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Chapter 1

Bayesian Modelling of Time Series of

Counts

Refik Soyer, Tevfik Aktekin and Bumsoo Kim

Abstract

In this chapter we consider time-series of correlated counts which often arise in finance,

operations and marketing applications. We present a class of parameter-driven time-series

models for counts using a Bayesian state-space approach. In so doing, we consider Poisson

counts and present multivariate extensions to negative-binomial time-series. We develop

Bayesian inference of these models using Markov chain Monte Carlo methods and present

applications such as modelling of mortgage defaults, call center arrivals, and shopping trips.
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1.1 Introduction

In time series analysis, observations under study can often be the number of occurrences of

an event of interest in a given time interval, also referred to as count data. Such type of data

can arise in numerous fields such as engineering, business, economics or epidemiology. For

instance, observations under study can be the number of arrivals to a bank in a given hour,

number of shopping trips of households in a week, number of mortgages defaulted from a

particular pool in a given month, number of accidents in a given time interval or the number

of deaths from a specific disease in a given year.

Studies in time series with focus on count data is scarce compared to those with continuous

data. Many of such studies in the time series analysis literature consider a Poisson model

for count data. A regression model where the observations are time series of counts has been

introduced by Zeger (1988) where a quasi-likelihood method is used in order to estimate

model parameters. Harvey and Fernandes (1989) assume a Gamma process on the stochastic

evolution of the latent Poisson mean and propose extensions to other count data models

such as the binomial, the multinomial and negative binomial distributions. Davis et al.

(2000) develop a method in order to diagnose the latent factor embedded in the mean of a

Poisson regression model and present asymptotic properties of model estimators. Davis et al.

(2003) discuss the maximum likelihood estimation of a general class of observation-driven

models of count data, also referred to as generalized autoregressive moving average models for

counts and develop relevant theoretical properties. Freeland and McCabe (2004) introduce

new methods of assessing the fit of the Poisson autoregressive model via the information

matrix equality, provide properties of the maximum likelihood estimators and discuss further

implications in residual analysis.

The Bayesian point of view has also been considered in the time series analysis of count

data. Chib et al. (1998) introduce Markov chain Monte Carlo (MCMC) methods to estimate

Poisson panel data models with multiple random effects and discuss implications of model fit

for different Bayes factor estimators. Chib and Winkelmann (2001) propose a model which

can take into account correlated count data via latent effects and show how the estimation

method is practical even with high dimensional count data. Bayesian State space model-
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ing of Poisson count data is considered by Fruehwirth-Schnatter and Wagner (2006) where

MCMC via data augmentation techniques to estimate model parameters is used. Further-

more, Durbin and Koopman (2000) discuss the state space analysis of non-Gaussian time

series models from both classical and Bayesian perspectives, apply an importance sampling

technique for estimation and illustrate an example with count data. More recently, San-

tos et al. (2013) consider a non-Gaussian family of state space models with exact marginal

likelihood with the Poisson is one of the special cases.

In this paper, we introduce a general class of Poisson time series models from a Bayesian

state space modeling perspective where we propose different strategies for the stochastic

Poisson rate which evolves over time. Such models are also referred to as parameter-driven

time series models as described by Davis et al. (2003). As pointed out by Durbin and Koop-

man (2000), the attractive feature of the state space approach is that it allows the modeling

of numerous sub-components to form an overall system of time series data. We also present

an extension of our framework to multivariate counts where dependence between the indi-

vidual counts is motivated by a common environment. This approach provides multivariate

negative-binomial models for the time-series. In the proposed framework we develop Bayesian

inference by using MCMC methods. In doing so, for each proposed model we discuss ap-

propriate MCMC estimation techniques such as the Gibbs sampler, the Metropolis-Hastings

algorithm and the forward filtering backward sampling algorithm. For a good introduction

to most common MCMC practice see Smith and Gelman (1992) and Chib and Greenberg

(1995), and for forward filtering backward sampling see Fruhwirth-Schnatter (1994).

A quick summary of our paper is as follows: First, we introduce a Bayesian state space

model for count time series data, show how the parameters can sequentially be updated,

discuss smoothing, filtering and forecasting and introduce further properties of the proposed

model. Next, we discuss how covariate information can be incorporated in the Poisson rate

and introduce MCMC methods to estimate model parameters. This is followed by a section

dedicated to multivariate extensions of the basic model. The proposed approach and its

extensions are illustrated by three examples from finance, operations and marketing. The

last section concludes with some remarks.
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1.2 A Discrete Time Poisson Model

In this section, we introduce a Poisson time series model whose stochastic rate evolves over

time according to a discrete time Markov process. We refer to this model as the basis model

whose extensions will be discussed in the sequel. We note that the our model is based on

the framework proposed by Smith and Miller (1986) where the measurement model was

exponential. Let Nt be the number of occurrences of an event in a given time interval t and

let θt be the corresponding latent Poisson rate during the same time period. Given the rate

θt, we assume that the number of occurrences of an event during period t is described by a

discrete time non-homogeneous Poisson process with probability distribution of the following

form

p(Nt|θt) =
θNt
t e−θt

Nt!
. (1.2.1)

It is assumed that Nts are conditionally independent given θts. Namely, the independent

increments property holds only conditional on θt, but unconditionally, Nts are correlated.

