the development phase. Since the introduction of bugs is an unobserv-
able process, latent variables are introduced to incorporate this characteristic into
the models. The two models are based, respectively, on a hidden Markov model
and a self-exciting point process with latent variables.

Keywords. Hidden Markov models, reliability growth, Markov chain Monte Carlo,
self-exciting point process

Introduction

Many papers have been published on software reliability during the last several decades;
see Jelinski and Moranda (1972) and Musa and Okumoto (1984) as examples of early
work. Bayesian methods have been widely used in this field as discussed in Singpurwalla
and Wilson (1999). In this paper we plan to review some of the Bayesian models intro-
duced recently focussing especially on our ongoing research. We present two models that
are motivated by potential introduction of new bugs to the software when fixing the cur-
rent ones. The first model, based on a hidden Markov chain, assumes that times between
failures are exponentially distributed with parameters depending on an unknown latent
state variable which, in turn, evolves as a Markov chain. Thesecond model considers a
self-exciting point process whose intensity might increase each time a bug is attempted
to be fixed. Unobserved outcomes of latent Bernoulli random variables are introduced to
model the possible introduction of new bugs and the consequent increase in the intensity
function of the process. Both models take in account the possibility of not knowing if
a new bug has been added at each stage and they can be applied not only to model the
failure process but also to infer if new bugs were introducedat different testing stages.

In Section 1 we will review some of the earlier work on potential introduction of
new bugs to the software during the debugging phase. In Section 2 we will describe the
hidden Markov model (HMM) and will apply it to the Jelinski and Moranda’s Naval
Tactical data and Musa’s System 1 data in Section 3. The self-exciting point process

1Corresponding Author: Fabrizio Ruggeri, CNR IMATI, Via Bassini 15, I-20133 Milano, Italy; E-mail:
fabrizio@mi.imati.cnr.it.

(SEP) with latent variables will be described in Section 4. Discussion on current research
will be presented in Section 5.

1. Earlier work on imperfect debugging

Although the models introduced in this paper are novel ones,possibility of imperfect
debugging and introduction of new bugs during software testing have been considered in
earlier papers. Here we review some of them.

Gaudoin, Lavergne and Soler (1994) considered failures at timesT1 < . . . < Tn and
modelled the interfailure times with independent exponential distributions. In particular,
they took

Ti − Ti−1 ∼ E(λi), i = 1, . . . , n.

with

λi+1 = λi e
−θi , (1)

whereλi andθi , i = 1, . . . , n, are nonnegative. From (1), it is clear that the parameterθi

plays a relevant role in describing the effect of the intervention during software testing.
If θi = 0, then there is no debugging effect on software reliability, which increases
(decreases) ifθi > 0 (θi < 0). The latter case is due to introduction of new bugs to the
software.

A slightly modified version of this model was proposed by Gaudoin (1999), who
considered

λi+1 = (1 − αi − βi)λi + µβi ,

for modelling the more realistic case where intervention ateach stage may introduce
new bugs while fixing the existing ones at the same time. The effect of the positive
intervention is modelled byα, whereasβ is used for the negative one.

A different model to address the same issue was originally proposed by Kremer
(1983) who considered a birth-death processX (t) denoting the number of bugs in the
software at timet . Starting withX (0) = a, then pn(t) = Pr{X (t) = n} is obtained as
the solution of the differential equation

p
′

n(t) = (n − 1)ν(t)pn−1(t) − nν(t) + µ(t)pn(t) + (n + 1)µ(t)pn+1(t), n ≥ 0,

with p−1 ≡ 0 and pn(0) = 1(n = a), where 1(·) is the indicator function. Hereν(t)
(birth rate) andµ(t) (death rate) denote, respectively, the rate of introduction of new bugs
and the rate of fixing of old ones.

More recently, Durand and Gaudoin (2005) considered a hidden Markov model sim-
ilar to the one we introduce in Section 2, but they considerednonBayesian approach
and used an EM algorithm to obtain maximum likelihood estimates. They applied the
Bayesian information criterion (BIC) to choose among models with different number of
states of the hidden process.

2. A hidden Markov model for software failures

We assume that, during the testing stages, the failure rate of the software is governed by
a latent processY . Let Yt denote the state of the latent process at timet and, given the
state at timet is i , assume that,X t , the failure time for periodt follows an exponential
model given by

X t |Yt = i ∼ E(λ(i)).

The states of the latent process reflect the effectiveness ofthe interventions, i.e. the design
changes, to the software prior to thet-th stage of testing. The failure rate of the software
depends on this latent random variable.

