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 Abstract

In this article we consider accelerated life test models where the effect of accelerated
environments on failure behavior is described by time transformation functions. We present
extensions of basic models by introducing hierarchical and dynamic strategies to allow for
changes in the time transformation function with the accelerated environment. We develop
Markov chain Monte Carlo methods to make Bayesian inferences from these models where no
analytical forms are available for the posterior and predictive distributions of interest. We
illustrate our approach with two examples and discuss what type of insights can be obtained
from Bayesian analysis.

Key Words: Posterior and predictive analysis, life testing, hierarchical Bayes, Markov chain
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1. Introduction and Overview
In dealing with high reliability components systems, it is not unusual to conduct testsÏ

in a more severe environment than the actual use environment. Such tests are called
accelerated life tests (ALT's) and are usually conducted with the purpose of inducing early 
failures to reduce time and cost of testing. The important statistical issue in ALT's is to make
inferences about the failure behavior of the items at the user environment based on failure data
obtained under the more severe environments. In recent years there has been an increasing
interest in developing Bayesian methods for making inferences from accelerated life tests; see
for example Mazzuchi and Soyer (1992), van Dorp et al. (1996), Mazzuchi, Soyer and
Vopatek (1997), and van Dorp and Mazzuchi (2004a, 2004b). As a result of using complicated
time transformation functions and/or ramping functions in step-stress ALT's, Bayesian
inferences from these models have become exteremely difficult. To deal with intractable
predictive and posterior distributions, the previous approaches used large sample
approximations or approximate methods of inference such as the . Only a few oflinear Bayes
the earlier Bayesian work in ALT's, such as Blackwell and Singpurwalla (1988) and Mazzuchi
and Soyer (1992), have considered models that allow time transformation functions that
change with stress environment.

In this paper we consider Bayesian models that allow dynamic time transformation
functions and propose different modeling strategies. We focus specifically on hierarchical
Bayes models,  similar to those described by Lindley and Smith (1972), and dynamic models,
as in Mazzuchi and Soyer (1992), and develop Bayesian computational methods for making
inferences using Markov chain Monte Carlo (MCMC) approaches. The attractive feature of
the MCMC methods is that they enable generation of samples from the posterior and
predictive distributions without having to obtain the exact distributional forms. Thus, unlike
the previous approaches, we can perform fully Bayesian analyses by computing all the
posterior and predictive distributions of interest.

In Section 2, we present a basic parametric accelerated life testing model assuming a
Weibull life distribution and several time-transformation functions. We discuss the difficulties
involved in computing the posterior and predictive distributions using conventional techniques
and present alternative inference based on MCMC methods. In Section 3, we consider
hierarchical and Markov models as novel extensions of the basic parametric model to allow
for dynamic time transformation functions and discuss inference and reliability predictions
using MCMC methods. In Section 4, we illustrate our approaches using two real life-testing
examples, discuss model comparison, and investigate the appropriateness of dynamic time
transformation functions.
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2. A Parametric ALT Model
An accelerated test environment is created typically by increasing the level of one or

more  stress variables (temperature, voltage, etc.) to values which are higher than those at
normal operating conditions. For simplicity, in our development we assume that the
environment is defined by a single stress variable. Extension to the multivariable case is
straightforward. To introduce some notation, let  denote the level of the stress variable atW3

the  accelerated test environment and assume that test will be conducted at  accelerated3>2 O

levels of the stress variable which are specified in advance. As noted before, our main
objective is to make predictive inferences about the failure behavior of items at the use stress
environment, , based on the the data from the  accelerated testing environments whereW O?

W  W 3 á O3 ?  for 1, 2, , . It is also possible to incorporate testing at the use environmentœ

with the proposed procedure, but in our development we assume that no testing is conducted
at .W?

