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Abstract 

 This paper focuses on analysis techniques of modern reliability data bases, with an 

application to military system data. The analysis of military system data base consists of the 

following steps: clean the data and perform operation on it in order to obtain good 

estimators; present simple plots of data; analyze the data with statistical and probabilistic 

methods. Each step is dealt with separately and the main results are presented. 

 Competing risks theory is advocated as the mathematical support for the analysis. 

The general framework of competing risks theory is presented together with simple 

independent and dependent competing risks models available in literature. These models 

are used to identify the reliability and maintenance indicators required by the operating 

personnel. Model selection is based on graphical interpretation of plotted data. 
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1. Introduction 

 Huge amounts of operation data have been collected from complex military and 

industrial systems during the last six decades. Hazardous operating conditions of these 

systems and their high investment and operating costs require strict guidelines for accurate 

data collection into reliability databases. These databases have been created not only to 

gather large amounts of data, but to provide information with regard to main reliability and 

maintenance indicators, weak components in the system, common cause failures, trends, 

etc. To meet these demands, support tools for data analysis were also developed.   

 Competing risks theory was advocated as the main mathematical tool for reliability 

data analysis [1], [2].  Each event field recorded in the database requires a separate 

competing risks analysis. For example, several failures modes will compete to end the 

sojourn life of the component, but only the failure mode that produced the failure will be 

recorded in the data base for each event. Obviously, such an event also captures  

information about the others failure modes that did not occur, even if this is not explicitly 

indicated. In the repair field, competing risks will be associated with the main maintenance 

actions, i.e. corrective or preventive. The maintenance personnel will always try to avoid a 

corrective maintenance action, hence the preventive maintenance action will act as a 

censoring variable for corrective maintenance. 

 Estimating the underlying failure rate of a competing risk can be quite a challenge 

without additional assumptions that lead to specific competing risks models. Two main 

model classes are available in literature: independent and dependent competing risks 

models. The first class of models assumes that the risks are independent and exponentially 

distributed [3]. Some derivates of these models take into account other well known 

distribution functions like weibull, lognormal, etc. The assumption of independence may 

lead to over-optimistic estimators [4], so dependence between risks should be taken into 
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account. Early dependent models considered multivariate exponential, weibull or normal 

distribution functions to model the dependence structure among risks [3], [5]. But all these 

independent and dependent models did not take into account the characteristics of the 

analyzed reliability database [6]. 

 Recent independent and dependent competing risks models were developed for the 

analysis of specific reliability databases. Bedford and Cooke [7] presented several models 

for the analysis of Swedish nuclear power plants data. In this context, perhaps the simplest 

dependent competing risks model was introduced: the random signs model. A 

generalization of this model is captured by the LBL model [8]. Bunea et al. [9] presented a 

new independent competing risks model for the analysis of Norsk Hydro reliability 

database – the mixture of exponentials model. Combined, these models proved to cover a 

larger area of applicability. 

 The goal of this paper is to apply competing risks models present in literature to the 

analysis of a military system database collected over 5 years of observation. Main notations 

and definitions of competing risks will be presented in Section 2. Several independent and 

dependent competing risks models and their important features are also presented in this 

section. Section 3 describes the database, and shows how to arrange it in a suitable form for 

the analysis. The reliability analysis is presented in Section 4. Applicability of various 

competing risks models is discussed and estimates of distributional parameters are given. 

Section 5 completes the analysis of the military system database with a maintenance 

analysis. Main maintenance indicators and plots are given. 

 Note: The information contained by the military system database will be presented 

in such a manner that will not violate data confidentiality requirements. 

 

 



 4

2. Overview of Competing Risks 

 Usually, we can reduce the competing risks analysis to two competing risks classes, 

described by two random variables X and Y, where  Y denotes the censoring variable (X 

can be the minimum of several variables). Hence we observed the least of X and Y, and 

which of the two variables is observed, i.e. Z = [min(X, Y), 1{X<Y}].  

