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Abstract. This paper reviews recent developments in Bayesian satvediability
modeling. In so doing, emphasis is given to two models whariocorporate the
case of reliability deterioration due to potential intretian of new bugs to the soft-
ware during the development phase. Since the introducfibags is an unobserv-
able process, latent variables are introduced to incorpdhés characteristic into
the models. The two models are based, respectively, on @ilfthrkov model
and a self-exciting point process with latent variables.
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Introduction

Many papers have been published on software reliabilitinduhe last several decades;
see Jelinski and Moranda (1972) and Musa and Okumoto (198d)amples of early
work. Bayesian methods have been widely used in this fielisasisised in Singpurwalla
and Wilson (1999). In this paper we plan to review some of tagdBian models intro-
duced recently focussing especially on our ongoing rekesive present two models that
are motivated by potential introduction of new bugs to thiéwsare when fixing the cur-
rent ones. The first model, based on a hidden Markov chainpsssthat times between
failures are exponentially distributed with parametergasheling on an unknown latent
state variable which, in turn, evolves as a Markov chain. 3émond model considers a
self-exciting point process whose intensity might inceeeach time a bug is attempted
to be fixed. Unobserved outcomes of latent Bernoulli randarrables are introduced to
model the possible introduction of new bugs and the consedguerease in the intensity
function of the process. Both models take in account theilpitiss of not knowing if
a new bug has been added at each stage and they can be appledyrto model the
failure process but also to infer if new bugs were introdugiedifferent testing stages.
In Section 1 we will review some of the earlier work on potahintroduction of
new bugs to the software during the debugging phase. Ind@e2tive will describe the
hidden Markov model (HMM) and will apply it to the Jelinski dMoranda’s Naval
Tactical data and Musa’s System 1 data in Section 3. Theegelfing point process
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(SEP) with latent variables will be described in Section #cDssion on current research
will be presented in Section 5.

1. Earlier work on imperfect debugging

Although the models introduced in this paper are novel opessibility of imperfect
debugging and introduction of new bugs during softwarertgdtave been considered in
earlier papers. Here we review some of them.

Gaudoin, Lavergne and Soler (1994) considered failurésasfl; < ... < T, and
modelled the interfailure times with independent expoiadtstributions. In particular,
they took

Ti—Ti-1~&Gi),i=1,...,n
with
digr=lie h, 1)

wherel; andé;,i = 1, ..., n, are nonnegative. From (1), it is clear that the parantgter
plays a relevant role in describing the effect of the intatien during software testing.
If 6 = 0, then there is no debugging effect on software reliabilitftich increases
(decreases) #; > 0 (6 < 0). The latter case is due to introduction of new bugs to the
software.

A slightly modified version of this model was proposed by Gaind1999), who
considered

Jivr = A —aj = pi)di + upi,

for modelling the more realistic case where interventiomath stage may introduce
new bugs while fixing the existing ones at the same time. Tfecebdf the positive
intervention is modelled by, whereag is used for the negative one.

A different model to address the same issue was originathyp@sed by Kremer
(1983) who considered a birth-death proc&g$) denoting the number of bugs in the
software at timd. Starting withX(0) = a, thenpp(t) = Pr{X(t) = n} is obtained as
the solution of the differential equation

Pr(®) = (N — D (t) pa—1(t) — M (t) + () pa(®) + (N + 1)z (t) pata(t), n > O,

with p_1 = 0 andpn(0) = 1(n = a), where 1.) is the indicator function. Here(t)
(birth rate) ang« (t) (death rate) denote, respectively, the rate of introdaadfmew bugs
and the rate of fixing of old ones.

More recently, Durand and Gaudoin (2005) considered a hititerkov model sim-
ilar to the one we introduce in Section 2, but they consider@adBayesian approach
and used an EM algorithm to obtain maximum likelihood estesaThey applied the
Bayesian information criterion (BIC) to choose among meaéth different number of
states of the hidden process.



2. A hidden Markov model for softwarefailures

We assume that, during the testing stages, the failure féite coftware is governed by
a latent proces¥. LetY; denote the state of the latent process at tirmed, given the

state at timd is i, assume thatX;, the failure time for period follows an exponential

model given by

XelYe =i ~ E(AG)).

The states of the latent process reflect the effectivenehle afterventions, i.e. the design
changes, to the software prior to thh stage of testing. The failure rate of the software
depends on this latent random variable.

