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Abstract

Frazzini and Pedersen (2014) document that a betting against beta strategy that takes long
positions in low-beta stocks and short positions in high-beta stocks generates a large abnormal
return of 6.6% per year and they attribute this phenomenon to funding liquidity risk. We find
strong confirmation of their results on U.S. equity data, but provide evidence of an alternative
explanation. Portfolio and regression analyses show that the betting against beta phenomenon
disappears after controlling for the lottery characteristics of the stocks in our sample, while
other measures of firm characteristics and risk fail to explain the effect. Furthermore, the
betting against beta phenomenon only exists when the price impact of lottery demand falls
disproportionately on high-beta stocks. We also find that this lottery characteristic aggregates
at the portfolio level and therefore cannot be diversified away. Finally, factor models that include
our lottery demand factor explain the abnormal returns of the betting against beta portfolio as
well as the betting against beta factor generated by Frazzini and Pedersen.
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1 Introduction

The positive (negative) abnormal returns of portfolios comprised of low-beta (high-beta) stocks,

first documented by Black, Jensen, and Scholes (1972), are arguably the most persistent and widely

studied anomaly in empirical research of security returns.1 In an important recent study, Frazz-

ini and Pedersen (2014, FP hereafter) attribute this betting against beta phenomenon to market

pressures exerted by leverage-constrained investors attempting to boost expected returns by pur-

chasing high-beta stocks. According to FP’s model, investors who are constrained with respect to

the amount of leverage they can employ in their portfolios (pension funds, mutual funds) chase

returns by over weighting (under weighting) high-beta (low-beta) securities in their portfolios, thus

pushing up (down) the prices of high-beta (low-beta) securities. As a result, the security mar-

ket line has a lower (although still positive) slope and greater intercept than would be predicted

by the Capital Asset Pricing Model (CAPM, Sharpe (1964), Lintner (1965), Mossin (1966)) and

stocks with high (low) betas generate negative (positive) risk-adjusted returns relative to standard

risk models.2 Empirically, FP demonstrate that the predictions of their theoretical model hold

across several different classes of securities in both the U.S. and international markets. While the

compelling theoretical and empirical evidence presented by FP unquestionably represents a major

contribution to our understanding of equilibrium in financial markets, there may be other plausible

explanations for the betting against beta phenomenon. Given the prominent and important role the

betting against beta phenomenon plays in financial markets, it is important to carefully examine

what might be responsible for this persistent effect.

In this paper, we suggest an alternative explanation for the betting against beta phenomenon.

We propose that demand for lottery-like stocks, a phenomenon documented by Kumar (2009) and

Bali, Cakici, and Whitelaw (2011), produces the betting against beta effect.3 Our mechanism is

1This phenomenon has also been documented by several subsequent papers, including Blume and Friend (1973),
Fama and MacBeth (1973), Reinganum (1981), Lakonishok and Shapiro (1986), and Fama and French (1992, 1993).

2A similar explanation was initially proposed, but not empirically investigated, by Black et al. (1972), who suggest
that divergent risk-free borrowing and lending rates explain the positive intercept of the line describing the relation
between expected excess returns and beta. Brennan (1971) and Black (1972) formalize this notion with theoretical
models. This has become the standard textbook explanation for this phenomenon (Elton, Gruber, Brown, and
Goetzmann (2014, Ch. 14)).

3Bali et al. (2011) demonstrate that lottery demand is negatively related to future raw and risk-adjusted stock
returns. This empirical finding is consistent with cumulative prospect theory (Tversky and Kahneman (1992)) as
modeled by Barberis and Huang (2008), which predicts that errors in the probability weighting of investors cause them
to overvalue stocks that have a small probability of a large positive return. Thaler and Ziemba (1988) demonstrate
demand for lottery in the context of betting on horse races and playing the lottery.
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similar to that of FP in that a disproportionately high (low) amount of upward price pressure is

exerted on high-beta (low-beta) stocks. However, in the context of the U.S. equity markets, the

main driver of this price pressure appears to be lottery demand.