 Competing risks data will only allow us to estimate the sub-survival functions SX
*(t) 

= Pr{X > t, X < Y} and SY
*(t) = Pr{Y > t, Y < X} but not the real survival functions of X 

and Y. If SX
*(t) and SY

*(t) are continuous at 0 then SX
*(0) = Pr{X < Y} and SY

*(0) = Pr{Y 

< X}. One can see that the subsurvival functions do not have the characteristics of a real 

survival function; their value at zero is less than one (they add to one at zero), but they are 

continuously decreasing as time goes to infinity. Additional information may be obtained 

via the conditional subsurvival functions which are the normalized subsurvival functions: 

CSX
*(t) = Pr{X > t, X < Y|X < Y} = SX

*(t)/SX
*(0), 

CSY
*(t) = Pr{Y > t, Y < X|Y < X} = SY

*(t)/SY
*(0).  

The probability of censoring beyond time t, φ(t) = Pr{Y < X|Y ʌ X > t} = SY
*(t)/(SX

*(t) + 

SY
*(t)) seems to have some diagnostic value, enabling us to choose the competing risks 

model which fits the data. Note that φ(0) = Pr{Y < X} = SY
*(0). 

The subdistribution functions for X and Y are defined as: 

FX
*(t) = Pr{X ≤ t, X ≤ Y} = SX

*(0) − SX
*(t), 

FY
*(t) = Pr{Y ≤ t, Y ≤ X} = SY

*(0) − SY
*(t). 

Peterson [10] derived bounds on the survival function of X, SX(t), by noting that  

Pr{X ≤ t, X ≤ Y} ≤ Pr{X < t} ≤ Pr{min(X, Y) ≤ t},  

which results in: 

1 − FX
*(t) ≥ SX(t) ≥ SX

*(t) + SY
*(t). 
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A restriction to the families of survival function can be obtained by considering bounds to 

time average failure rate. Recall that the failure rate of X, rX(t), is given by rX(t) = 

−d(ln(SX(t))), so the time average failure rate is ∫ rX(t)dt /t = −ln(SX(t))/t. Applying this 

transformation the Peterson bounds become: 

 −ln(SX
*(t) + SY

*(0)) /t ≤ is ∫ rX(t)dt /t ≤  −ln(SX
*(t) + SY

*(t))/t. 

The quantities on the left and the right sides are observable. Similar bounds can be obtained 

for the survival function of Y, SY(t). 

2.1 Independent exponential competing risks model 

 An unique independent model is always consistent with competing risks data (see 

Tsiatis [11], Weide and Bedford [12]), but exponential survival functions may be usually 

rejected by the time average failure rate bounds. Cooke [13] related the assumptions of 

independence and exponentiality to the form of the subsurvival functions. Let X and Y be 

independent life variables, exponentially distributed with parameters λX and λY 

respectively. Then the subsurvival functions of X and Y are: 

• SX
*(t) = λX/(λX + λY) exp( − (λX + λY) t) 

• SY
*(t) = λY/(λX + λY) exp( − (λX + λY) t) 

One can show that the conditional subsurvival functions of X and Y are equal and 

exponential distributed with failure rate λX + λY and the probability of censoring beyond 

time t is constant: φ(t) = λY/(λX + λY). 

2.2 Conditional independent model  

 This model considers the competing risks variables, X and Y, as sharing a common 

quantity V, and as being independent given V: X = V + W, Y = V + U, where V, U, W are 

mutually independent. Hokstadt [14] derived explicit expressions for the case that V, U, W 



 6

are exponential distributed. The main result of this model is that the conditional subsurvival 

functions are equal and the probability of censoring beyond time t is constant. 

2.3 Mixture of exponentials model 

 This model was developed for an application to Norsk Hydro data [9]. The main 

assumptions of this model are that X is drawn from a mixture of exponential distributions, 

while Y is an exponential distribution and independent of X. This model is a special case of 

the unique independent competing risks model, but with very important features for data 

analysis. The main results of this model are: the conditional subsurvival functions are 

mixture of exponential distribution functions; the conditional subsurvival function of Y lays 

entirely above the conditional subsurvival function of X; the probability of censoring after 

time t, φ(t), is minimum at the origin and increases continuously as a function of t.    