We assume that under the  accelerated test environment, the failure behavior of the3>2

items can be described by a Weibull model with density

: B l œ B /( , ) (2.1)3 3 3 3
"  B- " "- " -3 3

"

with scale parameter, 0 and shape parameter, 0. We will denote the above model as- "3  

( , ) , . The failure rate of the model is given by\ l µ [/3,Ð Ñ3 3 3- " - "

7 ÐB ± œ B3 3 3 3 3
 , )    ,  (2.2)" - " - " 1

where the values 1 ( 1) imply an increasing (decreasing) failure rate distribution, and"  

when 1 the exponential model arises as the special constant failure rate case. The above" œ

model implies that the scale parameter, , depends on the stress environment, but the shape-3

parameter, , is not, which is a common assumption in the literature [see for example Nelson"

(1972) and Mazzuchi, Soyer and Vopatek (1997)]. It is common to assume a functional
relationship between the failure rate and applied stress level. Such a relationship is referred to
as a  function. The  and the  models are two of thetime transformation Arrhenius law power law
most commonly used time transformation functions [Mann, Shafer and Singpurwalla (1974)]. 

Assuming a power law model, the relationship between the scale parameter and the
applied stress level in the  accelerated test environment is given by3>2

- )3 3œ 1W
)2 , (2.3)
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where 0 and  are unknown coefficients. Alternatively, an Arrhenius law model) )1 2

assumes that
- ) )3 3  . (2.4)œ /B: Ö  ÎW ×1 2

In both cases, the aging effect is captured by the shape parameter , while the effect of the"

stress environment on the failure behavior is captured by functional parameters  and .) )1 2

2.1 Bayesian Inference for the ALT Model
Assume that  items are tested for  units of time at the  accelerated environment8 > 3>23 3

with level . Let  denote the time to failure of the  item tested under the W \ 4>2 3>23 34

environment with realization , 1, 2, , , where  denotes the number ofB 4 œ á < Ÿ 8 <34 3 3 3

failures observed during the observation period (0, ]. As noted by Mazzuchi, Soyer and>3

Vopatek (1997), using this notation, we can easily consider the complete sample (no
censoring) case, where testing continues until all items have failed, as well as the type I and
type II censoring cases. Specifically, the no censoring case is obtained with ; type I> œ _3

censoring case is obtained with ; and type II censoring case where testing continues>  _3

until the  failure is obtained with , where  is the  failure time at the <>2 > œ B B <>2 3>23 3 < 3 <( ) ( )3 3

accelerated environment. In what follows, we will assume that testing is conducted
simultaneously at all stress levels, but the case of sequential testing from one stress level to
another can also be accommodated.

Let  denote the test data from  accelerated stress environment, that is,H 3>23

 , , , , .H œ 8 < B á B3 3 3 3" 3<š ›3
Assuming conditional independence of the failure times { } given the stress levels { }, andB W34 3

the parameters ,  and , the likelihood function of  and  from the  accelerated stress" ) ) - "1 2 3 3>2

environment is ontained as

_ - " "- - "3 3 3 3 34 3
<

<

4œ"
3Ð H Ñ œ Ð Ñ B /B:Ö  X Ð Ñ× 3 œ " O, ;   ( )   ,  , ..., ,  (2.5)3

3š ›# " 

where

X Ð Ñ œ

B  Ð8 < Ñ >

B  8  < B

B

3

<

4œ"
34 3 3 3

<

4œ"
34 3 3 3Ð< Ñ

8

4œ"
3

"

ÚÝÝÝÝÝÝÝÛÝÝÝÝÝÝÝÜ

!
!
!

3

3

3

3

 ( )   Type I censoring 

 ( ) ( ) ( )  Type II censoring 

 (

" "

" "

 

 

4) No censoring, "
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and  is defined either by (2.3) or (2.4). We note that in the case of no censoring  in-3 3 3< œ 8

(2.5).  Thus, the likelihood function of ,  and  given all the data " ) )1 2 H œ ÖH ß H ßá ß H ×" # O

is

_ ) ) " _ - "Ð ß ß HÑ œ Ð H Ñ Þ1 2 ; , ; . (2 6)$
3œ"