We assume that the latent proceés= {Y; t > 1} is a Markov chain with a
transition matrixP on a finite state spadé = {1, ..., k}. Given the latent process, we
assume thaX;’s are conditionally independent, that is,

n
(X1, X2, ..., XalY) = [ [z (XeIY).
t=1

In the Bayesian setup we assume that the transition mBtrnd the failure rate

Ai), fori = 1,...,k, are all unknown quantities. For the components of the ttians
matrix, it is assumed tha® = (P1,..., Pk), i = 1,...,k, i.e. thei-th row of P,
follows a Dirichlet distributiorDir (i1, . . ., aik), as
K 1
ajj—
z(R) o [P} (2
j=1

with parameters;j,i, j = 1, ..., k, and such that thE;’s are independent of each other.
For a given state =1, .. ., k, we assume a Gamma prior

A1) ~ G(a(i), b)),

with independent(i)’s.

If software failures are observed fortesting stages, then, given the observed data
xM = (x1,Xo, ..., Xn), We are interested in the joint posterior distribution dftai-
known quantities® =™, P, Y™), where ™ = (1(1),...,4(n)),andY®™ =
(Y1, ...Yn). Itis not computationally feasible to evaluate the joinstwior distribution
of ® in closed form. However, we can use a Gibbs sampler to drawplesnirom the
joint posterior distribution.

The likelihood function is

n
£(@; xM) = [T a(Ype 0%
t=1

and the posterior distribution is given by

n k
7(@X™) o [ [T Py 000 [T (P )20 ~2 D0,

t=1 i=1



wherez (P) is given by (2). The implementation of the Gibbs sampler iegudraws
from the full conditional distributions of the unknown quities, that is, the components
of ®. We first note that, givel (", the full conditional distribution of the elements Bf
can be obtained as

n
RIY®™ ~ Dirf{aij + > 1Yt =i,Yey1=); j € E} 3
t=1

where 1-) is the indicator function and, give¥(™, P’s are obtained as independent
Dirichlet vectors. Givery (™, they are also independent of other componen®.of
The full conditional posterior distribution @f(i)’s can be obtained as

2OIYD, x™ ~ G@*(i), b* () 4

where

a*i)=ai+> 1Y =i)

t=1

and

n
b* () =b()+ D 1V =) x.
t=1
Finally, we can show that the full conditional posteriortdizutions ofY;’s are given
by

(YD, 20, X, P) o« Py, v A(Y)e %Ry v (5)

whereY (D = {Yg; s # t}. Note that the above is a discrete distribution with cortstén
proportionality given by

Z Py, | j'(j)e_/l(j)Xt Pi. Y-

jeE

Thus, we can draw a posterior sample frai®|x(") by iteratively drawing from
the given full conditional posterior distributions. If weag with an initial value of the
states, say{(”), then we can update the probability transition matrix via {®en, given
the data and(é”), we can draw the failure rates independently using (4). Gihese
values, we can use (5) to draw a new sample for the states. Wepgaat these iterations
many times to obtain a joint posterior sample.

Posterior predictive distribution of,,.1, after observing™, is given by

22 ™) = 3 [ #(Knsali(D) Py, 7(01X™) do.

jeE

which can be approximated as a Monte Carlo integral via



G

1
7 (XnpaIx™) ~ S > m(Xngal A9V, 1)),
g=1

whereYr?Jrl is sampled given the posterior sampfg, using Dirichlet probabilitiedy
given by (3).

3. Analysis of softwarereliability data

We next illustrate the use of the HMM by applying it to two wkliown datasets, the
Jelinski and Moranda’s Naval Tactical data and Musa’s Sydtelata.

3.1. Jelinski-Moranda data

The data, presented in Jelinski and Moranda (1972), cerai$ failure times (in days)
of a large military system, and is referred to as the NavalidalcData System (NTDS).
In the analsis of the NTDS data, we consider two possiblestfatY;, i.e. E = {1, 2}
and assume uniform distributions for the roRsi = 1, 2, of the transition matrix. We
describe uncertainty about thiés, by considering diffuse prior&(i) ~ G(0.01, 0.02),

i =1, 2. Gibbs sampler was run for 5000 iterations and no convesproblems were
observed. In what follows we present the posterior resaftgtajor quantities of interest
as illustrated by plots and tables.

Posterior Distribution of Lambda[1] Posterior Distribution of Lambda[2]

T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.02 0.04 0.06 0.08 0.10

Lambdaf[1] Lambda[2]

Figure 1. Posterior distributions of(1) and(2).

In Figure 1 we present the posterior distributiong gind 2. As can be seen from
Figure 1, the posterior distribution df; is concentrated at higher values than that of
A2 implying that environment 1 is the less desirable of the tweirenments. In other
words, it represents the environment with higher failutesand smaller expected time
to failures.



Posterior Distribution of P[1,1] Posterior Distribution of P[1,2]
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P1,1] P[1,2]

Posterior Distribution of P[2,1] Posterior Distribution of P[2,2]

Vo | i\
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P[2,1] P[2,2]

Figure 2. Posterior distributions of transition probabilities.