2.4 Random signs model 

 Perhaps the simplest dependent competing risks model which leads to identifiable 

marginal distribution is the random sign censoring model [13]. This model is captured by 

the following: Let X and Y be life variables with Y = X − Wδ, where W is a random 

variable satisfying 0 < W < X, and δ is a random variable taking values {1, −1}, with X and 

δ being independent. 

 One can show that SX
*(t) = Pr{X > t, δ = −1} = Pr{X > t}Pr{δ = −1} = SX(t)Pr{Y > 

X} = SX(t)SX
*(0). Note that Pr{Y > X} and SX

*(t) can be estimated from data and that under 

random signs censoring SX(t) is equal to the conditional subsurvival function of X. In 

addition, it can be shown that the random signs model is consistent with data if and only if 

the conditional subsurvival function of X is greater than the conditional subsurvival 

function of Y for all t > 0. In this case the probability of censoring beyond time t is 

maximum at the origin.  
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2.5 Model selection 

 The probability of censoring after time t seems to have an important role in model 

selection, via graphical interpretation [1]. The following statements follow from the models 

presented in the previous sections:  

1. If the risks are exponential and independent distributed, then the conditional 

subsurvival functions are equal and exponential distributed, and φ(t) is constant. 

2. If the random signs model holds, then φ(0) > φ(t), t ≥ 0. 

3. If the conditional independence model holds with exponential marginals, then the 

conditional subsurvival functions are equal and φ(t) is constant. 

4. If the mixture of exponentials model holds, then φ(t) is increasing for all t ≥ 0. 

 If φ(t) changes its monotonicity over the time of observation, and has no maximum 

or minimum at the origin, then we have no plausible model for coupling X and Y and we 

will regard them as independent. 

 

3. Data Description 

 The military system database contains both failure reports and engineering reports. 

The engineering report consists of engineering information on component level and 

engineering information on subcomponent level. At component level, information is 

collected with respect to component id, component operating modes, maintenance, 

subcomponents (list of subcomponents). At subcomponent level, information is given with 

respect to subcomponent id, subcomponent position in the system, manufacturer/design, 

operating data. From this report, it is possible for the analyst to pool data at subcomponent 

level and/or at component level in order to obtain better estimates of the reliability and 
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maintenance indicators [15]. The failure reports give information on system time histories. 

content of a failure report is presented below: 

Table 1:The content of a failure report 
Hierarchical Category Failure fields Repair fields 
System Detection date Code for repair action 
Component Codes for failure detection mode Date of unavailability 
Subcomponent Codes for failure type Date start repair 
 Failure effect on item Date of availability 

  Number of men used and 
menhours spend 

 
 

 From the engineering and failure reports, the analyst is able to form a table that 

forms the basis for the competing risks analysis. An extract of this table is presented in 

Figure 1: 

 

Figure 1: Example of the failure report for the military system data 

 The “Hierarchical Category” field contains the codes for system, component and 

subcomponent. The “Failure” field gives the codes for failure detection, failure type, failure 

effect on item, and gives the time of failure. The “Repair” field gives the codes for action 

taken, and gives the times when the item was pulled out of service and when it was put 

back on service. This field gives also information on the number of men used and the 

menhours spent for the maintenance procedure. The failure reports contain also a “Text” 

field, which records some observations over failure type, failure cause, repair action etc.  
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4. Data Analysis 

4.1  Data cleaning 

 The competing risks database proposed for analysis comes from 69 identical 

military systems, and it was collected over the period 1-22-2000 up to 12-16-2004. This 

yields 5 years of observation and more than 460 events. The analysis of data can be both 

statistical and probabilistic [15], and it will be discuss in the next subsection. Nevertheless, 

the most time consuming operation is “cleaning data”. Experience showed that 2/3 of the 

time of analysis is spent on extracting the most relevant information from the huge amount 

of information gathered in a reliability database. Out of 460 recorded events in the 

database, 89 are so called “ties” (multiple entries on the same calendar date). From the 

competing risks perspective it is important to clarify how many events should be recorded 

for each field in the database when a tie is present. An example of multiple events recorded 

on the same date is presented below: 