(1.2.1) is the measurement equation of a discrete time Poisson state space model. For the

time evolution of the latent rate process, θts, we assume the following Markovian structure

θt =
θt−1

γ
ϵt, (1.2.2)

where (ϵt|Dt−1) ∼ Beta[γαt−1, (1 − γ)αt−1] with αt−1 > 0, 0 < γ < 1, and Dt−1 =

{N1, · · · , Nt−1}. In (1.2.2), γ acts like a discounting term and its logarithm can be con-

sidered to be the first order autoregressive component for the latent rates, θts. It follows

from (1.2.2) that there is an implied stochastic ordering between two consecutive rates,

θt <
θt−1

γ
. It is also straight forward to show that the conditional distributions of consecutive

rates are all scaled Beta densities, (θt|θt−1, D
t−1) ∼ Beta[γαt−1, (1 − γ)αt−1; (0,

θt−1

γ
)], and

are given by

p(θt|θt−1, D
t−1) =

Γ(αt−1)

Γ(γαt−1)Γ({1− γ}αt−1)

( γ

θt−1

)αt−1−1

θ
γαt−1−1
t

(θt−1

γ
− θt

)(1−γ)αt−1−1

.

(1.2.3)

The state equation (1.2.2) also implies that E(θt|θt−1, D
t−1) = θt−1, in other words a random

walk type of evolution in the expectation of the Poisson rates.
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As a consequence of the measurement and state equations, it is possible to develop an

analytically tractable sequential updating of the model if we assume that at time 0, (θ0|D0)

is a gamma distribution as

(θ0|D0) ∼ Gamma(α0, β0). (1.2.4)

Given the inductive hypothesis

(θt−1|Dt−1) ∼ Gamma(αt−1, βt−1), (1.2.5)

a recursive updating scheme can be developed as follows. Using (1.2.3) and (1.2.5), we can

obtain the distribution of θt given Dt−1 as

(θt|Dt−1) ∼ Gamma(γαt−1, γβt−1). (1.2.6)

It follows from the above that E(θt|Dt−1) = E(θt−1|Dt−1), whereas V (θt|Dt−1) = V (θt−1|Dt−1)
γ

.

In other words, as we move forward in time our uncertainty about the rate increases as a

function of γ. Given the prior (1.2.5) and the Poisson observation model (1.2.1) we can

obtain the filtering distribution of (θt|Dt) using the Bayes’ Rule as

p(θt|Dt) ∝ p(Nt|θt)p(θt|Dt−1). (1.2.7)

The above implies that

p(θt|Dt) ∝ θ
γαt−1+Nt−1
t e−(γβt−1+1)θt ,

that is, the filtering distribution of the Poisson rate at time t is a gamma density

(θt|Dt) ∼ Gamma(αt, βt), (1.2.8)

where the recursive updating of model parameters is given by αt = γαt−1 + Nt and βt =

γβt−1 + 1. The fact that (θt|Dt) is available in closed form is an attractive feature of the

proposed model from a practical point of view. In addition, one-step ahead forecasting
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distribution of counts at time t given Dt−1 can be obtained via

p(Nt|Dt−1) =

∫ ∞

0

p(Nt|θt)p(θt|Dt−1)dθt, (1.2.9)

where (Nt|θt) ∼ Poisson(θt) and (θt|Dt−1) ∼ Gamma(γαt−1, γβt−1). Therefore,

p(Nt|Dt−1) =

(
γαt−1 +Nt − 1

Nt

)(
1− 1

γβt−1 + 1

)γαt−1
( 1

γβt−1 + 1

)Nt

. (1.2.10)

which is a negative binomial model denoted as

(Nt|Dt−1) ∼ Negbin(rt, pt), (1.2.11)

where rt = γαt−1 and pt = γβt−1

γβt−1+1
. Availability of one-step ahead predictive density in

closed form is another advantage of he proposed model. Given (1.2.11), one can carry out

one step ahead predictions and forecast interval calculations in a straightforward manner.

