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Abstract

We present a Bayesian decision theoretic approach for developing
replacament strategies. In so doing, we consider a semi-parametric
model to describe the failure characteristics of systems by specifying
a nonparametric form for cumulative intensity function and by tak-
ing into account effect of covariates by a parametric form. Use of
a gamma process prior for the cumulative intensity function compli-
cates the Bayesian analysis when the updating is based on failure count
data. We develop a Bayesian analysis of the model using Markov chain
Monte Carlo (MCMC) methods and determine replacement strategies.
Adoption of MCMC methods involves a data augmentation algorithm.
We show the implementation of our approach using actual data.

1 Introduction

Many systems experience aging or wear as a function of time or usage. In
industry it is common practice to use planned replacement strategies for these
systems to prevent in-service failures that may be very costly relative to the
cost associated with a planned replacement/repair. For example, railroad
tracks experience wear as a function of traffic usage, which is measured in
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millions of gross tons (MGT). A failure of a railroad track takes the form
of a crack in a rail section. Though this does not affect the use of the rail
immediately, it can possibly lead to a fracture which is potentially hazardous.
The replacement of rail tracks is a major expense for railroad companies.
Thus, it is important for railroad companies to develop decision models to
determine effective replacement strategies.

Most of the operations research literature on preventive maintenance as-
sumes that the failure characteristics (models) of the systems are known
and does not address statistical issues. Thus, the replacement strategies are
dependent on such failure characteristics and they are not adaptive to learn-
ing from observed failure/replacement data; see for example Cho & Parlar
(1991) for a general review of such models. More recently, statistical issues in
the development of optimal replacement strategies have been considered by
Mazzuchi & Soyer (1995, 1996) and Dayanik & Gurler (2002) using Bayesian
approaches. These authors considered parametric Bayesian approaches that
does not allow a flexible modeling strategy and their approaches do not allow
use of covariate information in determining optimal strategies. For example,
in addition to wear, the failure of a rail track is affected by factors such as rail
weight, rail curvature and speed as well as the implementation of preventive
measures such as the grinding of the surface of the rail and the lubrication of
the track to reduce friction. Thus, these factors as well as the wear behavior
should be considered by any model describing the failure behavior of rail
tracks and should be taken into account developing replacement strategies.
This is essential for systems such as rail tracks that are subject to block
replacement. Non-parametric replacement strategies have been considered
from a sampling theory perspective in Frees & Ruppert (1985) and Aras
& Whitaker (1991) where adaptive age replacement policies are developed
without using covariate information. Such non-parametric approaches have
not been considered from a Bayesian point of view.

In this paper, we present a Bayesian decision theoretic approach to the
optimal replacement problem by focusing on systems such as railroad tracks
that are subject to wear. In so doing, we present a semi-parametric model to
describe the failure characteristics of rail tracks by specifying a nonparamet-
ric form for modeling wear and by taking into account effect of covariates by
a parametric function. We develop a Bayesian analysis of the model based on
failure/replacement data using Markov chain Monte Carlo methods (MCMC)
and determine replacement strategies using our model. Adoption of MCMC
methods for determining optimal strategies requires development of a data
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augmentation algorithm, in the sense of Tanner & Wong (1987), to evaluate
posterior predictive distributions. Our approach enables us to obtain adap-
tive replacement strategies via updating our uncertainities and policies as we
learn from the failure/replacement process.

Synopsis of our paper is as follows. In Section 2 we discuss the basics
of block replacement and motivate the block replacement with minimal re-
pair protocol that applies to repairable systems such as railroad tracks. We
present the Bayesian decision theoretic set up for optimal replacement prob-
lem and its components using cost-based utility (loss) functions. In Section
3, a modulated Poisson process model is presented for describing the failure
behavior of systems, such as rail tracks, that are subject to minimal repair.
The modulated Poisson process model was first proposed in Cox (1972b) to
consider covariate effects in counting processes. We refer to the model as pro-
portional intensities model (PIM) as it is a counting process alternative to
the proportional hazards model (PHM) of Cox (1972a). Analogous to PHM,
in the PIM, the intensity function of the process is modeled as a product of
a baseline intensity, which is a function of traffic usage in the railroad appli-
cation. First a parametric approach is considered for the PIM. Due to the
lack of controlled testing facilities for railroad tracks and the wide variation
in the physical characteristics and operating environments of tracks in use,
there is little evidence to support a choice of a fully parametric PIM. Thus,
the parametric assumption is relaxed and a semi-parametric model is pro-
posed for the PIM, using a gamma process prior for the baseline cumulative
intensity. In Section 4 Bayesian analyses of the parametric and semiparamet-
ric PIMs are considered. The fully parametric approach adopts the MCMC
methods of Dellaportas & Smith (1993) to perform parametric inference on
the PIM where the number of rail track failures are described by a non-
homogeneous Poisson process (NHPP). The MCMC based procedures are
adopted for inference for the semiparametric PIM. The analysis of rail track
data is straightforward if the failure counts are observed in identical traffic
usage intervals for each rail section. However, data augmentation steps must
be introduced to handle the overlapping, but not identical, intervals that
occur in the railroad data analyzed and to perform prediction. In Section 5,
Bayesian replacement strategies are developed for rail tracks by accounting
for covariate information using the parametric and semiparametric models
and an illustration of the approach is presented using actual rail track failure
data.
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2 Block Replacement Problem

Two of the most commonly used replacement strategies for systems/items
subject to aging/wear are the age and block replacement; see Cox (1962)
for an earlier introduction. Under the age replacement protocol, a planned
replacement is made at age tA, if the item survives until then, or an in-service
replacement is made whenever the item fails. Under the block replacement
protocol, all units are replaced at time points tB, 2tB, . . ., irrespective of their
ages and an in-service replacement or repair is made whenever failures occur.
For non-repairable systems/components failed units are always replaced by a
new one and thus they are assumed to operate under the good as new (GN)
replacement protocol. Analysis of this protocol involves modeling via the
renewal function, but this is not applicable for systems like railroad tracks.
Another block replacement protocol is the block replacement with minimal
repair that was originally introduced by Barlow & Hunter (1960). Under this
protocol items are minimally repaired upon failure but replaced at times tB,
2tB, . . ., irrespective of their ages. The replacement problem involves optimal
choice of the interval tB typically by minimizing a cost function.