Table 2: Example of multiple events recorded on the same date 

System Component Sub-
Comp 

Failure 
Detection 

Detection 
Date Failure effect Failure 

Type 
Action 
Taken 

10477 680718-5G 13EEB H 2000/2/8 Wore out, left 
lining break 020 R 

10670 680718-5G 13EEB J 2000/2/8 Leaking, left 
lining break 381 R 

10477 680718-5G 13EEB H 2000/2/8 Leaking, right 
lining break 381 R 

 
 On date 2-8-2000, due to failure detection mode “H”, the subcomponent “13EEB” 

from component “680718-5G” of system “10477” was found in a failed state due to failure 

type “020”. The maintenance personnel checked the same subcomponent in other systems 

for similar failures (failure detection mode “J”), and found a failed one in system “10670”, 

but another failure type was present – “381”. Afterwards, they went back to initial failed 

subcomponent in the system “10477” and they found out that failure type “381” was 
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present also. The same maintenance action was taken in all events (“R”). Obviously, we 

have the same subcomponent failed in two different systems caused by different failure 

modes. One may ask how many events should be considered for each field in the database 

for this calendar date. Since the systems operate individually, system “10670” induces 

alone one event for each field in the date base. System “10477” has two entries in the data 

base, but only the type of failure manifested on the failed subcomponent is different. 

Hence, this system will induce one event for each field in the database, except for the 

failure type field with 2 events. Action taken field will record one event for each system. 

Hence, the total number of events considered for the competing risks analysis will be: 

Table 3: Number of events considered for data recorded on 2000/2/8 
System Subcomponent Failure Detection Failure Type Action Taken 

2 2 2 3 2 
 
 Each “tie” has its own particularities, and must be dealt with separately. The 

number of events considered for the analysis of each competing risks field will be different 

for different “ties”. 

 More complications arise when common cause failures are present. Common cause 

failures are generated by same failure mode manifested on different subcomponents within 

the very same system (see Table 4). 

Table 4:Example of common cause failure 

System Component Sub-Comp Failure 
Detection  

Detection 
Date 

Failure 
effect 

Failure 
Type 

10476 680718-5G 13ECB D 2001/5/28 169 R 
10476 680718-5G 13ECA D 2001/5/28 169 R 
10476 680718-5G 13ECC D 2001/5/28 169 R 
 
 There are 12 common cause failure events present in the database: 4 events when 

two different subcomponents within the same system fail due to the same failure mode, 6 

events when three different subcomponents within the same system fail due to the same 

failure mode, 2 events when four different subcomponents within the same system fail due 
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to the same failure mode. Due to the small number of common cause failures and due to the 

fact that this topic is not the goal of this work, we will neglect the effect of common cause 

failures from now on. Hence, we will consider one event for each field in the database, 

except for the subcomponent field where the number of events is equal to the number of 

failed components.  

4.2 Operations on data 

 Usually, the failure data of a single system is too sparse to apply good competing 

risks model. Given similarities in design, operating conditions and maintenance regime, the 

analyst can build a population of similar systems by performing two main operations on 

failure data: superposition, pooling. To perform these operations on data, a set of 

assumptions must be made, requiring statistical tests to validate them [1], [15]. One main 

assumption is homogeneity within the population of systems; this assumption should 

always be checked with the failure data. 

 Figure 2 shows the number of failure events for each system in the population. 

There are in total 373 failure events, distributed unevenly to each system in a range from 1 

failure event to 13 failure events. Upper and lower control bounds are also given, and they 

indicate no outliers among the systems. These bounds are obtained from the well known 

statistical test called “the log-rank test” (Cox and Lewis, Chapter 9, [16]), considering a 5% 

significance level for homogeneity of the population of systems. The mean number of 

failure events per system is also plotted on the graph. 

4.3 Survival analysis of the population of systems 

 Survival analysis of the population of systems investigates the distribution type of 

the inter-event times, and its main characteristics. The information needed for a survival 

analysis is: the number of failures per system, and the number of failures per inter-event 

times for each system and for the superimposed population of systems. Even if the time of  
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Figure 2: Outliers control chart 

 

observation is 5 years, the number of failures per systems will not be too large (it varies 

form 1 to 13 failures). If the analyst is interested in a particular subcomponent or failure 

mode, the number of failures of that subcomponent or failure mode per each system will be 

even lower. In this case, a two-stage Bayesian model should be used to estimate the mean 

value of the failure rates together with their 5th, 95th quantiles [15]. In our case, the 

survival analysis will be performed on the pooled data obtained from the build up 

population of systems. The amount of data collected will allow us to use classical methods 

to estimate the desired parameters. 