Although the k-step ahead predictive density is not analytically available, the k-step

ahead predictive means can be easily obtained. Using a standard conditional expectation

argument one can obtain E(Nt+k|Dt) as follows

E(Nt+k|Dt) = Eθt+k
{E(Nt+k|θt+k, D

t)} = E(θt+k|Dt). (1.2.12)

Furthermore, using the state equation we have

E(θt+k|Dt) = E(θt|Dt)
t+k∏

n=t+1

E(ϵn|Dt)

γ
= E(θt|Dt) =

αt

βt

, (1.2.13)

where E(ϵn|Dt) = γ for any n. Therefore, combining (1.2.12) and (1.2.13), we can write

E(Nt+k|Dt) = E(θt+k|Dt) =
αt

βt

. (1.2.14)

Due to the random walk type of structure introduced in (1.2.3), the above result simply

indicates that k-step ahead forecasts given that we have observed counts up to time t are



1.2. A DISCRETE TIME POISSON MODEL 7

equal to αt/βt.

1.2.1 Learning about the discount parameter, γ

We can treat the discount factor γ as an unknown quantity and describe our uncertainty

about it via a prior distribution, say p(γ). Given Dt, the likelihood function of γ is given by

L(γ;Dt) =
t∏

i=1

p(Ni|Di−1, γ), (1.2.15)

where p(Ni|Dt−1, γ) is negative binomial as in (1.2.11). The posterior distribution of γ can

then be obtained as

p(γ|Dt) ∝
t∏

i=1

p(Ni|Di−1, γ)p(γ). (1.2.16)

For any choice of prior p(γ) in (1.2.16) the posterior distribution can not be obtained an-

alytically. However, we can always sample from the posterior γ using an MCMC method

such as the Metropolis-Hastings algorithm. Alternatively, a discrete prior can be used for γ

over (0, 1). For example, a discrete uniform prior between 0.01 and 0.99 can be a reasonable

choice and this will be considered in our examples.

1.2.2 Joint smoothing distribution of the Poisson rates

In addition to filtering and forecasting distributions that were obtained in the previous

section, one can also obtain the smoothing distribution of the Poisson rate for retrospective

type of analysis. In other words, given that we have observed the count data, Dt at time t,

we will be interested in the distribution of (θt−k|Dt) for all k ≥ 1.

We can write

p(θt−k|Dt) =

∫
p(θt−k|θt−k+1, D

t)p(θt−k+1|Dt)dθt−k+1, (1.2.17)
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where p(θt−k|θt−k+1, D
t) is obtained via the Bayes’ rule as

p(θt−k|θt−k+1, D
t) =

p(θt−k|θt−k+1, D
t−k)p(N∗|θt−k, θt−k+1, D

t−k)

p(N∗|θt−k+1, Dt−k)

= p(θt−k|θt−k+1, D
t−k),

where N∗ = {Nt−k+1, · · · , Nt}. Here, given θt−k+1, N
∗ is independent of θt−k. In other

words, p(N∗|θt−k, θt−k+1, D
t−k) = p(N∗|θt−k+1, D

t−k). Thus, (1.2.17) reduces to

p(θt−k|Dt) =

∫
p(θt−k|θt−k+1, D

t−k)p(θt−k+1|Dt)dθt−k+1. (1.2.18)

We can not obtain (1.2.18) analytically, however we can use Monte Carlo methods to draw

samples from p(θt−k|Dt). This requires us to develop an efficient algorithm which would

lead us to sample from the joint density, i.e p(θ1, · · · , θt|γ,Dt), and then collect the samples

corresponding to p(θt−k|γ,Dt) for all k ≥ 1. Due to the Markovian nature of the state

parameters, we can rewrite p(θ1, · · · , θt|γ,Dt) as

p(θt|γ,Dt)p(θt−1|θt, γ,Dt−1) · · · p(θ1|θ2, γ,D1). (1.2.19)

We note that p(θt|γ,Dt) is available from (1.2.8) and p(θt−1|θt, γ,Dt−1) for any t can be

obtained as follows

p(θt−1|θt, γ,Dt−1) ∝ p(θt|θt−1, γ,D
t−1)p(θt−1|γ,Dt−1), (1.2.20)

where the first term is available from (1.2.3) and the second term from (1.2.5). It would

be straightforward to show that (θt−1|θt, γ,Dt−1) ∼ ShGamma[(1 − γ)αt−1, βt−1; (γθt,∞)],

that is a shifted gamma density defined over γθt < θt−1 < ∞. Therefore, given (1.2.19)

and the posterior distribution of γ from (1.2.16), we can sample from p(θ1, · · · , θt|γ,Dt) by

sequentially simulating the individual Poisson rates as follows

1. Generate γ(i) from p(γ|Dt).

2. Using the generated γ(i), sample θ
(i)
t from (θt|γ(i), Dt).

3. Using the generated γ(i), for each n = t− 1, · · · , 1 generate θ
(i)
n from (θn|θ(i)n+1, γ,D

n).
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If we repeat the above a large number of times, then we obtain samples from p(θ1, · · · , θt|γ,Dt)

which allows us to obtain a density estimate for p(θt−k|γ,N (t)) for all k ≥ 1. The above sim-

ulation scheme is referred to as the forward filtering backward sampling (FFBS) algorithm

as described in Fruhwirth-Schnatter (1994).