As pointed out in Section 1, railroad tracks experience wear as a function
of traffic usage and the wear causes a failure of a railroad track in the form of
a crack in a rail section. Such a crack can possibly lead to a fracture if it is
not repaired. When a crack is found on the rail, a small piece of rail section
around the crack is cut out and replaced with a new rail piece. Since this
does not significantly change the performance of the rail section which can
be miles in length, the rail sections are assumed to be minimally repaired.
Thus, in what follows we will consider the block replacement with minimal
repair protocol and present the Bayesian decision theoretic formulation.

2.1 Bayesian Formulation of the Block Replacement
Problem

The Bayesian approach, in addition to providing coherent inference, also
provides a coherent framework for decision making. In Bayesian paradigm
optimal strategies are chosen by maximizing expected utility. As in any
decision problem, the Bayesian approach to the optimal replacement problem
requires specification of three components:

(i) a utility (loss) function that reflects the consequences of selecting a
specific replacement interval tB;
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(ii) a probability model describing the failure behavior of the system (or
the component);

(iii) a prior distribution reflecting the analyst’s a priori beliefs about all
unknown components of the model.

As mentioned in the above, when a crack is found on a section of the rail
track, the rail track is minimally repaired in the sense of Barlow & Hunter
(1960). This implies that the rail tracks can be repaired in such a way that
their failure characteristics (failure rates, reliability, etc.) are as they were
just prior to the observation of the crack. To introduce some notation let
cP to denote the cost of a planned replacement and cF to denote the cost of
a minimal repair such that cF > cP . As pointed out by Mazzuchi & Soyer
(1996), the cost per unit time for the i-th rail section is given by

C(tB, Ni(tB)) =
mcP + cFNi(tB)

tB
, (1)

where Ni(t) represents the number of in-service failures for the i-th section
that occur in an interval of length t, Assuming that m rail sections will be
replaced at time tB, the total cost per unit time is given by

C(tB, N(tB)) =
m∑

i=1

C(tB, Ni(tB)), (2)

where N(tB) = (N1(tB), . . . , Nm(tB)) .The optimal block replacement strat-
egy t∗B is determined by minimizing E[C(tB, N(tB))] when a model is specified
for the Ni(tB)’s. The expectation E[C(tB, N(tB))] is taken with respect to
the unknown quantity N(tB) in C(tB, N(tB)). It is important to note that
the counting process Ni(t) is based on an unknown parameter vector Θ and
it is more appropriate to write down E[C(tB, N(tB))] as

E[C(tB, N(tB))|Θ] =
mcP + cF

∑m
i=1 E[Ni(tB)|Θ]

tB
. (3)

Thus, a Bayesian optimal block replacement interval is determined by
minimizing

E[C(tB)] = EΘ{EN(tB)[C(tB, N(tB))|Θ]}
with respect to tB. The above requires evaluation of

E[C(tB)] =

∫
EN(tB)[C(tB, N(tB))|Θ] π(Θ|D) dΘ, (4)
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where D denotes the information available when the decision is made and
π(Θ|D) is the probability distribution that represents the analyst’s uncer-
tainty about Θ when D is available and is referred to as the posterior dis-
tribution of Θ. An attractive feature of the Bayesian optimal replacement
strategies is that they are adaptive. As one learns about the processes Ni(t),
i = 1, ..., m based on D, the optimal interval tB will be revised accordingly.
The ability to update strategies as well as uncertainities over time is a nat-
ural outcome of the Bayesian approach. If the decision is made based on
prior information D0 then π(Θ|D0) is referred to as the prior distribution of
Θ. Thus, the components of the Bayesian decision framework consist of the
cost-based utility function C(tB, N(tB)), the probability model of Ni(tB|Θ)
that describes the failure characteristics of the rail sections and the prior
distribution π(Θ|D0) representing uncertainty about parameters Θ of the
probability model.

Often in reliability studies, upon failure items/systems can be restored to
some satisfactory level of performance without replacing the whole unit. Such
systems are referred to as repairable systems, see Crowder et al (1991). As
the railroad tracks are assumed to be minimally repaired upon failure, point
processes, and specifically non-homogeneous Poisson processes (NHPP), are
used to model their failure behavior. Most of the models applied to repairable
systems do not consider the effect of covariates on the intensity function of
the NHPP. Under the minimal repair (MR) protocol of Barlow & Hunter
(1960), the number of failures of the i-th rail section in the replacement
interval, Ni(tB), is described by a nonhomogeneous Poisson process (NHPP)
with cumulative intensity (or mean value) function Λi(t|Θ). In what follows
we will present a generalization of the NHPP to incorporate covariate effects
in the cumulative intensity function.

3 Proportional Intensities Model for Rail Sec-

tion Failures

Let Ni(t) denote the number of failures for the i-th rail section in an interval
of length t MGT and let Zi denote the p-dimensional vector of available
covariates that describe the characteristics of the i-th rail section. In the
data on rail failures used for the grinding problem analysis, the available
covariates are constant with respect to traffic usage. Ni(t) is described by a
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NHPP with intensity function

λi(t) =
d

dt
E[Ni(t)]. (5)

To reflect thefact that the intensity function is affected by covariates, λi(t)
can be modulated by a function of Zi. Such a modulation was introduced in
Cox (1972b) by considering

λi(t; Zi) = λ0(t)e
βT Zi , (6)

where λ0(t) is the baseline intensity function and β is a vector of p parameters.
The Poisson process model defined by the intensity (6) was referred to as the
modulated Poisson process by Cox (1972b). The model can be thought as
a counting process alternative to the proportional hazards model (PHM) of
Cox (1972a) where a similar form was used for the failure rate of a non-
repairable system. In the modulated Poisson process model the ratio of the
intensity functions of two rail sections at traffic usage t is given by

λi(t; Zi)

λj(t; Zj)
= eβT (Zi−Zj), (7)

which does not depend on t. Thus, we will refer to the model as the propor-
tional intensities model (PIM).

Under the PIM the cumulative intensity function of the rail track failure
process is given by Λi(t) =

∫ t

0
λi(s)ds which can be written as

Λi(t; Zi) = Λ0(t)e
βT Zi, (8)

where Λ0(t) =
∫ t

0
λ0(s)ds is the baseline cumulative intensity function, that is

E[Ni(t)] = Λi(t). We note that the baseline cumulative intensity Λ0(t) may
have a parametric or a nonparametric form. In the former case, Λ0(t) will
depend on some vector of parameters, say, θ. Thus, we will write the above
as Λ0(t) = Λ0(t; θ) where Λ0(t; θ) =

∫ t

0
λ0(s; θ) ds. In the nonparametric case

Λ0(t) will be modeled by a stochastic process. In both cases, the distribution
of Ni(t) given Zi and Θ = (Λ0(t), β) is specified using Λi(t; Zi, Θ), explicitly

P (Ni(t) = n|Λ0(t), β, Zi) =
Λ0(t)

nenβT Zi

n!
exp{−Λ0(t)e

βT Zi}. (9)

Thus, Ni(t) given Zi and Θ is a NHPP and conditional on Zi and Θ, all
the properties of NHPPs will hold for the PIM. For example, for the i-th
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rail section, probability of number of failures in any MGT interval [s, t), is
obtained as

P (Ni(t) − Ni(s) = n|Λ0(t), β, Zi) =

[Λ0(t) − Λ0(s)]
nenβT Zi

n!
exp{−[Λ0(t) − Λ0(s)]e

βT Zi}.