We assume that the latent processY = {Yt t ≥ 1} is a Markov chain with a
transition matrixP on a finite state spaceE = {1, . . . , k}. Given the latent process, we
assume thatX t ’s are conditionally independent, that is,

π(X1, X2, . . . , Xn |Y) =

n
∏

t=1

π(X t |Y).

In the Bayesian setup we assume that the transition matrixP and the failure rate
λ(i), for i = 1, . . . , k, are all unknown quantities. For the components of the transition
matrix, it is assumed thatPi = (Pi1, . . . , Pik), i = 1, . . . , k, i.e. thei -th row of P,
follows a Dirichlet distributionDir(αi1, . . . , αik), as

π(Pi) ∝

k
∏

j=1

P
αi j −1
i j (2)

with parametersαi j , i, j = 1, . . . , k, and such that thePi ’s are independent of each other.
For a given statei = 1, . . . , k, we assume a Gamma prior

λ(i) ∼ G(a(i), b(i)),

with independentλ(i)’s.
If software failures are observed forn testing stages, then, given the observed data

x (n) = (x1, x2, . . . , xn), we are interested in the joint posterior distribution of all un-
known quantities2 =(λ(n), P, Y (n)), whereλ(n) = (λ(1), . . . , λ(n)), and Y (n) =

(Y1, . . . Yn). It is not computationally feasible to evaluate the joint posterior distribution
of 2 in closed form. However, we can use a Gibbs sampler to draw samples from the
joint posterior distribution.

The likelihood function is

L(2; x (n)) =

n
∏

t=1

λ(Yt)e
−λ(Yt) xt

and the posterior distribution is given by

π(2|x (n)) ∝

[

n
∏

t=1

PYt−1,Yt λ(Yt)e
−λ(Yt) xt

] [

k
∏

i=1

π(Pi) λ(i)a(i)−1 e−b(i)λ(i)
]

,

whereπ(Pi) is given by (2). The implementation of the Gibbs sampler requires draws
from the full conditional distributions of the unknown quantities, that is, the components
of 2. We first note that, givenY (n), the full conditional distribution of the elements ofP
can be obtained as

Pi |Y
(n) ∼ Dir{αi j +

n
∑

t=1

1(Yt = i, Yt+1 = j); j ∈ E} (3)

where 1(·) is the indicator function and, givenY (n), Pi ’s are obtained as independent
Dirichlet vectors. GivenY (n), they are also independent of other components of2.

The full conditional posterior distribution ofλ(i)’s can be obtained as

λ(i)|Y (n), x (n) ∼ G(a∗(i), b∗(i)) (4)

where

a∗(i) = a(i) +

n
∑

t=1

1(Yt = i)

and

b∗(i) = b(i) +

n
∑

t=1

1(Yt = i) xt .

Finally, we can show that the full conditional posterior distributions ofYt ’s are given
by

π(Yt |Y
(−t), λ(Yt), x (n), P) ∝ PYt−1,Yt λ(Yt)e

−λ(Yt) xt PYt ,Yt+1 (5)

whereY (−t) = {Ys ; s 6= t}. Note that the above is a discrete distribution with constant of
proportionality given by

∑

j∈E

PYt−1, j λ(j) e−λ(j) xt Pj, Yt+1.

Thus, we can draw a posterior sample fromπ(2|x (n)) by iteratively drawing from
the given full conditional posterior distributions. If we start with an initial value of the
states, say,Y (n)

0 , then we can update the probability transition matrix via (3). Then, given

the data andY (n)
0 , we can draw the failure rates independently using (4). Given these

values, we can use (5) to draw a new sample for the states. We can repeat these iterations
many times to obtain a joint posterior sample.

Posterior predictive distribution ofXn+1, after observingx (n), is given by

π(Xn+1|x
(n)) =

∑

j∈E

∫

π(Xn+1|λ(j)) PYn, j π(2| x (n)) d2,

which can be approximated as a Monte Carlo integral via

π(Xn+1|x
(n)) ≈

1

G

G
∑

g=1

π(Xn+1|λ
g(Y g

n+1)),

whereY g
n+1 is sampled given the posterior sampleY g

n , using Dirichlet probabilitiesPY g

given by (3).

3. Analysis of software reliability data

We next illustrate the use of the HMM by applying it to two wellknown datasets, the
Jelinski and Moranda’s Naval Tactical data and Musa’s System 1 data.