O

3 3 3

The Bayesian approach requires specification of a prior distribution for ,  and . The joint" ) )1 2

posterior distribution can then be obtained as

:Ð ß ß lHÑ º Ð ß ß HÑ :Ð ß ß Ñ) ) " _ ) ) " ) ) "1 2 1 2 1 2; , (2.7)

where  is the joint prior distribution. As noted by Mazzuchi, Soyer and Vopatek:Ð ß ß Ñ) ) "1 2

(1997), the posterior distribution in (2.7) can not be obtained in any tractable form for any
choice of the prior  in (2.7). Thus, in order to perform a fully Bayesian analysis,:Ð ß ß Ñ) ) "1 2

we will use the Gibbs sampler, a MCMC method which is easy to implement in this case. The
Gibbs sampler enables us to generate samples from the posterior distribution :Ð ß ß lHÑ) ) "1 2

which can then be used to make assessments about the failure behavior at the use stress
environment in our problem. This is achieved without actually computing the distributional
form by obtaining successive drawings from the full conditional distributions ,:Ð l ß ß HÑ) ) "1 2

:Ð l ß ßHÑ :Ð l ß HÑ) ) " " ) )# " , and , . The process starts with a vector of arbitrary starting1 2

values of the parameters, , and continues by iteratively generating samplesÐ ß ß Ñ) ) "
Ð!Ñ Ð!Ñ Ð!Ñ
1 2

from the full conditional distributions [see Gelfand and Smith (1990) for more details].
We note that the implementation of the Gibbs sampler requires the availability of the

full conditional distributions. If the full conditional distributions are not of any known form or
if they do not exist in closed form, some type of random number generation method must be
employed to facilitate the implementation of the Gibbs sampler. If the full conditional
distributions are logconcave, one can use the efficient adaptive rejection sampling (ARS)
method of Gilks and Wild (1992). Unlike standard rejection sampling methods, ARS avoids
any maximization steps and therefore can be easily  adopted at each iteration of the Gibbs
sampler.

In our development for the power law model we will assume a gamma prior for
) ) " ) "1 2 2ß K+7Ò+ß ,Óß :Ð Ñ :Ð Ñdenoted as  and we will denote the priors for  and  as  and ,
respectively. Furthermore, we assume that apriori  and  are independent. Under the) ) "1 2ß ß
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power law model, with the given choice of priors, the full conditional distributions are given
by

:Ð l ß ß HÑ º /B:  W X Ð Ñ /B:Ö  , ×) ) " ) ) " ) )1 2 1 11 1š ’ “›"!
3œ"

O

3<

3œ"

O

3 3
+")2 , (2.8)

:Ð l ß ßHÑ º W /B:  W X Ð Ñ :Ð Ñß) ) " ) " )# "

3œ" 3œ"

O O

3 3
<

3š › ’ “$ "  (2.9)3) )2 2
1 2

and

:Ð l ß HÑ º B /B:  W X Ð Ñ :Ð Ñ" ) ) " ) " "1 2 1
 ,    ( )  . (2.10)

!
3œ"

O

3
3<

3œ" 4œ" 3œ"

O O<

34 3 3š Š ‹› ’ “$ $ "" )2

Note that (2.8) implies whereas for anyÐ l ß ß HÑ µ K+7 Ð+  < ß ,  W X Ð Ñ ß) ) " "1 2 ’ “! !
3œ" 3œ"

O O

3 3 3
)2

reasonable prior form for and , the posterior conditionals in 2.9  and (2.10) cannot:Ð Ñ :Ð Ñ Ð Ñ) "2

be obtained as a familiar form. However, they are both logconcave if the priors and :Ð Ñ :Ð Ñ) "2

are logconcave since both conditional loglikelihoods are logconcave. Thus the ARS method
can be implemented to sample from the posterior densities in 2.9  and (2.10) at each iterationÐ Ñ

of the Gibbs sampler.
Once a sample  is obtained from the posterior distribution Ö ß ß × :Ð ß) ) " )

Ð4Ñ Ð4Ñ Ð4Ñ N
4œ"1 2 1

) " ) )2 1 2ß l HÑ ß, all the marginal posterior distributions and the posterior moments for the  and
" can be computed from the sample. Given the data  from the  accelerated environments,H O

inferences at the use stress environment  can be easily made by using the posterior sample.W?