In the optimal replacement problem setup, evaluation of the expected cost
E[C(tB, N(tB))|Θ] requires E[Ni(tB)|Θ] where Θ = (Λ0(t), β). This can be
obtained as

E[C(tB, N(tB))|Θ] =
mcP + cF

∑m
i=1 Λ0(tB)eβT Zi

tB
. (10)

3.1 Modeling the Baseline Intensity Function

In modeling the baseline intensity function of the PIM, one strategy is to
specify a parametric form λ0(t; θ). For example, one can specify a power law
model for λ0(t; θ) which is widely used in reliability modeling of repairable
systems. The power law model is given by λ0(t; θ) = αγtγ−1 implying that

Λ0(t; θ) = αtγ, (11)

where θ = (α, γ) and α > 0, γ > 0. In the power law model (11), values of
γ > 1 imply that the system, in our case the rail track, deteriorates by usage,
that is, by MGT. This is typically what is expected in systems such as rail
tracks that are subject to wear. The power law model implies that the distri-
bution of the time to the first failure call arrival is a Weibull distribution and
thus sometimes the NHPP with the power law intensity function is referred
to as Weibull process. We will refer to the PIM with a parametric form of
λ0(t; θ) as the parametric PIM. Under the parametric modeling strategy, the
Bayesian formulation of the optimal replacement problem is completed by
specifying the prior distribution π(Θ|D0) of the unknown parameters Θ =
(θ, β), that is, π(α, γ, β|D0) for the power law model.

As previously discussed, railroad tracks show great deal of variation in
their physical characteristics and in terms of the environments under which
they operate. A fully parametric model is not flexible enough to account for
such variation. An alternative modeling strategy is to consider a nonpara-
metric form for the baseline intensity λ0(t) or equivalently for the cumulative
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the baseline intensity Λ0(t) of the PIM. In the Bayesian framework this can be
achieved by specifying a prior distribution on the baseline cumulative inten-
sity function Λ0(t). In order to provide flexibility in modeling, it is important
that such a prior allows a wide variety of different forms for Λ0(t). Since,
the baseline cumulative intensity function is proportional to the expected
number of failures up to traffic usage t in the PIM, there is no restriction
on the size of any instantaneous jumps of the Λ0(t). Furthermore, Λ0(t) is a
function taking values in [0,∞). Thus a gamma process is a suitable prior
for Λ0(t) in the PIM.

To construct a gamma process prior, we consider a partition of [0,∞)
into k intervals can be defined as [t0, t1), [t1, t2), . . . , [tk−1, tk = ∞), where
Λ0(t0) = 0 and rl = Λ0(tl) − Λ0(tl−1), implying that

Λ0(tj) =

j∑
l=1

rl. (12)

for j = 1, . . . , k. Doksum (1974) considered such a construction and showed
that a probability distribution can be specified on the space of positive in-
creasing functions, {Λ0(t)}, by specifying the k-dimensional distribution of
r1, . . . , rk, for each possible partition [t0, t1), [t1, t2), . . . , [tk−1,∞). In this
construction the distributional assumptions must hold for any partition of
[0,∞) and must be consistent between partitions. The process obtained is
non-decreasing and the increments are independent. If the increments have
gamma distributions, the resulting process is called a gamma process, see
Singpurwalla (1997). Let c be a positive real number, Λ∗

0(t) be a best guess
for baseline cumulative intensity function and assume that the distribution
of the rj’s is given by

rj � G(cΛ∗
0(tj) − cΛ∗

0(tj−1), c), (13)

where X � G(a, b) denotes that X has a gamma distribution with shape
parameter a and scale parameter b. It follows from this construction that
Λ0(t) is a gamma process with Λ∗

0(t) being a best guess and c is a measure
of certainty about the best guess given the prior history D0,

(Λ0(t)|D0) � G(cΛ∗
0(t), c), (14)

for all values of t. The above implies that E[Λ0(t)|D0] = Λ∗
0(t) and V [Λ0(t)|D0] =

Λ∗
0(t)/c.
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Treatment of Λ0(t) as a stochastic process in the above enables us to
develop a Bayesian version of the replacement models considered by Oze-
kici (1995). Note that using the nonparametric approach we have specified
the prior only for Λ0(t). We can complete the Bayesian formulation of the
optimal replacement problem by specifying a parametric form for the prior
distribution π(β|D0) of β as independent of Λ0(t). Our Bayesian modeling
strategy consists of a nonparametric treatment of the baseline cumulative
intensity and a parametric specification of the effect of covariates in the
Λi(t; Zi, Θ) = Λ0(t)e

βT Zi . This approach is usually referred to as a semipara-
metric Bayesian approach and thus, we will refer to the corresponding PIM
as the semiparametric PIM.

4 Bayesian Analysis of the PIMs

In this section, we will present Bayesian inference for the semiparametric
PIMs. In so doing, we first present the Bayesian analysis of the parametric
PIM using an adoption of MCMC methods of Dellaportas & Smith (1993)
presented for PHM. Analysis of the semiparametric model is nontrivial when
the failure counts are observed in the overlapping, but not identical traffic
usage intervals as is typically the case with actual data coming from different
rail sections. This requires development of a new MCMC algorithm for the
Bayesian analysis.

4.1 Bayesian Inference for the Parametric PIM

Under the parametric Bayesian approach, the baseline cumulative intensity
Λ0(t) is assumed to be a differentiable function Λ0(t; θ) where θ is a vector of
unknown parameters. Thus the baseline intensity function λ0(t) is given by
λ0(t; θ) = d

dt
Λ0(t; θ). If Ni(t) for each rail section i = 1, . . . , n is observed at

traffic usages t = ti,1, . . . , ti,ri
then the data for the i-th rail section is given

by Di = {Ni(t) = ni(t), j = 1, . . . , ri, Zi}. Using the independent increments
property of the NHPP, the likelihood function of θ and β given Di is written
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as

Li(θ, β; Di) =

ri∏
j=1

(
{Λ0(ti,j; θ) − Λ0(ti,j−1; θ)} eβT Zi

)ni(ti,j )−ni(ti,j−1)

(ni(ti,j) − ni(ti,j−1))!
(15)

× exp{−{Λ0(ti,j ; θ) − Λ0(ti,j−1; θ)} eβT Zi},
where Λ0(ti,0; θ) = 0.