1.3 A Discrete Time Poisson Model with Covariates

It is possible to extend the basis model by considering the effects of covariates on the stochas-

tic Poisson rate. As before let Nt be the number of occurrences of an event during time t

and νt be its rate defined via

νt = θte
ψ′zt , (1.3.1)

where zt is the vector of the covariates and ψ is its parameter vector. Here, θt acts like a

latent baseline rate which evolves over time but free of covariate effects. Given νt, we assume

that number of occurrences of an event during time t is a modulated non-homogeneous

Poisson process,

(Nt|θt,β, zt) ∼ Pois(θte
ψ′zt). (1.3.2)

For the state evolution of the latent rate, θt we assume the same structure as before given by

(1.2.2). In addition we assume that the conditional distribution of (θt−1|ψ,zt, Dt−1) follows

a gamma density as

(θt−1|ψ, zt, Dt−1) ∼ Gamma(αt−1, βt−1). (1.3.3)

Therefore, the conditional posterior density of θt given ψ, zt, D
t−1 can be obtained via

p(θt|ψ,zt, Dt−1) =

∫ ∞

γθt

p(θt|θt−1, D
t−1)p(θt−1|ψ, zt, Dt−1)dθt−1, (1.3.4)

which reduces to a gamma density as

(θt|ψ,zt, Dt−1) ∼ Gamma(γαt−1, γβt−1). (1.3.5)
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Furthermore, the conditional filtering density of θt given ψ,zt, D
t can be obtained using

(1.3.2) and (1.3.5) via the Bayes Rule which can be shown to be Gamma distributed as

(θt|ψ, zt, Dt) ∼ Gamma(αt, βt), (1.3.6)

where αt = γαt−1 +Nt and βt = γβt−1 + (eψ
′zt). Such an update scheme implies that as we

learn more about the count process over time, we update our uncertainty about the Poisson

rate as a function of both counts over time and of covariate effects via βt as implied by

(1.3.6).

The one-step ahead conditional predictive distribution at time t given ψ, zt and Dt−1 can

be shown to be negative binomial as

(Nt|Dt−1,ψ,zt) ∼ Negbin(rt, pt), (1.3.7)

where rt = γαt−1 and pt = γβt−1

γβt−1+eψ
′zt

. (1.3.7) implies that given the covariates and the

counts up to time t− 1, forecast for time t is a function of the observed default counts up to

time t−1 adjusted by the corresponding covariates. The conditional mean of (Nt|Dt−1,ψ,zt),

can be computed via

E(Nt|Dt−1,ψ, zt) =
αt−1

βt−1

eψ
′zt . (1.3.8)

Since all conditional distributions previously introduced for the model with covariates are

all dependent on the parameter vector ψ, we need to discuss how to obtain the posterior

density of ψ which can not be obtained in closed form, therefore we can use MCMC methods

to generate samples of ψ.

1.3.1 Markov chain Monte Carlo (MCMC) estimation

Our objective in this section is to obtain the posterior joint distribution of the model pa-

rameters given that we have observed all counts up to time t, that is p(θ1, · · · , θt,ψ|Dt).

Since this joint distribution is not available in closed form we can use an MCMC method

such as a Gibbs sampler to generate samples from it. In order to do so, we need to be able
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to generate samples from the full conditionals of p(θ1, · · · , θt|ψ, Dt) and p(ψ|θ1, · · · , θt, Dt),

none of which are available as well known densities. Next we discuss how to generate samples

from these densities.

The first full conditional, the conditional posterior distribution of ψ given the Poisson

rates, (θ1, . . . , θt), can be obtained via

p(ψ|θ1, · · · , θt, zt, Dt) ∝
t∏

i=1

exp{θieψ
′zi}(θieψ

′zi)Ni

Ni!
p(ψ), (1.3.9)

where p(ψ) is the prior for ψ. Regardless of the prior selection for ψ, (1.3.9) will not be

a well known density. Therefore, we can use an MCMC algorithm such as the Metropolis

Hastings to be able to generate samples from p(ψ|θ1, · · · , θt, zt, Dt). Following Chib and

Greenberg (1995), the steps in the Metropolis-Hastings algorithm can be summarized as

follows

1. Assume the starting points ψ(0) at j = 0.

Repeat for j > 0,

2. Generate ψ∗ from q(ψ∗|ψ(j)) and u from U(0, 1).

3. If u ≤ f(ψ(j),ψ∗) then set ψ(j) = ψ∗; else set ψ(j) = ψ(j) and j = j + 1,

where

f(ψ(j),ψ∗) = min

{
1,

π(ψ∗)q(ψ(j)|ψ∗)

π(ψ(j))q(ψ∗|ψ(j))

}
. (1.3.10)

In (1.3.10), q(.|.) is the multivariate normal proposal density and π(.) is given by (1.3.9)

which is the density we need to generate samples from. If we repeat the above a large

number of times then we obtain samples from p(ψ|θ1, · · · , θt, zt, Dt).