For example, the predictive reliability at the use stress environment is given by

VÐB lHÑ œ V B l ß ß Ñ:Ð ß ß lHÑ . . .? ?( (   , (2.11)) ) " ) ) " ) ) "1 2 1 2 1 2

where
V B l ß ß Ñ œ /( (2.12)?

 B) ) "1 2
-? ?

"

and  is given by (2.3) or (2.4). The integral in (2.11) can be computed by using a Monte-?

Carlo average using the posterior sample as

VÐB lHÑ ¶ V B l ß ß Ñ
N

? ?

4œ"

N
Ð4Ñ Ð4Ñ Ð4Ñ 1 

  (  , (2.13)" ) ) "1 2

which is the expected reliability at mission time . We can also make probability statementsB?

about the reliability at mission time  by using a histogram estimate based on (B V B l ß? ?
Ð4Ñ
)1
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) "
Ð4Ñ Ð4Ñ
2 ß Ñ 4 œ "ß á ß N . Similarly, expected time to failure at  the use stress environment can

be obtained. The above setup can be easily modified to incorporate different priors. For
example, for the power law model we may assume a lognormal prior for  and a normal prior)1

for .)#

3. Extensions of the Basic Parametric Model
Earlier work by Blackwell and Singpurwalla (1988) and Mazzuchi and Soyer (1992)

considered time transformation functions that change with the stress environment. These
authors claimed that such a change is likely to happen due to the changes in the basic failure
mechanism with changes in the stress level, and introduced non-Gaussian Kalman filter type
models for ALT, and used approximate Bayesian methods for inference.

In what follows we present two models that describe changes in the time
transformation function. The first model is a hierarchical Bayes model in the sense of Lindley
and Smith (1972) and assumes exchangeability of the parameters of the time transformation
function. The second model is a first-order Markov model similar to what is considered by
Mazzuchi and Soyer (1992). We note that in both cases the likelihood functions (2.5) and (2.6)
will still be valid with changes reflected in . We focus on the power law model, but-3

extension to the Arrhenius law is straightforward.

3.1 A Hierachical (Exchangeable) Bayesian Model
To allow for changes in the time transformation function, we rewrite the power law

model (2.3) as
- )3 3 3œ 1 W)2 , (3.1)

where the parameter  depends on the stress as reflected by the index . Assume 's  are) )1 13 33

conditionally independent with , where  and  are random quantities with)"3 µ K+7Ò+ß ,Ó + ,

hyperprior . This implies that , is an exchangeable sequence. If we:Ð+ß ,Ñ Ö ×ß 3 œ "ßáO)13

further assume apriori independence of  and , and of 's, we can recast the ALT model" ) )# 31

into a hierarchical Bayesian model as follows:

( , ) , 

.

(3.2)

\ l µ [/3,Ð Ñ

œ W
Ð ß Ñ µ :Ð Ñ :Ð Ñ
Ð l+ß ,Ñ µ K+7Ò+ß ,Ó

Ð+ß ,Ñ µ :Ð+ß ,Ñ

3 3 3

3 "3 3

"3

- " - "

- )
) " ) "
)

)2

2 2
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For any choice of priors in (3.2), the posterior inference cannot be performed analytically and
thus we use a Gibbs sampler. The full conditionals for { } are given by)"3

Ð l+ß , ß ß ß HÑ µ K+7 +  < ß ,  W X Ð Ñ) ) ) " "1 23 3 3"
Ð3Ñ

3, , (3.3)’ “)2

where . Assuming , and , the full) )"
Ð3Ñ

4œ Ö à 4 Á 3× :Ð+ß ,Ñ œ :Ð+Ñ :Ð,Ñ , µ K+7Ò-ß .Ó1

conditional for   obtains as,

Ð, l ß ß +ßHÑ µ K+7 -  +Oß . )" ) " )2 1, , (3.4)’ “"
3œ"