 The empirical time average failure rate can be easily plotted from the “cleaned 

data”. A decreasing slope is detected in the shape of the time average failure rate, which is 

consistent with a mixture of exponential distributions. This can be explained by the human 

factor involved in the operation of these systems (experienced /inexperienced operators) 
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and different operating environment, which suggest a mixture of a few systems with very 

high average failure rates and other systems with low average failure rates. 

 Empirical and theoretical survival functions are plotted in Figure 4. A mixture of 

exponentials distribution with mixing parameter p and failure rates λ1 and λ2 is considered. 

One can estimate the parameters using Maximum Likelihood Estimator (MLE) method. 

Given the observed data X1,…, Xn the likelihood function is  

[ exp( ) ( ) exp( )] .1 1 2 21
n

i i
i

p x p xλ λ λ λ− + − −∏  

Time Average Failure rate
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Figure 3: Time average failure rate of the population of systems 

 

 Maximizing the logarithm of this function with respect to the parameters yields the 

following system of equations: 
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 An analytic solution can not be obtained from the above system of equations. Using 

the Newton-Raphson method [17], we get the estimated parameters: p = 0.929, λ1 = 0.1604 

[1/time unit] and λ2 = 0.1342 [1/time unit].  One can see a good fit of the empirical survival 

function (Figure 4). 
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Figure 4: Empirical and theoretical survival functions of the population of systems 

4.4 Competing risks analysis for Subcomponent field 

 Discussion with operating personnel indicated that all “sub-components” can be 

described as “high value” and “low value”. Hence, the maintenance personnel will try to 

avoid the failure of “high value” subcomponents. Two exhaustive competing risks classes 

are selected: Risk 1 - corresponding to “high value” subcomponents, and Risk 2 - 
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corresponding to “low value” subcomponents. The detailed selection is indicated in Table 5 

(red/dark color for Risk 1, yellow/light color for Risk 2): 

Table 5: Selection of competing risks classes for “subcomponent field” 

Sub-
component 
codes 13

E9
9 

13
EE

9 

13
EA

9 

13
EC

B
 

13
E0

0 

13
EC

0 

13
EA

F 

13
EC

A
 

13
EA

A
 

13
EE

B
 

13
EA

E 

13
EE

C
 

13
EA

B
 

13
EA

C
 

13
EC

C
 

 

 A Pareto diagram can be used to show the relative frequency of sub-component 

failures. This diagram shows the design engineer and the maintenance engineer where to 

focus to for improvement, and shows weak sub-components in the system. 
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Figure 5: Pareto diagram for subcomponent field 

 The competing risks graphs show the main competing risks functions presented in 

section 2: the empirical subsurvival functions, the empirical conditional subsurvival 

functions, and the empirical probability of censoring beyond time t. The Peterson bounds 

for the time average failure rate, for both classes of risk, are also plotted. Cooke and 

Bedford [2] explained how to use such graphical displays in order to choose an appropriate 

competing risks model to fit data. Bunea et al. [18] proposed the Kolmogorov-Smirnov test 
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to check whether an independent exponential model is appropriate for the data, against the 

alternative of the random signs model or the mixture of exponentials model. Once the 

competing risks model is selected, one can estimate the parameters of the model. 

 The total number of failures is 407 out of which 13 are “low value” events and 394 

are “high value” events. The large number of unwanted events can be explained by a poor 

maintenance policy. Figure 6 shows that the conditional subsurvival function of Risk 2 

dominates the conditional subsurvival function of risk 1, and shows a slight increase in the 

probability of censoring after time t. Thus, the graphical interpretation of the data might 
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   a)      b) 
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   c)      d) 

Figure 6: a) subsurvival function; b) conditional subsurvival function and φ(t); c) and d) 
time average failure rate bounds for Risk 1 and Risk 2 
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suggest a mixture of exponentials model to be chosen. Recall that the mixture of 

exponentials model consists of a mixture of exponential distributions for Risk 1, and an 

exponential distribution for the censoring risk - Risk 2. This model is also consistent with 

the Peterson bounds presented in Figure 6: a decreasing time average failure rate and a 

constant failure rate are allowed for Risk 1 and Risk 2 respectively. 