Given m rail sections, conditional on the cumulative intensities, that is,
Λi(t)’s i = 1, . . . , m, the Ni(t)’s are assumed to be independent. Thus,
given the failure counts for each Ni(t) at traffic usage t = ti,1, . . . , ti,ri

for
i = 1, . . . , m, the likelihood function of θ and β given D = (Di; i = 1, ..., m)
is given by

L(θ, β; D) =
m∏

i=1

Li(θ, β; Di). (16)

The joint posterior distribution of θ and β given D is

π(θ, β|D) ∝ L(θ, β; D)π(θ, β),

which can not be obtained analytically for any given form of the prior π(θ, β),
but a Gibbs sampler can be used to draw samples from the joint posterior
π(θ, β|D). Implementation of the Gibbs sampler for the parametric PIM
requires draws from the full conditional posterior distributions π(θ|β, D) and
π(β|θ, D). If we assume θ and β are independent apriori, that is, π(θ, β) =
π(θ) π(β), then the full conditionals are given by

π(θ|β, D) ∝ {Λ0(ti,j ; θ) − Λ0(ti,j−1; θ)}
∑m

i=1

∑ri
j=1 ni(ti,j )−ni(ti,j−1) (17)

× exp{−
n∑

i=1

ri∑
j=1

{Λ0(ti,j ; θ) − Λ0(ti,j−1; θ)} eβT Zi}π(θ)

and

π(β|θ, D) ∝ e
∑m

i=1

∑ri
j=1(ni(ti,j )−ni(ti,j−1))βT Zi (18)

× exp{−
m∑

i=1

ri∑
j=1

{Λ0(ti,j; θ) − Λ0(ti,j−1; θ)} eβT Zi}π(β).

For any choice of the forms of Λ0(t; θ), π(θ) and π(β), (17) and (18) are
logconcave densities and therefore the adaptive rejection sampling algorithm
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of Gilks & Wild (1992) can be used to draw samples from (17) and (18) at
each iteration of the Gibbs sampler. However, some specific forms may yield
known distributions for components of θ in (17). For example, if the power
law form is specified for Λ0(t; α, γ) = αtγ , with θ = (α, γ), then a gamma
prior density for α shape a and scale b, yields the posterior full conditional
distribution as a gamma distribution with shape a +

∑m
i=1

∑ri

j=1 ni(ti,j) −
ni(ti,j−1) and scale b+

∑m
i=1

∑ri

j=1

{
tγi,j − tγi,j−1

}
eβT Zi . But the full conditional

of γ

π(γ|α, β, D) ∝
m∏

i=1

ri∏
j=1

{
tγi,j − tγi,j−1

}ni(ti,j)−ni(ti,j−1)
(19)

× exp{−
m∑

i=1

ri∑
j=1

α
{
tγi,j − tγi,j−1

}
eβT Zi}π(γ).

does not simplify to a known distribution for any form of π(γ) and thus still
requires use of the adaptive rejection sampling algorithm to obtain samples.
For any choice of the prior π(β), sampling from (18) requires adaptive re-
jection sampling algorithm. A reasonable form for π(β) is the multivariate
normal density.

Once a posterior sample has been obtained from π(θ, β|D), all the marginal
distributions of θ and β as well as their moments can be approximated from
this posterior sample. Let (θl, βl,1, . . . , βl,p), for l = 1, . . . , S., be a sample
from the posterior distribution generated using the method outlined above.
An estimate of the posterior mean of βj is β̂j = 1

S

∑S
l=1 βl,j and the posterior

cumulative distribution function of βj can be approximated by

P (βj ≤ b) ≈ 1

S

S∑
l=1

I(βl,j ≤ b). (20)

Similar estimates can be obtained for the parameters of the baseline cu-
mulative intensity function. The expected posterior predictive probability
of observing n failures of the i-th rail section up to traffic usage t can be
approximated by

P (Ni(t) = n|D) ≈ 1

S

S∑
l=1

(
Λ0(t; θl)e

βT
l Zi

)n

n!
exp{−Λ0(t; θl)e

βT
l Zi}. (21)
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4.2 Bayesian Inference for the Semiparametric PIM

The use of a gamma process prior for the cumulative intensity function of a
NHPP was considered by Kuo & Ghosh (2001). The model considered by the
authors excluded the covariate information and the inference was introduced
only for the case of failure time data. If the data is only available as failure
counts at different points in traffic usage, as in the case of the data for the
railroad tracks, then the semi-parametric Bayesian inference in the PIM is not
straightforward. In the railroad track data, the rail sections are observed over
different intervals, some of which overlap. In this case the implementation
of the Gibbs sampler requires a data augmentation step. Such a step is also
required for the case of a single rail section for predictive estimation which is
needed in development of replacement strategies. In the sequel, inference for
the semiparametric PIM will be discussed for the single and multiple item
cases and a general algorithm will be presented.

4.2.1 Analysis for a Single Rail Section

Suppose that for the i-th rail section, the process Ni(t) is observed in the
traffic usage intervals [t1, t2) and [t2, t3) so that the data is given by

Di = {Ni(t2) − Ni(t1) = n1, Ni(t3) − Ni(t2) = n2, Zi}

as shown in Figure 1. The cumulative intensity for the i-th rail section is

Figure 1: The data observed for a single rail section.

given by
Λi(t) = Λ0(t)e

βT Zi,
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where Λ0(t) is defined by (14). Using the independent increments property
of the NHPP, the likelihood function of Λ0(t) and β given Di is written as

Li(Λ0(t), β|D) =

2∏
j=1

(
Λ0(tj+1)e

βT Zi − Λ0(tj)e
βT Zi

)nj

nj !
(22)

× exp{−(Λ0(tj+1)e
βT Zi − Λ0(tj)e

βT Zi)}. (23)

As in the parametric case, a Gibbs sampler can be used for developing
posterior inference. Assuming that the prior on β, π(β) is independent of the
gamma process prior on Λ0(t), the full conditional posterior of Λ0(t) given
β is obtained, by using the independent increments property of the gamma
process, as

π(Λ0|β, Di) ∝ [Λ0(t2) − Λ0(t1)]
c[Λ∗

0(t2)−Λ∗
0(t1)]+n1−1

× exp
{
− [Λ0(t2) − Λ0(t1)] (c + eβT Zi)

}
× [Λ0(t3) − Λ0(t2)]

c[Λ∗
0(t3)−Λ∗

0(t2)]+n2−1

× exp
{
− [Λ0(t3) − Λ0(t2)] (c + eβT Zi)

}
.