Our rationale is as follows. As discussed by both Kumar (2009) and Bali et al. (2011), lottery

investors generate demand for stocks with high probabilities of large short-term up moves in the

stock price. Such up moves are partially generated by a stock’s sensitivity to the overall market—

market beta. A disproportionately high (low) amount of lottery demand-based price pressure is

therefore exerted on high-beta (low-beta) stocks, pushing the prices of such stocks up (down) and

therefore decreasing (increasing) future returns. This price pressure generates an intercept greater

than the risk-free rate (positive alpha for stocks with beta of zero) and a slope less than the market

risk premium (negative alpha for high-beta stocks) for the line describing the relation between beta

and expected stock returns.

We test our hypothesis in several ways. First, we demonstrate that the betting against beta

phenomenon is in fact explained by lottery demand. Following Bali et al. (2011), we proxy for

lottery demand with MAX, defined as the average of the five highest daily returns of the given

stock in a given month.4 Bivariate portfolio analyses demonstrate that the abnormal returns of a

zero-cost portfolio that is long high-beta stocks and short low-beta stocks (High−Low beta portfolio)

disappear when the portfolio is constrained to be neutral to MAX. Fama and MacBeth (1973, FM

hereafter) regressions indicate a significantly positive relation between beta and stock returns when

MAX is included in the regression specification and the magnitudes of the coefficients on beta are

highly consistent with estimates of the market risk premium. Univariate portfolio analyses fail to

detect the betting against beta phenomenon when the component of beta that is orthogonal to

MAX (instead of beta itself) is used as the sort variable.

We also generate a factor, FMAX, designed to capture the returns associated with lottery

demand. We show that the abnormal returns of the High−Low beta portfolio relative to the

commonly used Fama and French (1993) and Carhart (1997) four-factor (FFC4) model and the

FFC4 model augmented with Pastor and Stambaugh’s (2003) liquidity factor disappear completely

when FMAX is included in the factor model. Similarly, the FMAX factor completely explains the

4In the online appendix, we show that our results are robust to alternative definitions of MAX. Specifically, our
results persist when MAX is defined as the average of the k highest daily returns of the given stock within the given
month, for k ∈ {1, 2, 3, 4, 5}.
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abnormal returns of FP’s BAB (for betting against beta) factor, since the abnormal returns of the

BAB factor are small and insignificant when FMAX is included in the factor model. The BAB

factor, however, fails to explain the returns associated with the FMAX factor. The results indicate

that the betting against beta phenomenon is a manifestation of the effect of lottery demand on

stock returns. Additionally, we find that a portfolio of high-MAX (low-MAX) stocks is itself a

high-MAX (low-MAX) asset. This result also holds for portfolios sorted on the portion of MAX

that is orthogonal to beta. This is important because it indicates that the lottery-like features of

individual stocks aggregate at the portfolio level, meaning that lottery-demand is not diversifiable.

In addition to showing that lottery demand explains the betting against beta phenomenon, we

demonstrate that disproportionate lottery demand for high-beta stocks is in fact the channel that

generates the betting against beta phenomenon. We accomplish this in several steps. First, we

show that beta is highly cross-sectionally correlated with MAX, indicating that in the average

month, lottery demand price pressure falls predominantly on high-beta stocks. We then show

that in months where this correlation is low — months when lottery demand price pressure is

not disproportionally exerted on high-beta stocks — the betting against beta phenomenon does

not exist. When this correlation is high, indicating highly disproportionate price pressure on

high-beta stocks, the betting against beta phenomenon is very strong. The results indicate that

disproportional lottery demand-based price pressure on high-beta stocks is driving the betting

against beta phenomenon. We also demonstrate that the months where this correlation is high are

characterized by high aggregate lottery demand and poor economic conditions. Finally, as would

be expected given that lottery demand is driven by individual (not institutional) investors (Kumar

(2009)), we show that the betting against beta phenomenon only exists among stocks with a low

proportion of institutional shareholders.