 Let λ11 and λ12 be the failure rates of the mixture of exponential distributions with 

mixing coefficient p (corresponding to Risk 1), and λ2 the failure rate of the exponential 

distribution (corresponding to Risk 2). Using methods presented in [9], the following 

estimates are obtained: failure rate of Risk 2, λ2 = 0.005754 [1/time unit]; failure rates of 

the mixture, λ11 = 2.1306 [1/time unit], λ12 = 0.1682 [1/time unit], mixing coefficient, p = 

0.0355. 

4.5 Competing risks analysis for Failure Detection field 

 Two types of engineers are interested in this filed: the risk engineer, and the 

maintenance engineer. A failure during operating time of the system can have disastrous 

consequences for the system, and the risk engineer is trying to avoid such events. On the 

other hand, the maintenance engineer will try to catch a failure during a planned 

maintenance operation, since the cost of preventive maintenance is lower than the cost of 

corrective maintenance. However, the selection of the competing risks classes was done 

from the risk point of view: Risk 1 – “high risk”, Risk 2 – “low risk”. The detailed selection 

is indicated in Table 6 (red/dark color for Risk 1, yellow/light color for Risk 2): 

Table 6: Selection of competing risks classes for “detection field” 

Detection 
mode codes A B C D E G H J M Q R S W 
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 A Pareto diagram is used to investigate the main failure detection modes. A number 

of 55 events are recorded during operating time of the system, which can cause serious 

damage to the aircrafts. The largest number of failures – 208, is detected after the system 

completed its job, which can be a plus for the operating personnel since this type of 

detection is in the “low risk” category. 
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Figure 7: Pareto diagram for failure detection field 

 The total number of events is 383 out of which 68 are “high risk” and 315 are “low 

risk”. Figure 8 shows that the empirical conditional subsurvival functions are crossing each 

other once, and that the probability of censoring after time t has an inflexion point. No 

model is available in the literature for this case, and the risks should be regarded as 

independent. 

 The time average failure rate bounds do not allow an exponential distribution or 

increasing failure rate (IFR) distribution for Risk 2, but allow any type of distribution for 

Risk 1. 
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   a)      b) 

 

   c)      d) 

Figure 8: a) subsurvival function; b) conditional subsurvival function and φ(t); c) and d) 
time average failure rate bounds for Risk 1 and Risk 2 

 
4.6 Competing risks analysis for Failure Type field 

 The risk engineer is mainly interested in this field. The failure types are classified in 

two categories: “high risk” and “low risk”. The detailed selection is indicated in Table 7 

(red/dark color for Risk 1, yellow/light color for Risk 2): 
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Table 7: Selection of competing risks classes for “failure type field” 

1 8 20 37 64 65 70 80 88 111 127 135 167 169 

180 197 200 223 225 230 242 255 290 334 381 525 553 567 
Failure 
type 
codes 

599 602 607 626 627 710 721 730 786 816 900 901 932  

 

 The Pareto diagram confirms the expectation that the main failure type is “hydraulic 

oil leaking, internal leaking”. This type of failure is often present in complex systems and 

causes extensive damage [2], [9]. 
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Figure 9: Pareto diagram for failure type field 

 The total number of events is 399 out of which 283 are “high risk” and 116 are “low 

risk”. The competing risks analysis indicates that the conditional subsurvival function of 

Risk 1 lays entirely above the conditional subsurvival function of Risk 2, and that the 

probability of censoring after time t is maximum at the origin. This is consistent with a 

random sign model. 

 The time average failure rate bounds do not allow an exponential distribution or 

increasing failure rate (IFR) distribution for Risk 1, but allow any type of distribution for 

Risk 2. Under the random signs model, the survival function for Risk 1 is equal to the 
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conditional subsurvival function of Risk 1. Since the conditional subsurvival functions for 

both risks can be estimated from data, the survival function for Risk 1 can be obtained. 