Next we discuss how one can generate samples from the other full conditional distribution,

p(θ1, · · · , θt|ψ,zt, Dt) using the FFBS algorithm. Due to the Markovian nature of the latent

rates, using the chain rule we can rewrite the full conditional density as

p(θt|ψ, zt, Dt)p(θt−1|θt,ψ,zt, Dt−1) · · · p(θ1|θ2,ψ,zt, D1). (1.3.11)
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We note that p(θt|ψ, zt, Dt) is available from (1.3.6) and p(θt−1|θt,ψ,zt, Dt−1) for any t can

be obtained as follows

p(θt−1|θt,ψ,zt, Dt−1) ∝ p(θt|θt−1,ψ, zt, D
t−1)p(θt−1|ψ,zt, Dt−1). (1.3.12)

It can be shown that (θt−1|θt,ψ, zt, Dt−1) ∼ ShGamma[(1−γ)αt−1, βt−1] where γθt < θt−1 <

∞, that is a shifted gamma density.

Therefore, given (1.3.11) and the posterior samples generated from the full conditional

of ψ, we can sample from p(θ1, · · · , θt|ψ,zt, Dt) by sequentially simulating the individual

latent rates as follows

1. Assume the starting points θ
(0)
1 , · · · , θ(0)t at j = 0.

Repeat for j > 0,

2. Using the generated ψ(j), sample θ
(j)
t from (θt|ψ(j), zt, D

t).

3. Using the generated ψ(j), for each n = t−1, · · · , 1 generate θ(j)n from (θn|θ(j)n+1,ψ, zt, D
n)

where θ
(j)
n+1 is the value generated in the previous step.

If we repeat the above large number of times, then we obtain samples from the joint full con-

ditional of the latent rates. Consequently, we can obtain samples from the joint density of the

model parameters by iteratively sampling from the full conditionals, p(ψ|θ1, · · · , θt, zt, Dt)

and p(θ1, · · · , θt|ψ, zt, Dt), namely a full Gibbs sampler algorithm. The above can be

extended to include the discount factor γ by extending the joint of ψ to include γ as

p(γ,ψ|Dt, zt) which can be sampled using the MCMC algorithm described previously.

1.4 Multivariate Extensions

It is possible to consider several extensions of the basis model to account for multivariate

count data. For instance, the observations of interest can be the number of occurrences of an

event during the day t of year j. Another possibility is to consider the analysis of J different
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Poisson time series. For instance, for a given year, the weekly spending habits of J different

households which can exhibit dependence can be modeled using such a structure. Several

extensions have been proposed by Aktekin and Soyer (2011), where multiplicative Poisson

rates for (1.2.2) are considered.

In what follows, we present a similar idea for J Poisson time series that are assumed to

be affected by the same environment. We assume that

Njt ∼ Pois(λjθt), for j = 1, . . . , J, (1.4.1)

where λj is the arrival rate specific to the jth series and θt is the common term modulating λj.

For example, in the case where Njt is the number of grocery store trips of household j at time

t, λj is the household specific rate and we can think of θt as the effect of common economic

environment that the households are exposed to at time t. The values of θt > 1 represents

a more favorable economic environment than usual implying higher shopping rates.

This is analogous to the concept of an accelerated environment for operating conditions

of components used by Lindley and Singpurwalla (1986) in life testing. Our case can be

considered as a dynamic version of their set up since we have the Markovian evolution of θts

as

θt =
θt−1

γ
ϵt, (1.4.2)

where, as before, (ϵt|Dt−1, λ1, . . . , λJ) ∼ Beta[γαt−1, (1− γ)αt−1] with αt−1 > 0, 0 < γ < 1,

and Dt−1 = {Dt−2, N1(t−1), . . . , NJ(t−1)}. Furthermore, we assume that

λj ∼ Gamma(aj, bj), for j = 1, . . . , J, (1.4.3)

and a priori, λjs are independent of each other as well as θ0. Given θts and λjs, Njts are

conditionally independent. In other words, all J series are affected by the same common

environment and given that we know the uncertainty about the environment they will be

independent.