3.1. Jelinski-Moranda data

The data, presented in Jelinski and Moranda (1972), consists of 34 failure times (in days)
of a large military system, and is referred to as the Naval Tactical Data System (NTDS).
In the analsis of the NTDS data, we consider two possible states forYt , i.e. E = {1, 2}

and assume uniform distributions for the rowsPi , i = 1, 2, of the transition matrix. We
describe uncertainty about theλ’s, by considering diffuse priorsλ(i) ∼ G(0.01, 0.01),
i = 1, 2. Gibbs sampler was run for 5000 iterations and no convergence problems were
observed. In what follows we present the posterior results for major quantities of interest
as illustrated by plots and tables.

Posterior Distribution of Lambda[1]

Lambda[1]

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

Posterior Distribution of Lambda[2]

Lambda[2]

0.0 0.02 0.04 0.06 0.08 0.10

0
20

40
60

Figure 1. Posterior distributions ofλ(1) andλ(2).

In Figure 1 we present the posterior distributions ofλ1 andλ2. As can be seen from
Figure 1, the posterior distribution ofλ1 is concentrated at higher values than that of
λ2 implying that environment 1 is the less desirable of the two environments. In other
words, it represents the environment with higher failure rates and smaller expected time
to failures.

Posterior Distribution of P[1,1]

P[1,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior Distribution of P[1,2]

P[1,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior Distribution of P[2,1]

P[2,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior Distribution of P[2,2]

P[2,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Figure 2. Posterior distributions of transition probabilities.

Posterior distributions of transition probabilities are presented in Figure 2. We can
see from Figure 2 that the processYt tends to stay in environment 1 (compared to envi-
ronment 2) from one testing stage to the next one. This is implied by the posterior dis-
tribution of P11 which is concentrated around values that are higher than 0.6. Posterior
predictive distribution of the next time to failure, that is, the distribution ofX35 is shown
in Figure 3. As we can see from the predictive density, the next time to failure is expected
within few days.

Posterior Predictive Density of X[35]

x[35]

0 50 100 150 200

0.0
0.0

1
0.0

2
0.0

3
0.0

4
0.0

5
0.0

6

Figure 3. Predictive distribution of 35-th observation.

Table 1 presents the posterior distributions of the environment 1 for time periods,
t = 1, . . . , 34 as well as the observed time to failures for the periods. Aswe can see

Table 1. Posterior probabilities of state 1 over time.

t Xt P(Yt = 1|D) t Xt P(Yt = 1|D) t Xt P(Yt = 1|D)

1 9 0.8486 2 12 0.8846 3 11 0.9272

4 4 0.9740 5 7 0.9792 6 2 0.9874

7 5 0.9810 8 8 0.9706 9 5 0.9790

10 7 0.9790 11 1 0.9868 12 6 0.9812

13 1 0.9872 14 9 0.9696 15 4 0.9850

16 1 0.9900 17 3 0.9886 18 3 0.9858

19 6 0.9714 20 1 0.9584 21 11 0.7100

22 33 0.2036 23 7 0.3318 24 91 0.0018

25 2 0.6012 26 1 0.6104 27 87 0.0020

28 47 0.0202 29 12 0.2788 30 9 0.2994

31 135 0.0006 32 258 0.0002 33 16 0.1464

34 35 0.0794

from the Table the posterior probability of the ”bad” environment (i.e. environment 1)
decreases as we observe longer failure times.

3.2. Musa’s System 1 data

We next consider the System 1 data of Musa (1979) which consists of 136 software
failure times. As in the case of the Jelinski-Moranda data, we consider only two states for
Yt , and assume uniform distributions for the row vectorsPi of the transition matrix, and
the same diffuse gamma distributions for theλ’s. As before 5000 iterations of the Gibbs
sampler was run and this led to convergence for all the quantities. The posterior analysis
for the major quantities of interest will be presented in thesequel using few plots.

Time Series Plot of Failure Times

Period

0 20 40 60 80 100 120 140

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 4. Failure times.

From Figure 4, we can see that the times between failures tendto increase over time
implying an overall reliability growth. The posterior distributions of theλ1 andλ2 are

presented in Figure 5. We can see from Figure 5 that the posterior distribution ofλ1 is
concentrated around lower values than that ofλ2. Thus environment 1 is the more desir-
able of the two environments, that is, it represents the environment with smaller failure
rates and larger expected time to failures. In Figure 6 we present the posterior distribu-
tions of transition probabilities. We can see from the figurethat the processYt tends to
stay in the same state from one testing stage to the next one. Posterior predictive distri-
bution of the next time to failure, that is, the distributionof X137 is shown in Figure 7. As
can be seen from the figure the time to the next failure in this case has more variability
than the one in the Jelinski-Moranda data shown in Figure 3.