O

3

where . Similarly, the full conditional of  is)" œ Ð à 3 œ "ßáOÑ +)13

:Ð+ l ß ß ,ßHÑ º Ð Ñ :Ð+Ñ
,

Ð+Ñ
)" ) " )

>
2 1,  (3.5)’ “$+

3œ"

O

3
+"

which is log-concave as long as   is a log-concave density.:Ð+Ñ

For , we have)2

:Ð l ß +ß ,ßHÑ º W /B:  W X Ð Ñ :Ð Ñ) " ) " )2 1 2)",   ,š › ’ “$ "
3œ" 3œ"

O O

3 3
<

3 3
3) )2 2

which is log-concave for a log-concave prior. Finally, for ,  we get"

:Ð l ß +ß ,ßHÑ º B /B:  W X Ð Ñ :Ð Ñß" ) " ) " ")" 2 1
 , ( )

!
3œ"

O

3
3<

3œ" 4œ" 3œ"

O O<

34 3 3 3š Š ‹› ’ “$ $ "" )2

which is also log-concave for a log-concave prior . Thus, we can use the ARS method to:Ð Ñ"

sample from the conditionals for    and .) "2

 Having obtained the posterior samples, we focus on the predictive reliability at the use-
stress

VÐB lHÑ œ V B l ß ß Ñ :Ð ß ß lHÑ . . .? ? ? ? ?( (  . (3.6)) ) " ) ) " ) ) "1 2 1 2 1 2

Given the posterior samples we can approximate (3.6) as

VÐB lHÑ ¶ V B l ß ß Ñ
N

? ?

4œ"

N
Ð4Ñ Ð4Ñ
?

Ð4Ñ 1 
  (  , (3.7)" ) ) "1 2

where  is generated from the gamma density ,  conditional on the posterior) )
Ð4Ñ
? ?

Ð4Ñ Ð4Ñ
1 1:Ð l+ ß , Ñ

realizations .Ð+ ß , ÑÐ4Ñ Ð4Ñ
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3.2 A Markov (Dynamic) Model
An alternate modeling strategy for capturing changes in the time transformation

function is to consider a first-order Markov structure on  in (3.1). Since  and ! )3 3 3 3"œ 68 W W1

are ordered neighboring stress environments , for , we assume thatW  W 3 œ "ßá ßO3 3"

Ð ß ß Ñ µ RÐ ß Ñ! ! 9 7 9! 73 3" 3"
"| , (3.8)

where  and  are unknown quantities. Initially, we assume that . This is a9 7 ! . 7! !
"µ RÐ ß Ñ

generalization of the model in Mazzuchi and Soyer (1992). Note that (3.8) can be represented
as a first-order autoregressive AR(1) dynamic model as

! 9! % % 73 3" 3 3
"œ  ß µ RÐ!ß Ñ. (3.9)

The use-stress can be considered as the  level in the above setup, that is,ÐO  "Ñ=>

! ! 7? O"œ . In cases where the stresses are not equally spaced the precision  can be
discounted by a function S S  as S S . A suitable choice for  is0Ð ß Ñ œ 0Ð ß Ñ 03 3" 3 3 3"7 7

0Ð ß Ñ œ Î W  WS S S S  where .3 3" 3 3" 3 3"

Specification of the Markov model can be completed by assuming independent priors
as  and  in the above. Although  would imply stationarity of7 9 9µ K+7Ð+ß ,Ñ :Ð Ñ  "   "

(3.9), it is not strictly necessary in our analysis, so we choose a normal prior for  is9

convenience; . Finally, we assume independent priors on  and . Thus, for9 . 7 " )µ RÐ ß Ñ9 9
"