At time 0, we assume that (θ0|D0) ∼ Gamma(α0, β0), then by induction we can show
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that

(θt−1|Dt−1, λ1, . . . , λJ) ∼ Gamma(αt−1, βt−1), (1.4.4)

and

(θt|Dt−1, λ1, . . . , λJ) ∼ Gamma(γαt−1, γβt−1). (1.4.5)

In addition, the common filtering density at time t can be obtained via

(θt|Dt, λ1, . . . , λJ) ∼ Gamma(αt, βt), (1.4.6)

where αt = γαt−1 + N1t + . . . + NJt and βt = γβt−1 + λ1 + . . . + λJ . Consequently, the

marginal distributions of Njt for any j can be obtained to be

p(Njt|λj, D
t−1) =

(
γαt−1 +Njt − 1

Njt

)(
1− λj

γβt−1 + λj

)γαt−1
( λj

γβt−1 + λj

)Njt

, (1.4.7)

which is a negative binomial model as before. The multivariate distribution of N1t, . . . , NJts

can be obtained as

p(N1t, . . . , NJt|λ1, . . . , λJ , D
t−1) =

Γ(γαt−1 +
∑

j Njt)

Γ(γαt−1)
∏

j Γ(Njt + 1)

∏
j

(
λj

γβt−1 +
∑

j λj

)Njt
(

γβt−1

γβt−1 +
∑

j λj

)γαt−1

,

(1.4.8)

which is a dynamic multivariate distribution of negative binomial type. The bivariate

distribution p(Nit, Njt|λi, λj, D
t−1) can be obtained as

Γ(γαt−1 +Nit +Njt)

Γ(γαt−1)Γ(Nit + 1)Γ(Njt + 1)

( γβt−1

λi + λj + γβt−1

)γαt−1
( λi

λi + λj + γβt−1

)Nit
( λj

λi + λj + γβt−1

)Njt

(1.4.9)

which is a bivariate negative binomial distribution for integer values of γαt−1. The above

distribution is the dynamic version of the negative binomial distribution proposed by Arbous

and Kerrich (1951) for modeling number of accidents.

In addition the conditionals of Njts will also be negative binomial type distributions. The

dynamic conditional mean (or regression) of Njt given Njt can be obtained as

E[Njt|Nit, λi, λj, D
t−1] =

λj(γαt−1 +Nit)

(λi + γβt−1)
, (1.4.10)

which is linear in Nit. It can be easily seen that the bivariate counts are positively correlated
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and the correlation is given by

Cor(Nit, Njt|λi, λj, D
t−1) =

√
λiλj

(λi + γβt−1)(λj + γβt−1)
. (1.4.11)

Other properties of the dynamic multivariate distribution are given in Aktekin et al. (2014).

The estimation for the model using MCMC would be straightforward using the FFBS

algorithm for θts in conjunction with a Gibbs sampler step for the λjs whose full conditionals

are given by

p(λj|θ1, . . . , θt, Dt) ∼ Gamma(ajt, bjt), (1.4.12)

where ajt = aj+Nj1+ . . .+Njt and bjt = bj+θ1+ . . .+θt. Therefore, by iteratively sampling

from the conditional distributions of (θ1, . . . , θt|λ1, . . . , λJ , D
t) using the FFBS algorithm and

(λj|θ1, . . . , θt, Dt) for all j, one can obtain samples from the full joint distribution of all model

parameters, (θ1, . . . , θt, λ1, . . . , λJ |Dt).

1.5 Numerical Examples

In order to show how the models are applied to real count data, we used three data sets,

time series counts of the number of calls arriving to a call center in a given time interval,

number of people who defaulted in a given mortgage pool and the number of weekly grocery

store visits for households. In the sequel, we discuss the implementation and the estimation

of the proposed Poisson time series models using these three examples.

1.5.1 Example I: Call center arrival count data

To show the use of the basis model, we considered the time series of counts of call center

arrivals during different intervals of 164 days from an anonymous U.S. commercial bank as

discussed in Aktekin and Soyer (2011). Each day consists of 169 time intervals each of which

is 5 minutes of duration. In a given day, the call center is operational between 7:00 AM and
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9:05 PM. We only used the first week of the data for illustration purposes.

We consider each day of the week (Monday-Friday) separately and assume that the be-

havior of a given day is the same from one week to another. In other words we assume

that call arrival process for Monday on any week will exhibit similar behavior to any other

Monday in another week. We consider such a behavior by assuming the weekly call arrivals

for any day are conditionally independent from one week to another, that is given the model

parameters the weekly call arrivals for a given day are assumed to be independent. Such an

approach would be of interest to call center managers who would like to be able to determine

staff schedules in advance for different time intervals in a given day. For example, given call

arrivals count data for Monday from the previous weeks, we can carry out inference for all

the time periods for next Monday. Similarly if we have the call arrivals data for all other

days, we can easily provide inference and forecasts for the whole next week.