Posterior Distribution of Lambda[1]

Lambda[1]

0.0004 0.0008 0.0012 0.0016

0
50

0
10

00
15

00
20

00
25

00
30

00

Posterior Distribution of Lambda[2]

Lambda[2]

0.0 0.005 0.010 0.015 0.020

0
10

0
20

0
30

0

Figure 5. Posterior distributions ofλ(1) andλ(2).

Posterior Distribution of P[1,1]

P[1,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Posterior Distribution of P[1,2]

P[1,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Posterior Distribution of P[2,1]

P[2,1]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Posterior Distribution of P[2,2]

P[2,2]

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 6. Posterior distributions of transition probabilities.

Posterior Predictive Density of X[137]

x[137]

0 1000 2000 3000 4000 5000

0.0
0.0

00
2

0.0
00

4
0.0

00
6

0.0
00

8
0.0

01
0

0.0
01

2

Figure 7. Predictive distribution of 137-th observation.

Time Series Plot of Posterior Probabilities of Y(t)=1

Period

0 20 40 60 80 100 120 140

0.0
0.2

0.4
0.6

0.8
1.0

Figure 8. Posterior probability ofYt = 1.

In Figure 8 we present the posterior probabilitiesP(Yt = 1|D) for the "good" envi-
ronment, that is, for environment 1, for time periodst = 1, . . . , 136. As we can see from
the figure, the posterior probability is rather low for most of the first 80 testing stages
implying that modifications which are made to the software during these stages have not
improved the reliability from one period to the next. On the other hand, the posterior
probabilities for environment 1 wander around values higher than 0.85 for most of the
stages implying the improvement in the reliability achieved during the later stages. We
note that as in the case of the Jelinski-Moranda data, the higher posterior probabilities in
Figure 8 are associated with longer failure times shown in Figure 4.

4. Self-exciting point process with latent variables

Self-exciting point processes have an important role in software reliability since they can
be used to unify existing models into a unique class as shown by Chen and Singpurwalla
(1997). In this section, we consider a self-exciting process with latent variables that en-
ables us to infer if a new bug has been introduced at each testing stage and the process
intensity has increased.

We consider a nonhomogeneous Poisson process (NHPP) with intensity function
µ(t) to describe the behaviour of the software when no bugs are added at each testing
phase. We assume that the intensity is modified by positive valued functionsg(t − ti)
at each testing phasei as a consequence of the introduction of a new bug. We introduce
Bernoulli random variablesZ j ’s to describe the introduction of a new bug during thei -th
testing phase. As a consequence we consider a self-excitingpoint process (SEP) with
latent variables with intensity

λ(t) = µ(t) +

N(t−)
∑

j=1

Z j g j (t − t j),

whereµ(t) is the intensity of process without introduction of new bugsandN(t−) is the
number of failures right beforet , t1 < t2 < . . . < tn are the failures in(0, T . The latent
variableZ j = 1 if a bug is introduced after thej–th failure andZ j = 0 otherwise, and
the functiong j (u) ≥ 0 for u > 0 and= 0 otherwise.

Under these assumptions the likelihood function is given byL(θ ; t(n), Z (n)) =

f (t(n)|Z (n), θ) f (Z (n)|θ), wheret(n) = (t1, t2, . . . , tn) and Z (n) = (Z1, Z2, . . . , Zn)

with

f (t(n)|Z (n), θ) =

n
∏

i=1

λ(ti)e
−

∫ T
0 λ(t)dt

=

n
∏

i=1



µ(ti) +

i−1
∑

j=1

Z j g(ti − t j)



 e−
∫ T

0 µ(t)dt−
∑N(T −)

j=1 Z j
∫ T −t j

0 g j (t)dt
,

and dependence onθ is suppressed. In our analysis we consider the Power Law process
(PLP) with intensity functionµ(t) = Mβtβ−1, with M > 0 andβ > 0. We assume also
thatµ ≡ g j , for all j , i.e. the contribution of each new bug is represented by the same
PLP as the baseline process.

In this case we obtain

f (t(n)|Z (n), θ) = Mnβn
n

∏

i=1



tβ−1
i +

i−1
∑

j=1

Z j (ti − t j)



 e
−M

[

T β+
∑N(T −)

j=1 Z j (T −t j)
β

]

= Mnβn
n

∏

i=1

Ai (β, Z (i−1))e−M B(β,Z (n)),

whereZ (i) = (Z1, . . . , Z i), Ai (β, Z (i−1)) = tβ−1
i +

∑i−1
j=1 Z j (ti − t j) andB(β, Z (n)) =

T β +
∑N(T −)

j=1 Z j (T − t j)
β . ConsideringZ j ∼ Bern(p j), for all j , then it follows that

f (t(n), Z (n)|θ) = f (t(n)|Z (n), θ) f (Z (n)|θ) = f (t(n)|Z (n), θ)

n
∏

j=1

p
Z j
j (1 − p j)

1−Z j .