Posterior distributions of transition probabilities aregented in Figure 2. We can
see from Figure 2 that the procegstends to stay in environment 1 (compared to envi-
ronment 2) from one testing stage to the next one. This isigdfdly the posterior dis-
tribution of P11 which is concentrated around values that are higher tharP@g&erior
predictive distribution of the next time to failure, thatilke distribution ofX35 is shown
in Figure 3. As we can see from the predictive density, the tirme to failure is expected
within few days.

Posterior Predictive Density of X[35]
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Figure 3. Predictive distribution of 35-th observation.

Table 1 presents the posterior distributions of the enwirent 1 for time periods,
t =1,...,34 as well as the observed time to failures for the periodswé<an see



Table 1. Posterior probabilities of state 1 over time.

t | x [Ppvi=20D) [ t | xx [Pvi=10D)[[ t | x| Pt =1D)
1] 9 0.8486 2 | 12 0.8846 3 | 11 0.9272
4] a4 0.9740 5 7 0.9792 6 | 2 0.9874
7] 5 0.9810 8| 8 0.9706 9 | 5 0.9790
0] 7 0.9790 1] 1 0.9868 12] 6 0.9812
13| 1 0.9872 14 ] 9 0.9696 15| 4 0.9850
16| 1 0.9900 17| 3 0.9886 18 | 3 0.9858
19| 6 0.9714 20| 1 0.9584 21 | 11 0.7100
22 | 33 0.2036 23| 7 0.3318 24 | 91 0.0018
25| 2 0.6012 26| 1 0.6104 27 | 87 0.0020
28 | 47 0.0202 29 | 12 0.2788 30| 9 0.2994
31| 135 0.0006 32 | 258 0.0002 33| 16 0.1464
34| 35 0.0794

from the Table the posterior probability of the "bad” enviment (i.e. environment 1)
decreases as we observe longer failure times.

3.2. Musa’'s System 1 data

We next consider the System 1 data of Musa (1979) which dasnefs136 software
failure times. As in the case of the Jelinski-Moranda dataceansider only two states for
Y:, and assume uniform distributions for the row vectBr®f the transition matrix, and
the same diffuse gamma distributions for thi& As before 5000 iterations of the Gibbs
sampler was run and this led to convergence for all the gliesitThe posterior analysis
for the major quantities of interest will be presented inskquel using few plots.

Time Series Plot of Failure Times
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Figure4. Failure times.
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From Figure 4, we can see that the times between failured¢endrease over time
implying an overall reliability growth. The posterior digtutions of thel1 and /1, are



presented in Figure 5. We can see from Figure 5 that the postistribution of 1 is
concentrated around lower values than thatofThus environment 1 is the more desir-
able of the two environments, that is, it represents therenwient with smaller failure
rates and larger expected time to failures. In Figure 6 wegirethe posterior distribu-
tions of transition probabilities. We can see from the figtina the proces¥; tends to
stay in the same state from one testing stage to the next oster®r predictive distri-
bution of the next time to failure, that is, the distributioinX 137 is shown in Figure 7. As
can be seen from the figure the time to the next failure in thi&has more variability
than the one in the Jelinski-Moranda data shown in Figure 3.

Posterior Distribution of Lambda[1] Posterior Distribution of Lambdal2]
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Figure 5. Posterior distributions of(1) and(2).

Posterior Distribution of P[1,1] Posterior Distribution of P[1,2]
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Posterior Distribution of P[2,1] Posterior Distribution of P[2,2]

Figure 6. Posterior distributions of transition probabilities.



Posterior Predictive Density of X[137]

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

T T T T T
o 1000 2000 3000 4000 5000

x[137]

Figure 7. Predictive distribution of 137-th observation.

Time Series Plot of Posterior Probabilities of Y (t)=1
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Figure 8. Posterior probability of; = 1.

In Figure 8 we present the posterior probabilitie®r; = 1| D) for the "good" envi-
ronment, that is, for environment 1, for time peridds 1, ..., 136. As we can see from
the figure, the posterior probability is rather low for mosttwe first 80 testing stages
implying that modifications which are made to the softwargrduthese stages have not
improved the reliability from one period to the next. On theey hand, the posterior
probabilities for environment 1 wander around values highan 0.85 for most of the
stages implying the improvement in the reliability achigwkiring the later stages. We
note that as in the case of the Jelinski-Moranda data, thehjgpsterior probabilities in
Figure 8 are associated with longer failure times showngufe 4.



4. Self-exciting point processwith latent variables

Self-exciting point processes have an important role itwsak reliability since they can
be used to unify existing models into a unique class as shgv@hlen and Singpurwalla
(1997). In this section, we consider a self-exciting prgogih latent variables that en-
ables us to infer if a new bug has been introduced at eachgestthige and the process
intensity has increased.