Thus the posterior distribution of Λ0(t) conditional on β can be written as

(Λ0(t)|β, Di) � G(cΛ∗
0(t), c), for t < t1 (24)

(Λ0(t2) − Λ0(t1)|β, Di) � G(c{Λ∗
0(t2) − Λ∗

0(t1)} + n1, c + eβT Zi), (25)

(Λ0(t3) − Λ0(t2)|β, Di) � G(c{Λ∗
0(t3) − Λ∗

0(t2)} + n2, c + eβT Zi), (26)

(Λ0(t) − Λ0(t3)|β, Di) � G(c{Λ∗
0(t) − Λ∗

0(t3)}, c), for t > t3. (27)

It follows from (25) and (26) that

Λ0(t2) = [Λ0(t2) − Λ0(t1)] + Λ0(t1) (28)

is a sum of two independent gamma random variables with different scale
parameters. Thus, the distribution of (Λ0(t2)|β, Di) can be simulated as the
sum of two gamma random variables. If the process was also observed during
the interval [0, t1) with, say, Ni(t1) = n0 then the distribution of Λ0(t1) would
be updated as

(Λ0(t1)|β, Di) � G(cΛ∗
0(t1) + n0, c + eβT Zi) (29)
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and the distribution of Λ0(t2) would be the sum of two independent gamma
random variables with the same scale implying that

(Λ0(t2)|β, Di) � G(cΛ∗
0(t2) + n0 + n1, c + eβT Zi).

It can be seen that conditional on β, the effect of the covariates is on the
scale of the gamma distributed posterior of the cumulative intensity func-
tion. However, unconditional on β this is not the case. Following the prior
treatment of the parametric PIM, the prior distributions of the parameters
βj are assumed to be independent normals

βj ∼ Normal(μj , σ
2
j ). (30)

Implementation of the Gibbs sampler requires the full conditional distribu-
tion of each βj

(βj|β(−j), Λ0(t2) − Λ0(t1), Λ0(t3) − Λ0(t2), D), (31)

which is proportional to

e(n1+n2)Zi,jβj exp{−([Λ0(t3)−Λ0(t1)]e
β(−j)T Z

(−j)
i )eβjZi,j} exp{− 1

2σ2
j

(βj −μj)
2},

(32)
for the specific example with likelihood (22), where β(−j) = (β1, . . . , βj−1,

βj+1, . . . , βp) and Z
(−j)
i = (Zi,1, . . . , Zi,j−1, Zi,j+1, . . . , Zi,p). Again samples

from (32) can be obtained using the adaptive rejection sampling as each
density is log-concave.

The Gibbs sampling algorithm is used to sample from the joint posterior
distribution of

(Λ0(t2) − Λ0(t1), Λ0(t3) − Λ0(t2), β|Di), (33)

using (25) and (26) whose sum is a sample point for [Λ0(t3)−Λ0(t1)], which
in turn yields a sample point from (32) using adaptive rejection sampling in
an iterative manner.

The conditional posterior distribution of Λ0(t) given β is known for t < t1
and t > t3 and for the instants of traffic usage t2 and t3. However, as the
number of failures of the rail section up to traffic usage t is not known for
t ∈ [t1, t2) and t ∈ [t2, t3), the posterior distribution is not immediately
available. This causes problems when making predictive statements, such as
in the optimal replacement problem which will be discussed in Section 5.
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4.2.2 The Prediction Problem for a Single Rail Section

Suppose that the posterior distribution of Λ0(t
∗) is required, where t∗ is in the

interval (t1, t2) and thus the number of failures between t1 and t∗ is unknown
as shown in Figure 2. One way to update the distribution of Λ0(t

∗) is through

Figure 2: The prediction problem for a single rail section.

a data augmentation step within the Gibbs sampler. If Ni(t
∗) − Ni(t1) = n∗

is known then the distribution of Λ0(t
∗) can be updated as the sum of two

independent gamma random variables as

Λ0(t
∗) = [Λ0(t

∗) − Λ0(t1)] + Λ0(t1), (34)

where (Λ0(t1)|β, Di) is given by (24) and

(Λ0(t
∗) − Λ0(t1)|β, Di, n

∗) � G(c{Λ∗
0(t

∗) − Λ∗
0(t1)} + n∗, c + eβT Zi). (35)

Similarly, the updating for the other increments of the gamma process can
be obtained as

(Λ0(t2) − Λ0(t
∗)|β, Di) � G(c{Λ∗

0(t2) − Λ∗
0(t

∗)} + (n1 − n∗), c + eβT Zi), (36)

and Λ0(t3) − Λ0(t2) is still given by (26). The above results follow from the
independent increments property of the gamma process.

The implementation of the Gibbs sampler requires specification of (β|
Λ0(t), Di, n∗) which is a distribution similar to (32) in the specific example
and the adaptive rejection sampling algorithm can be used to draw samples
from this distribution. The final component of the Gibbs sampler is the full
conditional for (Ni(t

∗) − Ni(t1)|Λ0(t), β, Di). By using independent incre-
ments property of the NHPP and adopting a well known result in NHPP’s
given by Ross (1989, p. 242), it can be shown that

(Ni(t
∗) − Ni(t1) = n∗|Λ0(t), β, Di) ∼ Bin

[
n1,

Λ0(t
∗) − Λ0(t1)

Λ0(t2) − Λ0(t1)

]
, (37)

which is a Binomial distribution where the terms involving β are implicit in
the generated values of Λ0(•).
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4.2.3 Analysis for Two Rail Sections Not Requiring Data Aug-
mentation

Suppose that data from multiple, say m = 2, rail sections are observed.
Let {N1(t)} and {N2(t)} denote the corresponding NHPP’s with the same
baseline cumulative intensity function, Λ0(t). As in the previous section,
given the Λi(t)’s, i = 1, 2, N1(t) and N2(t) are assumed to be independent.
For illustrative purposes, consider the case where a single interval is observed
for each rail section i with ni failures in [ti,1, ti,2), for i = 1, 2. Then the
likelihood function of Λ0(t) and β given D = {n1,1, [t1,1, t1,2), n2,1, [t2,1, t2,2),
Z1, Z2} is obtained as

L(Λ0(t), β; D) =

2∏
i=1

[
(Λ0(ti,2) − Λ0(ti,1)) eβT Zi

]ni,1

ni,1!

exp
{
− (Λ0(ti,2) − Λ0(ti,1)) eβT Zi

}
. (38)

The likelihood function for the case of multiple traffic usage intervals for each
process can be easily obtained by using the independent increments property
of each NHPP.