Given the filtering of the latent rates, the discrete priors of γ for each day over (0, 1) and

their posterior estimation, we obtained the posterior means of the latent arrival rates for a

particular time interval in a given day in the light of the whole data (that is 164 days with

each having 169 time intervals). These are shown in Figure 1.1 from which a certain type

of ordering between the days of the week can be inferred. As such, we set the initial prior

parameters for the arrival rate in as αi
0 = α0 and βi

0 = β0 for all i with i representing a

specific day of the week.

Figure 1 near here.

Furthermore, summary statistics for the posterior discounting behavior, γ for each day of

the week are shown in Table 1.1. Discounting occurs on the sum of the previously observed

values of the call arrivals for a given period, therefore it is a function of the dimension of

data used. Each day seems to exhibit a slightly different discount behavior. The fact that

the posterior means of the discounting terms are getting smaller as we observe more data,

indicates that the model emphasizes arrival counts observed during the within-day interval

of interest (say t) more than the previously observed arrival counts (say t− 1, · · · , 1).

Table 1 near here.
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1.5.2 Example II: Mortgage default count data

In illustrating the use of the basis model and the model with covariates, we used data

provided by Federal Housing Administration of the U.S. Department of Housing and Urban

Development as analyzed in detail by Aktekin et al. (2013). In our analysis, we use 144

monthly defaulted FHA insured single-family 30-year fixed rate mortgage loans from 1994 in

the Atlanta region. In addition, we make use of covariates such as the regional conventional

mortgage home price index (CMHPI), federal cost of funds index (COFI), the homeowner

mortgage financial obligations ratio (FOR) and regional unemployment rate (Unemp). A

time series plot of the monthly mortgage count data under study is shown in Figure 1.2

where a non-stationary behavior that can be captured by our Poisson state space models is

observed.

Figure 2 near here.

In analyzing the default count data, the discounting factor γ introduced in (1.2.2) was

assumed to follow a discrete uniform distribution defined over (0, 1) in order to keep the

updating/filtering tractable. The posterior distribution of γ was obtained via (1.2.16) and is

shown in the left panel of Figure 1.3. Thus, given the posterior of γ and the FFBS algorithm,

it is possible to obtain the retrospective fit of counts. An overlay plot of the mean default

rates and the actual data is shown in the right panel of Figure 1.3. The availability of the

joint distribution of the default rate over time, i.e. p(θ1, · · · , θt|Dt) would be of interest to

institutions that are managing the loans for the purposes of risk management. Furthermore,

Bayesian approach allows direct comparison of the Poisson rates (in this case default rates)

during different time periods probabilistically. For instance, it would be straight forward to

compute the probability that default rate during the second month is greater than that of

the first month for a given cohort, i.e. p(θ2 ≥ θ1|D144).

Figure 3 near here.

In order to take into account the effects of covariates (macroeconomic variables in this case)

on the default rate, we used the model with covariates. In doing so, we assumed the prior of
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γ to be continuous uniform over (0, 1) and the covariate coefficients, ψ, to be independent

normal distributions. The MCMC algorithm was run for 10,000 iterations with a burn-in

period of 2,000 iterations with no convergence issues. The posterior density plots of ψ are

shown in Figure 1.4 and of γ in Figure 1.5 which exhibits similar behavior to the posterior

discounting term obtained for the basis model as in the left panel of Figure 1.3.

Figures 4-5 near here.

Table 1.2 shows the posterior summary statistics for the covariates. All macroeconomic

variables seem to have fairly significant effects on the default rate. In summary, the regional

conventional mortgage home price index (CMHPI), federal cost of funds index (COFI) and

the regional unemployment rate (Unemp) have positive effects on default counts. For in-

stance, as unemployment tends to go up, the model suggests that the number of people

defaulting tend to increase for the cohort under study. On the other hand, the homeowner

financial obligations ratio (FOR) seem to decrease the expected number of defaults as it goes

up, namely as the burden of repayment becomes relatively easier then home owners are less

likely to default.

Table 2 near here.

Figure 1.6 shows the fit of model with covariates to data from which the existence of a

reasonably good fit can be inferred. Furthermore, the behavior of the latent default rates,

θts can be described via their joint distribution, that is p(θ1, · · · , θ144|D144). A boxplot of

θts is shown in Figure 1.7 which provides insights on the stochastic and temporal behavior

of the latent rate given the count data at hand and the relevant covariates.

Figures 6-7 near here.