Given the likelihood function the two plausible strategiesare either summing over
all Z (n) so that f (t(n)|θ) can be obtained or treatingZ j ’s as parameters and using
MCMC methods. We follow the latter approach. We assume the prior distributions as
M ∼ G(α, δ), β ∼ G(ρ, λ) and p j ∼ Beta(µ j , σ j), for all j . Other possibilities about
p j could be an autoregressive model based on logit(p j), a more general Markov chain
or to use a common distributionBeta(µ, σ), for all j .

We definep(n) = (p1, . . . , pn), p− j = (p1, . . . , p j−1, p j+1, . . . , pn) andZ− j =

(Z1, . . . , Z j−1, Z j+1, . . . , Zn). Also, we suppress the dependence ont(n). The full pos-
terior conditionals are given by

• M|β, Z (n), p(n) ∼ G(α + n, δ + B(β, Z (n))

• β|M, Z (n), p(n) ∝ βρ+n
n

∏

i=1

Ai (β, Z (i−1))e−M B(β,Z (n))−λβ

• p j |M, β, Z (n), p− j ∼ Beta(µ j + Z j , σ j + (1 − Z j)), ∀ j

It follows from the above that

P(Z j = r |M, β, p(n), Z− j) =
Cr

C0 + C1
, r = 0, 1,

with

C0 =

n
∏

i= j+1



tβ−1
i +

∑

h=1,i−1;h 6= j

Zh(ti − th)β





and

C1 =

n
∏

i= j+1



tβ−1
i +

∑

h=1,i−1;h 6= j

Zh(ti − th)β + (ti − t j)
β



 e−M(T−t j)
β

.

Thus, we can draw a posterior sample from the joint distribution by iteratively drawing
from the given full conditional posterior distributions.

5. Discussion

Possible extensions of the above models are currently underconsideration. For exam-
ple, in the HMM the dimension of the state space of the Markov chain will be typi-
cally unknown and this can be incorporated into the model as another random quantity.
Other possible extensions include a dynamic evolution of theλ(i)’s, a nonhomogeneous
Markov chain for the states of the latent processYt . Specification of a prior distribution

for the initial environmentY0, which has been assumed as given here and estimation of
the stationary distribution of the Markov chain are other issues under consideration.

Regarding the SEP model we are aware that the PLP is not most appropriate choice
in this context and that other NHPP’s with finite intensitiesshould be explored. There-
fore, we plan to consider different baseline processes, possibly in the family of the
NHPP’s whose intensity function can be written asµ(t) = Mg(t; β). Posterior analysis
under these NHPP’s are very similar to the ones obtained withthe PLP as discussed in
Ruggeri and Sivaganesan (2005).

An alternate class of models to what we consider here is NHPPswith change points
as discussed in Ruggeri and Sivaganesan (2005). Other considerations include analysis
with different actual software failure data sets and development of optimal testing poli-
cies.

References

[1] Y. Chen and N. D. Singpurwalla, Unification of software reliability models via self-exciting point pro-
cesses,Advances in Applied Probability textbf29 (1997), 337–352.

[2] J.-B. Durand and O. Gaudoin, Software reliability modelling and prediction with hidden Markov chains,
Statistical Modelling 5 (2005), 75–93.

[3] O. Gaudoin, Software reliability models with two debugging rates,International Journal of Reliability,
Quality and Safety 6 (1999), 31–42.

[4] O. Gaudoin, C. Lavergne and J. L. Soler, A generalized geometric de-eutrophication software-reliability
model,IEEE Transactions on Reliability R-44 (1994), 536–541.

[5] Z. Jelinski and P. Moranda, Software reliability research, Statistical Computer Performance Evalua-
tion,W. Freiberger (Ed.), (1972). New York: Academy Press.

[6] W. Kremer, Birth-death and bug counting,IEEE Transactions on Reliability R-32 (1983), 37–46.
[7] J. D. Musa, Software reliability data,Technical Report (1979), Rome Air Development Center.
[8] J. D. Musa and K. Okumoto, A logarithmic Poisson execution time model for software reliability mea-

surement,Proceedings of the seventh International Conference on Software Engineering 1984, 230–
237.

[9] F. Ruggeri and S. Sivaganesan, On modeling change pointsin nonhomogeneous Poisson processes,
Statistical Inference for Stochastic Processes 8 (2005), 311–329.

[10] N. D. Singpurwalla and S. Wilson,Statistical Methods in Software Engineering, Springer Verlag, New
York, 1999.