The posterior inference in the above case follows along the lines of section
4.2.1 if the observed intervals for the two rail sections are not overlapping as
shown in Figure 3. In this particular case, using the independent increments

Figure 3: The case of non-overlapping intervals for two rail sections.

property of the gamma process prior, the full conditional posterior of Λ0(t)
given β is obtained as

π(Λ0(t)|β, D) ∝ (Λ0(t1,2) − Λ0(t1,1))
c(Λ∗

0(t1,2)−Λ∗
0(t1,1))+n1,1−1 (39)

× exp
{
− (Λ0(t1,2) − Λ0(t1,1)) (c + eβT Z1)

}
× (Λ0(t2,2) − Λ0(t2,1))

c(Λ∗
0(t2,2)−Λ∗

0(t2,1))+n2,1−1

× exp
{
− (Λ0(t2,2) − Λ0(t2,1)) (c + eβT Z2)

}
17



implying that

(Λ0(t)|β, D) � G(cΛ∗
0(t), c), for t < t1,1

(Λ0(t1,2) − Λ0(t1,1)|β, D) � G(c{Λ∗
0(t1,2) − Λ∗

0(t1,1)} + n1,1, c + eβT Z1),

(Λ0(t2,1) − Λ0(t1,2)|β, D) � G(c{Λ∗
0(t2,1) − Λ∗

0(t1,2)}, c), (40)

(Λ0(t2,2) − Λ0(t2,1)|β, D) � G(c{Λ∗
0(t2,2) − Λ∗

0(t2,1)} + n2,1, c + eβT Z2),

(Λ0(t) − Λ0(t2,2)|β, D) � G(c{Λ∗
0(t) − Λ∗

0(t2,2)}, c), for t > t2,2.

Updating for other portions of Λ0(t) follows along the same lines as presented
in section 4.2.1. Similarly, sampling from the full conditional of β given Λ0(t)
and D is achieved via the use of adaptive rejection sampling.

If both rail sections are observed for the same traffic usage interval, as
in Figure 4, then updating is again straightforward. In this case, it can be
shown that the full conditional of Λ0(t) can be obtained as

(Λ0(t)|β, D) � G(cΛ∗
0(t), c), for t < t1

(Λ0(t2) − Λ0(t1)|β, D) � G(c{Λ∗
0(t2) − Λ∗

0(t1)} +
2∑

i=1

ni,1, c +
2∑

i=1

eβT Zi),

(Λ0(t) − Λ0(t2)|β, D) � G(c{Λ∗
0(t) − Λ∗

0(t2)}, c), for t > t2. (41)

Figure 4: The case of identical intervals for two rail sections.

4.2.4 Analysis for Two Rail Sections Requiring Data Augmenta-
tion

In the railroad track data, there are cases where two rail sections are observed
for different but overlapping traffic usage intervals, as shown in Figure 5. Up-
dating Λ0(t) given β then requires the use of a data augmentation step in
the Gibbs sampler as discussed in section 4.2.1. As the intervals overlap,
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Figure 5: The case of overlapping intervals for two rail sections.

N1(t12) − N1(t11) and N2(t22) − N2(t21) are no longer independent a priori.
Thus (Λ0(t12) − Λ0(t11)) and (Λ0(t22) − Λ0(t21)) cannot be updated sepa-
rately. However, if the counts over the non-overlapping intervals [t11, t21)
and [t21, t12) from N1(•) and [t21, t12) and [t12, t22) from N2(•) were available
then updating could be performed on each interval separately. This is possi-
ble due to the independent increments properties of the Poisson and gamma
processes. Assume that N1(t2,1) −N1(t1,1) = n∗

1 and N2(t2,2) −N2(t1,2) = n∗
2

as shown in figure 6. Then it follows from the above that

Figure 6: The failure counts required for data augmentation.

(Λ0(t21) − Λ0(t11) |β, n∗
1, D)

∼ G(c[Λ∗
0(t21) − Λ∗

0(t11)] + n∗
1, c + eβT Z1),

(42)

(Λ0(t12) − Λ0(t21)|β, n∗
1, n

∗
2, D)|β, n∗

1, n
∗
2, D)

∼ G(c[Λ∗
0(t12) − Λ∗

0(t21)] + (n1,1 − n∗
1) + (n2,1 − n∗

2), c +
2∑

i=1

eβT Zi ])

(43)
and

(Λ0(t22) − Λ0(t12) |β, n∗
2, D)

∼ G(c[Λ∗
0(t22) − Λ∗

0(t12)] + n∗
2, c + eβT Z2).

(44)

In implementing the Gibbs sampler, data augmentation is needed on the
number of failures of the railroad tracks in the non-overlapping periods.
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Again, using the properties of the Poisson process, it can be shown that

(N1(t2,1) − N1(t1,1) |n1,1,
Λ0(t2,1)−Λ0(t1,1)

Λ0(t1,2)−Λ0(t1,1)
)

∼ Bin(n1,1,
Λ0(t2,1)−Λ0(t1,1)

Λ0(t1,2)−Λ0(t1,1)
)

(45)

and
(N2(t2,2) − N2(t1,2) |n2,1,

Λ0(t2,2)−Λ0(t1,2)

Λ0(t2,2)−Λ0(t2,1)
)

∼ Bin(n2,1,
Λ0(t2,2)−Λ0(t1,2)

Λ0(t2,2)−Λ0(t2,1)
),

(46)

where (45) and (46) are independent binomial random variables.

4.2.5 A General Data Augmentation Algorithm

The data augmentation is not overly complex for the case of two rail sections
with only one overlapping interval. If the number of overlapping intervals
increases, deciding which intervals upon which to data augment is more com-
plicated and, therefore, requires a systematic approach. One alternative is
to break the possible traffic usages in to a partition defined by the endpoints
of all intervals, such as in Figure 7 for the case of three NHPP’s. For any

Figure 7: The case of three overlapping intervals.

observed interval that has now been broken up in to sub-intervals, data aug-
mentation is used on all but the one of these sub-intervals; the number of
failures in the remaining interval is known given the total number of failures
in the whole interval and the number of failures in the other sub-intervals.
The distribution of the augmented failure counts will be a multinomial distri-
bution. We now describe a general data augmentation algorithm that follows
this approach.