The remainder of this paper proceeds as follows. Section 2 provides data and variable defini-

tions. Section 3 illustrates the betting against beta and lottery demand phenomena. Section 4

demonstrates that lottery demand explains the betting against beta phenomenon. Section 5 shows

that lottery demand-based price pressure generates the betting against beta phenomenon. Section

6 introduces a lottery-demand factor and shows that it explains the returns of the betting against

beta factor, while the betting against beta factor fails to explain the returns of the lottery-demand

factor. Section 7 concludes.
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2 Data and Variables

Market beta and the amount of lottery demand for a stock are the two primary variables in our

analyses. We estimate a stock’s market beta (β) for month t to be the slope coefficient from a

regression of excess stock returns on excess market returns using daily returns from the 12-month

period up to and including month t. When calculating beta, we require that a minimum of 200

valid daily returns be used in the regression.5

Following Bali et al. (2011), we measure a stock’s lottery demand using MAX, calculated as

the average of the five highest daily returns of the stock during the given month t. We require a

minimum of 15 daily return observations within the given month to calculate MAX.

The main dependent variable of interest is the one-month-ahead excess stock return, which we

denote R. We calculate the monthly excess return of a stock to be the return of the stock, adjusted

for delistings following Shumway (1997), minus the return on the risk-free security.

We examine several other potential explanations for the betting against beta phenomenon. The

possible alternative explanations are grouped into three main categories. The first category is

firm characteristics, which includes market capitalization, the book-to-market ratio, momentum,

stock illiquidity, and idiosyncratic volatility. The second category is comprised of measures of risk,

including co-skewness, total skewness, downside beta, and tail beta. The third and final group

includes measures of stock sensitivity to aggregate funding liquidity factors. The motivation for

this group is FP’s claim that funding constraints are the primary driver of the betting against beta

phenomenon. In the ensuing sections, we briefly describe the calculation of the variables in each

of these categories. More details on the calculation of all of the variables used in this study are

available in Section I of the online appendix.

2.1 Firm Characteristics

To examine the possibility that the size and/or value effects of Fama and French (1992) play a role

in the betting against beta phenomenon, we define MKTCAP as the stock’s market capitalization

and BM as the log of the firm’s book-to-market ratio.6 Since the cross-sectional distribution of

5FP use an alternative definition of market beta. As we discuss in Section 6.3 and demonstrate in the online
appendix, our results are robust when beta is measured according to FP.

6We calculate the book-to-market ratio following Fama and French (1992).
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market capitalization is highly skewed, we use the natural log of market capitalization, denoted

SIZE, in regression analyses. Following Jegadeesh and Titman (1993), who find a medium-term

momentum effect in stock returns, we measure the momentum (MOM) of a stock in month t as

the 11-month return during months t − 11 through t − 1, inclusive. Stock illiquidity (ILLIQ),

shown by Amihud (2002) to be positively related to stock returns, is calculated as the absolute

daily return divided by the daily dollar trading volume, averaged over one month. Ang, Hodrick,

Xing, and Zhang (2006) show that idiosyncratic volatility and future stock returns have a strong

negative relation. To measure idiosyncratic volatility, we define IV OL as the standard deviation

of the residuals from a regression of excess stock returns on the excess market return and the size

(SMB) and book-to-market (HML) factor-mimicking portfolio returns of Fama and French (1993)

using one month of daily return data. When calculating ILLIQ and IV OL, we require 15 days of

valid daily return observations within the given month.