Taking into account the limitations imposed by the time average failure rate bounds of Risk 

1, a mixture of exponential distributions with mixing parameter p and failure rates λ1 and λ2 

is considered. Using Maximum Likelihood Estimator method we get the estimated 

parameters: p = 0.872, λ1 = 0.2533 [1/time unit] and  λ2 = 0.1199 [1/time unit]. 

 

   a)      b) 

 

   c)      d) 

Figure 10: a) subsurvival function; b) conditional subsurvival function and φ(t); c) and d) 
time average failure rate bounds for Risk 1 and Risk 2 
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4.7 Competing risks analysis for Action Taken field 

 The maintenance personnel indicated no preferences among the action taken 

activities. However, for the sake of completeness we separate the maintenance actions into 

two classes: Risk 1 – “R”; Risk 2 – “P”, “Q”. 
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Figure 11: Pareto diagram for action taken field 

 The total number of events is 408 out of which 383 are “R” type maintenance 

actions and 25 are other maintenance actions. Figure 12 shows that the empirical 

conditional subsurvival functions have multiple crossings. No model is available in the 

literature for this case, and the risks should be regarded as independent. The time average 

failure rate bounds do not allow an exponential distribution or increasing failure rate (IFR) 

distribution for Risk 1, but allow any type of distribution for Risk 2. 

4.8 Maintenance analysis 

 A maintenance analysis of a repairable system should always be started by plotting 

an “accumulated number of repair-menhours” graph - N(t) (see [19]). For a constant 

number of operating systems during the time of observation, the accumulated number of 

repair-menhours at time t is defined as: N(i) = total repair menhours until the ith repair,  
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   a)      b) 

 

   c)      d) 

Figure 12: a) subsurvival function; b) conditional subsurvival function and φ(t); c) and d) 
time average failure rate bounds for Risk 1 and Risk 2 

 

where the ith repair is the last repair before time t. The slope of the accumulated number of 

repair-menhours plot between any two points on the graph is an estimator of MTTR 

between those repair jobs.  

 Figure 13 illustrates the accumulated number of repair-menhours for the military 

system data. Note that N(t) plot is convex up to the 200th repair job and concave 

Subsurvival functions 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 5 10 15 20 25 30 35

Time [time unit] 

SS1

SS2

Time-Average failure rate bounds - Risk1

0 

0.05

0.1 

0.15

0.2 

0.25

0.3 

0 5 10 15 20 25 30 35

Time [time unit] 

LB1
UB

Time-Average failure rate bounds - Risk2

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35

Time [time unit] 

LB2
UB

Conditional Subsurvival functions 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 

Time [time unit] 

CSS1

CSS2

Fi



 24

afterwards. This indicates an increasing repair rate during the first part of observation 

period and a decreasing repair rate in the second part. This change in the monotonicity of 

the repair rate occurs around the 200th repair job, when the largest repair job was performed 

(179 menhours). The convex part of N(t) corresponds to a good performance of the 

maintenance team. The concave may be explained by the ageing of the systems combined 

with the performance of an inadequate maintenance policy. 
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Figure 13: Accumulated number of repair manhours 

 The yearly fluctuations in the mean number of repair menhours can be directly 

identified by using a “MMTR during a calendar year” graph. The MTTR during a calendar 

year is defined as the ratio of the number of repair menhours during a year and the number 

of repairs during that year. 

 The MMTR during a calendar year chart does not show big variances from the 

overall MMTR value (no outliers).  

 The empirical repair distribution function shows the frequency of repair jobs that 

took less than t hours. This can give the maintenance engineer an idea of costs of a  
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MTTR during a calendar year
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Figure 14: Mean time to repair (MTTR) during a calendar year 

corrective maintenance job which can support the decision of the total maintenance 

planning (e.g. type of maintenance policy to be chosen, optimum replacement times, etc.). 
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Figure 15: Empirical and theoretical repair time distribution functions 

 



 26

 Empirical and theoretical repair time distribution functions are plotted in Figure 15. 