We are given data D = (Di; i = 1, . . . , m) from m rail sections where
Di = {Ni(t) = ni(t), j = 1, . . . , ri, Zi}. Our data consists of ri inspection runs
for the i-th rail section where the inspections are performed at ti,0, . . . , ti,ri
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MGTs and ni(ti,1) − ni(ti,0), . . . , ni(ti,ri
) − ni(ti,ri−1) failures are discovered.

In order to generalize the algorithm that we have presented in the previous
sections, we need to first determine the intervals that will be used for the
data augmentation steps within the Gibbs sampler.

Let t∗1, . . . , t
∗
q denote the ordered list of q unique values amongst the in-

terval endpoints ti,j for j = 1, . . . , ri and i = 1, . . . , m. The ordered values t∗k
for k = 1, . . . , q will be used for the data augmentation. Also, let N∗

i,k denote
the unknown number of failures in the interval [t∗k, t

∗
k+1) for rail section i and

B∗
k = {i : ∃j | t∗k ≤ ti,j < t∗k+1} for k = 1, . . . , q − 1, denote the set of all rail

indices i that have a failure count that spans the interval [t∗k, t
∗
k+1). Further-

more, let S∗
i,j = {k : ti,j ≤ t∗k < ti,j+1} be the set of all interval endpoints for

all rails that fall within the j-th observed interval for the i-th rail and define
m∗

i,j = |S∗
i,j| be the number of interval endpoints in this set. We will also

define the ordered list of members of S∗
i,j by {l1i,j, . . . , l

m∗
i,j

i,j }.
In the example given in Figures 5 and 6 of 4.2.2, we have r1 = r2 = 1,

with q = 4 interval endpoints as t∗1 = t11, t
∗
2 = t21, t

∗
3 = t12 and t∗4 = t22.

According to our notation we have the index sets B∗
1 = {1}, B∗

2 = {1, 2} and
B∗

3 = {2}. For rail section 1, the number of unknown failures in [t∗1, t
∗
2) is N∗

1,1

which is given by n∗
1 in Figure 6. Similarly, N∗

1,2, number of unknown failures
in [t∗2, t

∗
3) is given by (n11 − n∗

1) and N∗
1,3 = n∗

2 in the figure. For the second
rail section we have N∗

2,1 = n∗
1, N∗

2,2 = (n21 − n∗
2) and N∗

2,3 = n∗
2 in Figure 6.

Since each rail section is observed for a single interval in the example, the
set of endpoints are given by S∗

1,1 = {t∗1, t∗2} and S∗
2,1 = {t∗2, t∗3} with m∗

1,1 = 2
and m∗

2,1 = 2 implying that {l11,1 = t∗1, l
2
1,1 = t∗2} and {l12,1 = t∗2, l

2
2,1 = t∗3}.

Given the above setup, at each iteration of the Gibbs sampler, the full
posterior conditional distribution of Λ0(t) given β and D can be obtained
by data augmenting on N∗

i,k. Similar to the development in the previous
sections, given N∗

i,k, β and D, we can update Λ0(t
∗
k+1) − Λ0(t

∗
k) by using the

independent increments property of the gamma process. More specifically,
given N∗ = (N∗

i,k; i = 1, . . . , m, k = 1, . . . , q), we can easily show that

(Λ0(t
∗
k+1)−Λ0(t

∗
k) |N∗, β, D) � G(c[Λ∗

0(t
∗
k+1)−Λ∗

0(t
∗
k)]+

∑
iεB∗

k

N∗
i,k, c+

∑
iεB∗

k

eβT zi)

(47)
for k = 1, . . . , q. Note that for t < t∗1 we still have (Λ0(t)|β, D) � G(cΛ∗

0(t), c).
In order to obtain the distribution of N∗

i,k’s we define the vector N∗
i,j =

(N∗
i,k; kεS∗

i,j) containing N∗
i,k’s that lie in the interval [ti,j, ti,j+1). Given Δ =
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{Λ0(t
∗
k+1) − Λ0(t

∗
k); k = 1, . . . , q}, using the properties of NHPPs we can

obtain the full conditional of N∗
i,j’s as

(N∗
i,j|Δ, β, D) � Mult(ni(ti,j+1) − ni(ti,j), p

∗
i,1, . . . , p

∗
i,m∗

i,j
) (48)

which is a multinomial of order m∗
i,j − 1, where

p∗i,l =
Λ0(l

l+1
i,j ) − Λ0(l

l
i,j)

Λ0(l
m∗

i,j

i,j ) − Λ0(l1i,j)
. (49)

Note that N∗
i,j ’s are drawn as independent multinomials at each iteration of

the Gibbs sampler.

5 Block Replacement of Railroad Tracks with

Minimal Repair

Under the minimal repair assumption for each rail section, in the cost equa-
tion

C(tB, Ni(tB)) =
mcP + cFNi(tB)

tB
,

Ni(tB) is described by a PIM with cumulative intensity function Λi(tB). De-
termination of the optimal Bayesian block replacement interval requires the
evaluation of E[C(tB)] given by (4), which involves the conditional cumula-
tive intensity function Λi(tB|Θ). Under the parametric set-up of section 3,
the conditional cumulative intensity function for the i-th rail section is given
by Λi(tB|θ, β, Zi) = Λ0(tB; θ)eβT Zi. As discussed in Section 4, once the data
is observed and the Bayesian updating is completed using the Gibbs sampler,
we can obtain the optimal replacement interval using the posterior samples
from the joint distribution of (θ, β). If a posterior sample, denoted (θl, βl) for
l = 1, . . . , S, is available from π(θ, β|D), then E[C(tB)] can be approximated
as

E[C(tB)|Z1, . . . , Zn] ≈ 1

S

S∑
l=1

mcP + cF

∑m
i=1 Λ0(tB; θl) exp(βT

l Zi)

tB
(50)

and the optimal t∗B is obtained by minimizing (50) with respect to tB. If an
adaptive strategy is used and if each Ni(t) is observed at instants of traffic
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usage t = ti,1, . . . , ti,ri
, ti,ri

< tB, i = 1, . . . , m, during the replacement cycle
then the distribution π(θ, β|D) can be updated using the likelihood function
(16) and new replacement interval t∗B can be determined by minimizing (50).