2.2 Risk Measures

Our analyses examine the impact of several different measures of risk on the betting against beta

phenomenon. Co-skewness (COSKEW ), shown by Harvey and Siddique (2000) to be negatively

related to stock returns, is calculated as the slope coefficient on the excess market return squared

term from a regression of stock excess returns on the market excess returns and the market excess

returns squared, using one year’s worth of daily data. We define total skewness (TSKEW ) as the

skewness of daily stock returns over the past year. Downside beta (DRISK) of Ang, Chen, and

Xing (2006) is measured as the slope coefficient from a regression of stock excess returns on the

market excess returns, using only days for which the market return was below the average daily

market return during the past year. Following Kelly and Jiang (2013) and Ruenzi and Weigert

(2013), we define tail beta (TRISK) as the slope coefficient from a regression of stock excess returns

on market excess returns using only daily observations in the bottom 10% of market excess returns

over the past year. We require a minimum of 200 valid daily stock return observations to calculate

each of these risk measures.
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2.3 Funding Liquidity Measures

FP provide evidence that the betting against beta phenomenon is driven by funding liquidity. While

funding liquidity has been shown to be closely related to market liquidity (Chen and Lu (2014))

and they have been jointly modeled (Brunnermeier and Pedersen (2009)), the two are fundamen-

tally different concepts. Market liquidity is the ease with which a security can be traded in the

secondary market. This characteristic, measured by Amihud’s (2002) illiquidity measure (ILLIQ,

discussed above), is a firm-level characteristic. Funding liquidity is a market-level characteristic

that describes the general availability of financing to investors. Low funding liquidity essentially

means that investors who employ leverage will be forced, by those financing their levered positions,

to satisfy more restrictive margin requirements. When this happens, levered investors will be forced

to liquidate positions, potentially at an undesirable time. Since different stocks have different mar-

gin requirements, in the cross-section, securities’ prices—and thus returns—exhibit cross-sectional

variation in their sensitivities to funding liquidity.

We measure the funding liquidity sensitivity of a stock relative to four widely accepted factors

that proxy for funding liquidity (FP, Chen and Lu (2014), and the references therein). The first is

the TED spread (TED), calculated as the difference between the three-month LIBOR rate and the

rate on three-month U.S. Treasury bills.7 The second is volatility of the TED spread (V OLTED),

which is defined as the standard deviation of the daily TED spreads within the given month. FP use

V OLTED as a proxy for funding liquidity risk. The third is the U.S. Treasury bill rate (TBILL),

taken to be the month-end rate on three-month U.S. Treasury bills. The fourth is financial sector

leverage (FLEV ), defined as the sum of total assets across all financial sector firms divided by the

total market value of the equity of the firms in this sector. While financial sector leverage is not as

widely used as TED or TBILL, it is perhaps the most appropriate measure of funding liquidity

in this setting, since it directly measures the ability of financial institutions to provide leverage to

investors.

Each of these aggregate funding liquidity proxies (TED, V OLTED, TBILL, and FLEV ) are

measured at a monthly frequency. Stock-level sensitivity to the TED spread (TED), denoted βTED,

is calculated as the slope coefficient from a regression of excess stock returns on TED using five

7As discussed in FP and Gârleanu and Pedersen (2011), the TED spread serves as a measure of funding conditions.
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years worth of monthly data. Sensitivities to V OLTED, TBILL, and FLEV , denoted βV OLTED,

βTBILL, and βFLEV , respectively, are calculated analogously. We require a minimum of 24 valid

monthly stock return observations to calculate these measures of exposure to aggregate funding

liquidity.

As TED, V OLTED, TBILL, and FLEV all take on low values when funding liquidity is

high and vice versa, our measures may more aptly be termed sensitivities to funding il liquidity.

Nevertheless, for simplicity and consistency with previous work, we continue to refer to βTED,

βV OLTED, βTBILL, and βFLEV as measures of funding liquidity sensitivity.

2.4 Data Sources and Sample

Daily and monthly stock data were collected from the Center for Research in Security Prices

(CRSP). Balance sheet data, used to calculate the book-to-market ratio and financial industry

leverage (FLEV ), come from Compustat. Daily and monthly market excess returns and risk factor

returns are from Kenneth French’s data library.8 Three-month LIBOR and U.S. Treasury bill yields

are downloaded from Global Insight.