#

!  3  O, the full conditional of  is given by!3

:Ð l ß ß ß ß HÑ! ! ) 9 " 73
Ð3Ñ

2 ,

º /B: <  / W X Ð Ñ  Ð  Ñ  Ð  Ñ
#

’ Š ‹“! " ! 9! ! 9!
7

3 3 3 3 3" 3" 33
# #! )3 2 , (3.10)

which is log-concave. For , that is, for the smallest stress environment the full3 œ O

conditional is obtained as
  ,:Ð l ß ß ß ß HÑ! ! ) 9 " 7O

ÐOÑ
2

º /B: <  / W X Ð Ñ  Ð  Ñ
#

’ “! " ! 9!
7

O O O O O"O
#! )O 2 , (3.11)

which is also a log-concave density. For  it can be shown that!!

Ð l ß ß ß ß HÑ µ R ß Ð"  Ñ


" 
! ) 9 " 7 7 9

. 9!

9
0 2! , , (3.12)’ “ˆ ‰! "

#
# "

where , and for precision  ! œ Ö à 3 œ "ßá ßO×! 73
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Ð l ß ß HÑ µ K+7Ð+ ß , Ñ7 ! ) 9 "0 2, , , ,! ‡ ‡

with parameters and  The+ œ +  ÐO  "ÑÎ# , œ ,  Ð  Ñ  Ð  Ñ Þ‡ ‡ # #"
# ! ! 3 3"

3œ"

O ‘!! . ! 9!

full conditional of  is9

:Ð l ß ß HÑ º /B:  Ð  Ñ :Ð Ñ
#

9 ! ) 7 " ! 9! 9
7

0 2, , , .! ’ “"
3œ"

O

3 3"
#

If the prior on  is normal, that is, , then the full conditional of  will be a9 9 . 7 9µ RÐ ß Ñ9 9
"

normal given by

Ð l ß ß HÑ µ R ß 

 Ð Ñ



9 ! ) 7 " 7 7 !

7 . 7 ! !

7 7 !

0 2, , , . (3.13)! ’ “
!
! ˆ ‰"9 9

9

9
3œ"

O

3 3"

3œ"

O
#
3"

3œ"

O
#
3"

"

For any other log-concave prior the full conditional of  is not available in closed form but is9

log-concave.
The full conditionals of   and  are log-concave and are given by) "#

:Ð l ß ß HÑ º W /B:  / W X Ð Ñ :Ð Ñ) ! 9 7 " " )2 0 2, , ,   ! š › ’ “$ "
3œ" 3œ"

O O

3 3
<

3
3 3) ! )2 2

and

:Ð l ß ß HÑ º B /B:  / W X Ð Ñ :Ð Ñ" ! ) 7 9 " " "0 2
 , , , ( )   .!

!
3œ"

O

3
3

3
<

3œ" 4œ" 3œ"

O O<

34 3 3š Š ‹› ’ “$ $ "" ! )2

Once the posterior analysis is completed we can obtain the predictive reliability at the use-
stress using (3.7) where  and . Given the posterior samples we can) ! ! !1? ? ? O"œ /B:Ð Ñ œ

approximate the predictive reliability via (3.7) with  and  is generated from the) ! !
Ð4Ñ Ð4Ñ
? ?

Ð4Ñ
1 œ

normal density ,  for each posterior realization , .:Ð l ß Ñ Ð ß Ñ! ! 9 7 ! 9 7?
Ð4Ñ Ð4Ñ
O O

Ð4Ñ Ð4Ñ Ð4Ñ Ð4Ñ

4. Analysis of Accelerated Life Testing Data
In this section we illustrate the Bayesian analysis of the presented models using two

accelerated life-testing data sets, investigate the appropriateness of dynamic time
transformation functions and discuss model comparison. In so doing, we first discuss the
deviance information criterion for comparing our models.