The semi-parametric PIM and its Bayesian approach presented in Sec-
tion 4.2 can also be used in a similar manner for developing optimal block
replacement policies. Using the gamma process prior for the baseline cumu-
lative intensity function, Λ0(t), under the semi-parametric PIM E[C(tB)] can
be evaluated by using posterior samples from π(Λ0(t), β|D). The posterior
samples are obtained using the Gibbs sampler with a data augmentation step
as discussed in Section 4.2 and the expected cost is evaluated as

E[C(tB)] ≈ 1

S

S∑
l=1

mcP + cF

∑m
i=1 [Λ0(tB)]l exp(βT

l Zi)

tB
. (51)

The above can be minimized to obtain the optimal replacement interval t∗B.

5.1 Application to Failure Data on Rail Sections

We have data supplied by the Association of American railroads on 132 sec-
tions of rail with observations varying over the life of each section, ranging
from 3 MGT to 800 MGT. Grinding has been performed on the rail sections,
but at different rates, varying from none to 1 mm per year. This a main-
tenance operation which is used for preventing derailments caused by rail
fractures.

We first performed the parametric analysis of Section 4.1 with the power
law form where θ = (α, γ). The prior on α was the conditionally conjugate
gamma distribution, with a mean of 0.0005 and high variance, and the prior
on γ was a truncated normal distribution, with a mean of 1.5 and a high
variance. Then we considered the semiparametric model and applied the
general data augmentation algorithm of Section 4.2.5. In so doing, a priori,
we assumed that the baseline cumulative intensity function took the power
law form Λ∗

0(t) = αtγ, with α = 0.0005 and γ = 1.5 are specified as equal
to the prior means used in the parametric model. This corresponds to an
expected total of 11.3 failures over an 800 MGT lifetime with a moderately
increasing failure intensity. However, to represent our uncertainty about this
prior assumption, we set c = 25. In implementation of the algorithm of
Section 4.2.5, we found 254 different interval endpoints and created a large
data augmentation structure to analyze the data. For both models we ran

23



the Gibbs sampler, collecting 1000 samples after a warm-up of 200 samples.
For each model, we assumed a normal prior on β with a mean of 0 and a
standard deviation of 20, a diffuse prior.

In Figures 8 and 9, we present the posterior distribution of the cumulative
intensity function Λ0(t) for the semiparametric and parametric models. We
can see from the figures that the forms of the two functions are different.
While the overall expected number of failures over the lifetime of a rail are
similar, the speed of wear (rate of change of the slope) is different. The
restrictions of the parametric form do not seem to allow the specific wear
pattern shown in the data. This is also reflected in the optimal replacement
intervals found under the two approaches. This difference in the intensity
functions leads to a difference in the parameters reflecting the effect of the
covariate, namely the level of maintenance grinding performed. Under the
semiparametric model, the posterior distribution of the parameter β has a
mean of 3.00 with a standard deviation of 0.23, which corresponds to a 0.5
mm per year level of grinding providing a 78% reduction in failures compared
to no maintenance grinding. This can be contrasted to the parametric model
which, due to its restriction on the form of the intensity function, predicts
that the same 0.5 mm per year of grinding will provide a 58% reduction
in the number of failures. This result seems to imply that we can get a
better estimate of the effect of covariates under the semiparametric model.
However, before we can jump to this conclusion, we must ask whether the
semiparametric model actually fits the data better.

In order to infer which model describes the data better one can use Bayes
factors. However, computation of the Bayes factors is difficult since the
marginal likelihoods under the two competing models can not be directly ap-
proximated from the Gibbs sampler. An alternative is to use a model selec-
tion criterion such as the Deviance Information Criterion (DIC) of Spiegel-
halter et al. (2002). For a generic parameter vector Θ, DIC is defined as

DIC = D + pD,

where D= −2logL(Θ), is two times the negative loglikelihood, D = EΘ|data[D]

and pD = D−D(Θ̂), where Θ̂ is the posterior mean. The DIC has the general
“fit+complexity” form used by many model selection criteria. In the above
D represents the ”goodness of the fit” of the model where pD represents a
complexity penalty as reflected by the effective number of parameters of the
model. In the table below we present the (DIC) for the parametric and
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semiparametric models. Since the lower values of DIC is preferable, the
results show that there is strong evidence in favor of the semiparametric
model.

Table 1: DIC Comparison of the Models
Model D pD DIC

Parametric 1447.17 5.84 1453.01
Semiparametric 1327.21 37.59 1364.80

To demonstrate our optimal replacement decision method, we assume
that the cost of a planned replacement is 10 times the cost of a minimal
repair, thus cF = 1 and cP = 10. We assume that we have two rail sections
which must be replaced as a block. One of the sections is ground at 0.75 mm
per year, while the other is ground at 1 mm per year.

Figures 10 and 11 show the expected total cost of repairs curves for the
semiparametric and parametric failure models respectively. The optimal re-
placement interval under the semiparametric failure model (the minimum of
the curve in Figure 10) is found to be 400, whereas under the parametric
failure model it is found to be 600 MGT. This is a reflection of the difference
in the wear characteristics under the two failure models. As the rate of wear
appears to accelerate in the semiparametric model (Figure 8), so the rail
should be replaced earlier. Whereas under the parametric model, the rate
of wear increases slowly (Figure 9), implying that the replacement can be
delayed.

Overall, the semiparametric failure model is not restricted in its repre-
sentation of the failure process. While the prior assumption takes the power
law form, the posterior distribution of the baseline cumulative intensity func-
tion does not have to. Thus, the optimal replacement decision is driven by
the actual characteristics of the failure process, not the parametric assump-
tions. While the analysis is more complex with the semiparametric model,
our data augmentation algorithm simplifies this to iterative sampling from
known distributions, thus allowing a more represenative model to be used in
the optimal replacement decision.

6 Conclusions

In this paper, we presented a Bayesian decision theoretic approach to the
optimal replacement problem using semiparametric models. The type of
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Figure 8: The posterior distribution of the baseline cumulative intensity
function under the semiparametric model.

Figure 9: The posterior distribution of the baseline cumulative intensity
function under the parametric model.
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Figure 10: The expected total cost of repairs under the semiparametric
model.

Figure 11: The expected total cost of repairs under the parametric model.
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data that arise in analysis of these models required new MCMC methods. We
developed a data augmentation algorithm within the Gibbs sampler which
allowed us to do the posterior analysis and to obtain optimal replacement
intervals. Although our semiparametric Bayesian approach was motivated
by analysis of failure data on rail sections, our methods may have use in
other applications. For example, one potential area of application is software
reliability where the need for nonparametric Bayesian models was recently
considered by Wilson & Samaniego (2004).
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