The sample used throughout this paper covers the 593 months t from August 1963 through

December 2012. Each month, the sample contains all U.S.-based common stocks trading on the

New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and the NASDAQ

with a stock price at the end of month t− 1 of $5 or more.9 Since month-end TED spread data are

available beginning in January 1963 and a minimum of 24 months of data are required to calculate

βTED, analyses using βTED cover the period January 1965 through December 2012. Similarly, the

daily TED spread data required to calculate V OLTED are available beginning in January 1977;

thus analyses using βV OLTED cover the period from January 1979 through December 2012.

3 Betting against Beta and Demand for Lottery

We begin by demonstrating the betting against beta and lottery demand phenomena.

8http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
9U.S.-based common stocks are the CRSP securities with share code field (SHRCD) 10 or 11.
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3.1 Betting Against Beta Phenomenon

The betting against beta phenomenon refers to the fact that a portfolio that is long high-beta stocks

and short low-beta stocks generates a negative abnormal return. To demonstrate the betting against

beta phenomenon, each month we sort all stocks in our sample into 10 decile portfolios based on

an ascending sort of market beta (β), measured at the end of month t − 1, with each portfolio

having an equal number of stocks. The panel labeled β and Returns in Table 1 presents the time-

series means of the individual stocks’ β, the average monthly portfolio excess return (R), and the

FFC4 alpha (FFC4 α) for the equal-weighted decile portfolios (columns labeled 1 through 10) and

for the difference between decile 10 and decile 1 (column labeled High−Low).10 The numbers in

parentheses are t-statistics, adjusted following Newey and West (1987, NW hereafter) using six

lags, testing the null hypothesis that the average excess return or FFC4 α is equal to zero.

The results in Table 1 show that the average market beta (β) increases monotonically (by

construction) from a beta of -0.0007 for the first decile portfolio to a beta of 2.02 for the 10th

decile. The average excess returns (R) of the beta-sorted decile portfolios tend to decrease, albeit

not monotonically, from 0.69% per month for the low-beta decile (decile 1) to 0.35% for the high-

beta decile (decile 10). The average monthly return difference between decile 10 and decile 1 (High–

Low) of -0.35% per month is not statistically distinguishable from zero, indicating no difference in

average returns between stocks with high market betas and stocks with low market betas. This

result contrasts with the central prediction of the CAPM of a positive relation between market

beta and expected return.

The abnormal returns of the decile portfolios relative to the FFC4 risk model exhibit a strong

and nearly monotonically decreasing (the exception is decile 1) pattern across the deciles of mar-

ket beta. The lowest beta decile portfolio’s abnormal return of 0.22% per month is statistically

significant, with a corresponding t-statistic of 2.22. On the other hand, the highest beta portfolio

generates a significantly negative abnormal return of -0.29% per month (t-statistic = -2.22). The

difference in abnormal returns between the high-beta and low-beta portfolios of -0.51% per month

10The FFC4 alpha is the estimated intercept coefficient from a regression of the excess portfolio return on the
contemporaneous excess return of the market portfolio (MKTRF ), the return of a zero-cost long-short size-based
portfolio that is long stocks with low market capitalization and short stocks with high market capitalization (SMB),
the return of a zero-cost long-short book-to-market ratio-based portfolio that is long stocks with high book-to-market
ratios and short stocks with low book-to-market ratios (HML), and the return of a portfolio that is long stocks with
high momentum and short stocks with low momentum (UMD).
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is highly significant, with a t-statistic of -2.50.

The last result discussed in the previous paragraph, namely, the large negative FFC4 alpha of

the High−Low portfolio, is the starting point for this paper. The result (FFC4 alpha) indicates

that the betting against beta phenomenon documented by FP is both economically strong and

statistically significant in our sample.11

To obtain an understanding of the composition of the beta portfolios, the remainder of Table

1 presents summary statistics for the stocks in the decile portfolios. Specifically, the table reports

the average values of the firm characteristics, risk variables, and measures of funding liquidity

sensitivity for the stocks in each portfolio, averaged across the months.