The most common distribution function used to model the repair times is the lognormal 

distribution. Using the first and second moments of the lognormal distribution, one can 

obtain the parameters of the distribution µ = 4.9723 and σ = 1.3053. One can see a very 

good fit of the empirical function. 

 

5. Conclusions 

  Future research can be performed in several areas. First, more independent and 

dependent competing risks models should be developed, in order to cover all the possible 

outcomes of data plotting. One such possible case is when the conditional subsurvival 

function are crossing each others one time (see the analysis of Failure Detection field), or 

multiple times (see Action Taken field). 

 All present models are based on assumptions. One common assumption made in 

literature is independence between competing risks. This assumption proved to be over 

optimistic in many cases, as usually data shows a strong dependent relation between 

competing risks. The research should be extended to models that take into account the 

dependence structure between risks. One such approach is to consider the dependence 

structure between risks to be modeled by a copula. Early implementations of these models 

show the sensitivity of model selection regarding the degree of dependence between risks. 

References 

[1] Paulsen J, Dorrepaal J, Cooke R, Hokstad P. The design and use of reliability database 

with analysis tool. Risø-R-896, Risø National Laboratory, Denmark, 1996. 

[2] Cooke R, Bedford T. Reliability databases in perspective. IEEE Transactions on 

Reliability 2002; 51: 294-310. 



 27

[3] David HA, Moeshberger ML. The theory of competing risks. USA: Macmillan 

Publishing Co, 1978. 

[4] Bunea C, Bedford T. The effect of model uncertainty on maintenance optimization. 

IEEE Transactions on Reliability 2002; 51: 486-493. 

[5] Basu AP, Ghosh JK. Identifiability of the multinormal and other distributions under 

competing risks model. Journal of Multivariate Analysis 1978; 8: 413-429. 

[6] Bunea C, Mazzuchi TA. Sensitivity analysis of accelerated life tests with competing 

failure modes. In: Modern statistical and mathematical methods in reliability. World 

Scientific Publishing, 2004: 205-210. 

[7] Bedford T, Cooke R. Probabilistic Risk Analysis: Foundations and Methods. Great 

Britain: Cambridge University Press, 2001. 

[8] Langseth H, Lindqvist B. A maintenance model for components exposed to several 

failure mechanism and imperfect repair. In: Mathematical and Statistical Methods in 

Reliability. World Scientific Publishing, 2002: 415-430. 

[9] Bunea C, Cooke R, Lindqvist B. Competing risks perspective over reliability databases. 

In: Mathematical and Statistical Methods in Reliability. World Scientific Publishing, 2002: 

355-370. 

[10] Peterson A. Bounds for joint distribution function with fixed subdistribution functions: 

Application to competing risks. Proceedings of the National Academy of Science 1976; 73: 

11-13. 

[11] Tsiatis A. A non-identifiability aspect in the problem of competing risks. Proceedings 

of the National Academy of Science 1975; 72: 20-22. 

[12] van der Weide JAM, Bedford T. Competing risks and eternal life. In: Proc European 

Safety and Reliability Conference. Trondheim, 1998. p. 1359-1364. 



 28

[13] Cooke RM. The design of reliability databases, Part I and II. Reliability Engineering 

and System Safety 1996. 51: 137-146 and 209-223. 

[14] Hokstad P, Jensen U. Predicting the failure rate for components that go through a 

degradation state. In: Proc European Safety and Reliability Conference. Trondheim, 1998. 

p. 389-396. 

[15] Bunea C. Mathematical models for reliability data. Ph.D. Thesis, Delft University of 

Technology, Delft, 2003. 

[16] Cox DR, Lewis PAW. The statistical analysis of series of events. Great Britain: 

Methuen & Co LTD, 1966. 

[17] Kalbfleisch JG. Probability and statistical inference; Volume 2: Statistical inference. 

USA: Springer-Verlag New York Inc., 1985 

[18] Bunea C, Cooke R, Lindqvist B. Maintenance study for components under competing 

risks. In: Proc European Safety and Reliability Conference. Lyon, 2002. p. 212-217. 

[19] Dorrepaal J. Analysis tools for reliability databases. Sweden; Published by Swedish 

Nuclear Power Inspectorate SKI Report 95:67, 1995. 

 