11

4.1 Model Comparison
In comparing the peformance of basic parametric model with hierarchical and Markov

extensions presented above, computation of the Bayes factors [see Kass and Raftery (1995)
for a comprehensive review] marginal likelihoods for the competing models,is difficult. The 
which are needed to compute the Bayes factor, cannot be directly approximated from the
Gibbs sampler,

An alternative approach is to use a model selection criterion such as the Deviance
Information Criterion ( ) of Spiegelhalter et. al. (2002). For a generic parameter vector ,HMG @

HMG  is defined as

HMG œ  :
D , (4.1)D

where D , is two times the negative loglikelihood D E D  andœ  #691 Ð Ñ ß œ Ò Ó


_ @ @l.+>+

: œ  Ð Ñ HMG 
 s sD D D , where  is the posterior mean. The  has the general "fit complexity"@ @

form used by many model selection criteria. In (4.1) D represents the "goodness of the fit of

the model where  represents a complexity penalty as reflected by the effective number of:D

parameters of the model.

4.2 Example: Breakdowns of an Insulating  Fluid
In what follows, we will illustrate the use of our methodology to the accelerated life

test data published in Nelson (1972). The data is given in Table 1 and represents the times to
breakdown of an insulating fluid subjected to various voltage levels. The accelerated stress
levels are given by 26, 28, 30, 32, 34, 36, and 38 Kv and we are interested in making inference
for the breakdown times for the insulating fluid at the use stress of 22 Kv. Following the
analysis of Nelson (1972) and Mazzuchi, Soyer and Vopatek (1997), we will assume a power
law model for the time transformation function for the data.

We will consider three models to analyze these data, the basic parametric model of
Section 2, the hierachical Bayesian model of Section 3.1, and the Markov model of Section
3.2. Comparison among them will be made based on the .  Due to our unfamiliarity withHMG

the problem, we will use diffuse priors in our analysis. In all models we choose a uniform
prior in the range 0, 10  for the shape parameter  and a uniform prior in the range 0, 100Ð Ñ Ð Ñ"

for . In the parametric model of Section 2, the prior for  is 0.0 0.0 . In the) )2 1 K+7Ò "ß "Ó

hierarchical Bayes model we use independent gamma priors for and  in (3.2) with the+ ,

parameters 0.01 and 0.01. In the Markov model the prior for  is uniform over  and9 Ð  "ß "Ñ

for  is 0.01,0.01 .7 K+7Ò Ó

A comparison of the four models using  is given in Table 2. HMG We note that the
HMG 's for the three models are all very similar with the parametric model having the lowest
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HMG . It is interesting to note that the hierarchical and Markov models estimate :D, the
effective number of parameters, as 4 or 5. Thus, the data do not seem to support the hypothesis
that the time transformation function varies with the stress level.

TABLE 1
Times to Breakdown of an Insulating Fluid (in Minutes)

Under Various Values of the Stress

38Kv 36Kv 34Kv 32Kv 30Kv 28Kv 26Kv
.09 .35 .19 .27 7.74 68.85 5.79
.39 .59 .78 .40 17.05 108.29 1579.52
.47 .96 .96 .69 20.46 110.59 2323.70
.73 .99 1.31 .79 21.02 426.07 -
.74 1.69 2.78 2.75 22.66 1067.6 -

1.13 1.97 3.16 3.91 43.40 - -
1.40 2.07 4.15 9.88 47.30 - -
2.38 2.59 4.67 13.95 139.07 - -

- 2.71 4.85 15.93 141.12 - -
- 2.90 6.50 27.80 175.88 - -
- 3.67 7.35 53.24 194.90 - -
- 3.99 8.01 82.85 - - -
- 5.35 8.27 89.29 - - -
- 13.77 12.06 100.58 - - -
- 25.50 31.75 215.10 - - -
- - 32.52 - - - -
- - 33.91 - - - -
- - 36.71 - - - -
- - 72.89 - - - -

This conclusion is also supported by Figure 1 where we present the posterior distribution )"
under the parametric model (denoted by P) and the posterior distributions of  ,  under) )" "1 7á

the hierachical model. We note that the posterior distributions of  's do not change much)"4

from one stress level to the other.