1.5.3 Example III: Household Spending Example

Our final example considers utilizes the multivariate extension of the basis model in the

context of household spending. In order to illustrate the workings of the multivariate model
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in a simple setup, we considered a bivariate count data. However, let us emphasize that

the multivariate count model can be applied to higher orders relatively easily. The data

is regarding the weekly grocery store visits of 540 Chicago based households accumulated

over 104 weeks, from which we considered 2 households. In other words, we have 2 different

Poisson time series for different households and assume that their visits to the grocery store

can be modeled by 1.4.1. Our assumption is that each household’s visit to the grocery store

is affected by the same environment, i.e. the economic situation, weather and so on. Namely,

we assume that the grocery store arrival process of a household in Chicago, will exhibit some

common behavior to that of another household.

Figure 8 near here.

This approach would be of interest to grocery store managers who would like to be

able to differentiate the common effect from individual effects for store promotion purposes.

For example, analysis and inferences from θt may allow managers to carry out store-wide

promotion activities, whereas analysis on individual λjs will allow managers to target specific

households to promote store visits. For illustrative purposes, we fixed the discount factor

at γ = 0.5, and set the initial prior parameters as αj
0 = α0 and βj

0 = β0 for both js with j

representing each individual household. As before, the behavior of the common arrival rates,

θts can be described via their joint distribution, p(θ1, · · · , θ104|D104). We present a boxplot

of θts in Figure 1.9 which provides insights on the temporal behavior of the common rate

given the count data at hand and the individual rate λjs. Specifically, we find a drop in the

common rates in weeks 29-35 and in weeks 79-85 which indicates a possible seasonal effect

occurring over the calender year. Note that, as previously discussed, such seasonal effects

can be easily incorporated into the model as covariates.

Figure 9 near here.

Furthermore, the posterior density plots of λjs are shown in Figure 1.10. Clearly house-

hold 1 can be characterized by a higher rate compared to household 2. Store manager may

utilize our findings here in multiple ways. First, the manager may identify the season as-

sociated with low common arrival rates and run a store-wide promotion strategy to lure
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customers in. In addition, store managers faced with limited budget may also wish to focus

their promotion efforts on household 2 with a lower arrival rate rather than household 1.

Finally, one may also extend the model to include covariates to identify the reasons behind

differences in individual household λjs.

Figure 10 near here.

1.6 Conclusion

In this study, we introduced a general class of Poisson time series models. In doing so, we

first discussed univariate discrete time state space models with Poisson measurements and

their Bayesian inference via MCMC methods. Furthermore, we discussed issues of sequential

updating, filtering, smoothing and forecasting. We also introduced modeling strategies for

multivariate extensions. In order to show the implementation of the proposed models, we

used real count data from different disciples such as finance, operations and marketing.

We believe that several future directions can be pursued as a consequence of this study.

One such area is to treat γ as a time varying or a series specific discount factor which could

potentially create challenges in parameter estimation. Another possibility for estimation

purposes is to investigate the implementation of sequential particle filtering methods instead

of MCMC that are widely used for state space applications.
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Table 1.1: Posterior means and standard deviations of γ for different days

Day Mean St.Dev

Mondays .066 .0025
Tuesdays .046 .0016

Wednesdays .092 .0042
Thursdays .084 .0039

Fridays .075 .0032

Table 1.2: Posterior statistics for ψ and γ for the model with covariates

Statistics ψCMHPI ψCOFI ψFOR ψUnemp γ

25th 0.0063 0.7003 -1.5430 0.6252 0.2281
Mean 0.0160 0.8717 -1.3002 0.8191 0.2466
75th 0.0256 1.0510 -1.0550 1.0117 0.2643

St.Dev 0.0141 0.2663 0.3606 0.2826 0.0270
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Figure 1.1: Posterior arrival rates for different days of the week
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Figure 1.2: Time series plot of monthly default counts



24 BIBLIOGRAPHY

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
00

0.
01

0.
02

0.
03

0.
04

γ

P
os

te
rio

r

0 20 40 60 80 100 120 140

0
50

10
0

15
0

20
0

25
0

t

D
ef

au
lt 

C
ou

nt
s

Actual
Basis Model

Figure 1.3: Posterior γ (left) and the retrospective fit to count data (right)
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Figure 1.4: Posterior density plots of ψ
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Figure 1.5: Posterior density plot of γ for the model with covariates
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Figure 1.6: Retrospective fit of the model with covariates to data
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Figure 1.7: Boxplots for the latent rates, θts from p(θ1, · · · , θ144|D144)
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Figure 1.8: Time series plot of weekly grocery store visits
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Figure 1.9: Boxplots for the common rates, θts from p(θ1, · · · , θ104|D104)

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

λ1

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

λ2

Figure 1.10: Posterior density plots of λ1 and λ2