We consider a nonhomogeneous Poisson process (NHPP) weéthsity function
1 (t) to describe the behaviour of the software when no bugs aredadideach testing
phase. We assume that the intensity is modified by positilteedafunctionsg(t — t;)
at each testing phaseas a consequence of the introduction of a new bug. We inteoduc
Bernoullirandom variableZ;’s to describe the introduction of a new bug duringithta
testing phase. As a consequence we consider a self-expiiimg process (SEP) with
latent variables with intensity

N(t™)

At =u®+ D Zjgit -,

j=1

whereu (t) is the intensity of process without introduction of new bagslN (t7) is the
number of failures right beforg t; <t < ... < t, are the failures if0, T. The latent
variableZ; = 1if a bug is introduced after thp-th failure andZ; = 0 otherwise, and
the functiong; (u) > 0 foru > 0 and= 0 otherwise.

Under these assumptions the likelihood function is givenLigg; t™, z(™M) =
f&M™1z™, 9)f(zM|9), wheret™ = (t1,tp,...,tq) and ZM™ = (Z4, Zo, ..., Zn)
with

n
FE™1Z™,0) = [T Attie o A0
i=1
0 -1 T NTT) 5 (T
=[]« + > zZjoti —t) | ™o 02z "2k "o,
=1 =1

and dependence @his suppressed. In our analysis we consider the Power Lavepsoc
(PLP) with intensity function:(t) = Mgt#~1, with M > 0 andg > 0. We assume also
thatu = gj, for all j, i.e. the contribution of each new bug is represented by dihees
PLP as the baseline process.

In this case we obtain

N i1 - I:/J NTT) 5 _.ﬂ}
B M[TP+>7 2 7 Zj(T—=t))
i=1 j=1

n
=M ] A (B, Z0-)ye MBGZ),
i=1



whereZ® = (zy,..., Z;), A (B, 20D) =t 7+ 3074 7t —t)) andB(p, Z™) =
TF + Z;\':q ) Zi(T —t; )A. ConsideringZ; ~ Bern(pj), for all j, then it follows that

n
ft™,zM) = £a™1zM,0)f(2M10) = ft™1z™, 0] ] pjzj (1-ppt=4.
j=1

Given the likelihood function the two plausible strategaes either summing over
all Z™ so that f (t™|9) can be obtained or treating;’s as parameters and using
MCMC methods. We follow the latter approach. We assume thar distributions as
M ~ G(a,d), f ~ G(p, ) andpj ~ Beta(uj,gj), for all j. Other possibilities about
p; could be an autoregressive model based on Ipgit(a more general Markov chain
or to use a common distributiddeta(u, o), for all j.

We definep™ = (py,..., pn), P=j = (P1,--+» Pj=1, Pj+1,---» Pn) @NAZ_j =
(Z1,...,Zj-1,Zj41, ..., Zn). Also, we suppress the dependence®h The full pos-
terior conditionals are given by

e M|, ZMW, p™ ~ G(a +n, 0+ BB, ZM)
n

o BIM, ZO, p o grnT A (, 20-D)e MBHZM—4f
i=1
o PjIM, £, 2™, p_j ~ Beta(uj + Zj, 0 + (1 - Z})), V]

It follows from the above that

C
P(Zj =rIM, 8, p™, Z_)) = ———,r =0,1,
(Zj =rIM, B, p D=1 a
with
o
Co= [] |+ 3 znti -t/
i=j+1 | h=1,i—1;h#j
and

-1 _ —ti)#
C= H tiﬂ + Z Zn (8 —th)ﬁ—l—(ti —tj)ﬁ e M=)
i=j+1 | h=1,i—Lh]

Thus, we can draw a posterior sample from the joint distidiouby iteratively drawing
from the given full conditional posterior distributions.

5. Discussion

Possible extensions of the above models are currently wudesideration. For exam-
ple, in the HMM the dimension of the state space of the Markio&irc will be typi-

cally unknown and this can be incorporated into the modehasheer random quantity.
Other possible extensions include a dynamic evolution®fth)’'s, a nonhomogeneous
Markov chain for the states of the latent proc¥ssSpecification of a prior distribution



for the initial environmenp, which has been assumed as given here and estimation of
the stationary distribution of the Markov chain are otheues under consideration.

Regarding the SEP model we are aware that the PLP is not mpsi@jate choice

in this context and that other NHPP’s with finite intensitd®uld be explored. There-
fore, we plan to consider different baseline processessilplgsin the family of the
NHPP’s whose intensity function can be writtenia$) = Mg(t; £). Posterior analysis
under these NHPP's are very similar to the ones obtainedthv@HPLP as discussed in
Ruggeri and Sivaganesan (2005).

An alternate class of models to what we consider here is NWMPRhange points

as discussed in Ruggeri and Sivaganesan (2005). Othedeoations include analysis
with different actual software failure data sets and dgwelent of optimal testing poli-

cies.
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