TABLE 2
Model Comparison Using DIC

Model
Parametric Model 607.85 3.33
Hierarchical Bayes Model 609.77 4.57
Markov Model 609.66 4.66

HMG :D



13

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

P 1 2 3 4 5 6 7

Posterior Distributions of theta1 and theta1[1:7]
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In Figure 2, we present the marginal posterior distributions of  ,  and  under the" ) )" #

basic model. The posterior distribution of  is concentrated around 0.8 implying a decreasing"

failure rate at any stress level. The distribution of parameter  is concentrated around high)#

positive values implying that failure rate increases with stress level as expected.
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 The predictive reliability function for the use stress 22Kv is given in Figure 3W œ?

with 0.05 and 0.95 reliability bounds. We not that the items are quite reliable at the use stress
level as implied by high reliability values for 10,000 which is expected in ALTs.\ ?
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Figure 3. Predictive Reliability Function at 22 Kv.W œ?

4.3 Example: Rolling Bearing Data
The second data set we consider is taken from Nelson (1990, pp. 156) and it represents

complete life data from a load accelerated life test of rolling bearings. Four test loads were
used and ten bearings were tested at each of the test loads. The author suggested a Weibull
model with a power law relationship. Life data is given in 10  revolutions. The data was'

analyzed using the three models and a power law time transformation function as in Section
4.2.

A comparison of the three models using  is given in Table 4. NHMG ote that the 'sHMG

under hierarchical and Markov models are considerably lower than that of the basic
parametric model. The estimated effective number of parameters,  is given as 6 under both:D,
of these models implying that there are four different 's. Thus, there is evidence that the )"4 the
time transformation function changes with stress level in this data. We can also see this by
looking at the posterior distibutions of  )"4's in the hierarchical model. These are shown and
Figure 4 and compared to the distribution of   in the parametric model (denoted by P in)"

Figure 4). The differences in the distributions are easily notable in this case. Similar results are
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obtained for the Markov model. Posterior distributions of the hyperparameters  and  are+ ,

presented in Figure 5. We note that the posterior distributions for both of these parameters are
very peaked even though the priors were flat.

TABLE 3
Times to Failure of  Roll Bearings (in 10  Revolutions)'

Under Various Loads
0.87 Ld. 0.99 Ld 1.09 Ld. 1.18 Ld..

1.67 .80 .012 .073
2.20 1.00 .18 .098
2.51 1.37 .20 .117
3.00 2.25 .24 .135
3.90 2.95 .26 .175
4.70 3.70 .32 .262
7.53 6.07 .32 .27

14.70 6.65 .42 .35
22.76 7.05 .44 .386
37.40 7.37 .88 .456

      

TABLE 4
Model Comparison Using DIC

Model
Parametric Model
Hierarchical Bayes Model
Markov Model

HMG :D
114.82 3.02
109.08 5.59
109.43 6.03

The posterior distributions of   and  for the hierarchical Bayes model are shown in" )#

Figure 6. The posterior distribution of  is concentrated around values greater than 1 implying"

increasing failure rate for the items at a given load. The posterior distribution of   is peaked)#

around 20 showing a sharp increase in failure rate with increasing load.
In view of the above, the claim that the time transformation function may change with

the stress environment is supported by some accelerated life test data. Based on our analysis it
seems that both the hierarchical and dynamic models are able to capture such changes.
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5. Concluding Remarks
In this paper we presented Bayesian analyses of  two classes of parametric models for

accelerated life tests where the time transformation function changes with the stress
environment. Our results show that such models may be more appropriate than the static
models in some accelerated life tests. In our setup, we considered a power law  model for the
time transformation function and assumed a Weibull failure model. The approach can be
easily extended to other time transformation functions and failure models. Alternatively, a
semiparametric generalization of the models can be considered by relaxing the parametric
assumptions on the distributions of the parameters of the time transformation function.
Although semiparametric models have been used in Bayesian survival analysis, see for
example, Kuo and Mallick (1997), consideration of  these models are new in ALT literature.
The semiparametric ALT models uses mixtures of Dirichlet processes and inference for these
involves use of MCMC methods. Such work is presently under consideration.
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