The results indicate that market beta (β) has a strong cross-sectional relation with each of

the firm characteristic variables. β is positively related to lottery demand (MAX), market capi-

talization (MKTCAP ), momentum (MOM), and idiosyncratic volatility (IV OL) and negatively

related to the book-to-market ratio (BM) and illiquidity (ILLIQ). The final row in the Firm

Characteristics panel of Table 1 presents the percentage of total market capitalization that is held

in each beta decile. The results indicate that the low-beta portfolio holds a substantially smaller

percentage of total market capitalization than the high-beta portfolio, with decile 1 comprising only

1.92% of total market capitalization and decile 10 holding 12.86%. The results in the Risk Measures

panel show that co-skewness (COSKEW ), downside beta (DRISK), and tail beta (TRISK) are

all positively related to market beta (β), while total skewness (TSKEW ) and market beta exhibit

a negative relation.

Finally, Table 1 reports the cross-sectional average values of individual stocks’ exposures to the

funding liquidity factors. As discussed in Section 2.3, the TED spread, TED spread volatility, U.S.

Treasury bill rates, and financial sector leverage all take on low values when funding liquidity is

high. In other words, βTED, βV OLTED, βTBILL, and βFLEV are measures of funding illiquidity

beta, indicating a theoretically negative link with future stock returns. As shown in the Funding

Liquidity Measures panel of Table 1, the low-beta portfolio, which has higher alpha, contains stocks

with lower levels of βTED and βV OLTED compared to the high-beta portfolio. Hence, the betting

11In Section II and Table A1 of the online appendix, we demonstrate that this result is robust to the use of
alternative measures of beta developed by Scholes and Williams (1977) and Dimson (1979) designed to account for non-
synchronous and infrequent trading, respectively. In Section IV and Table A3 of the online appendix, we demonstrate
that the cross-sectional patterns in β decile portfolio performance are robust when using the manipulation-proof
performance measure of Ingersoll, Spiegel, Goetzmann, and Welch (2007).
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against beta phenomenon is potentially driven by funding liquidity risk as measured by βTED or

βV OLTED. On the other hand, values of βTBILL and βFLEV are on average higher for stocks with

low values of β than for stocks with high values of β. Therefore, βTBILL and βFLEV are unlikely

to explain the betting against beta phenomenon.

3.2 Lottery Demand Phenomenon

As with the betting against beta phenomenon, we demonstrate the lottery demand phenomenon

with a univariate decile portfolio analysis, this time sorting on MAX instead of β. The results

are presented in Table 2. Consistent with Bali et al. (2011), we find a strong negative relation

between MAX and future stock returns. The average monthly return difference between the decile

10 and decile 1 portfolios of −1.15% per month is both economically large and highly statistically

significant, with a t-statistic of −4.41. Furthermore, with the exception of the first decile portfolio,

the excess returns of the decile portfolios decrease monotonically across the deciles of MAX. The

FFC4 alphas of the MAX decile portfolios exhibit patterns very similar to those of the excess

returns. The abnormal return of the High−Low MAX portfolio of −1.40% per month is both large

and highly significant (t-statistic = −8.95). As with the excess returns, the risk-adjusted alphas

decrease monotonically from MAX decile 2 through decile 10. In Section III and Table A2 of the

online appendix, we show that these results are robust when MAX is defined as the average of the

k highest daily returns of the stock within the given month for k ∈ {1, 2, 3, 4, 5}.12,13

4 Lottery Demand Explains Betting against Beta

Having demonstrated that the betting against beta and lottery demand phenomena are both strong

in our sample, we proceed to examine whether lottery demand, or any of the other firm character-

istics, risk variables, or funding liquidity measures, can explain the betting against beta effect.

12In Section IV and Table A3 of the online appendix, we demonstrate that the cross-sectional patterns in MAX
decile portfolio performance are robust when using the manipulation-proof performance measure of Ingersoll et al.
(2007).

13In Section V and Table A4 of the online appendix, we demonstrate that the high (low) MAX portfolio is a
high (low) MAX asset. In the spirit of Brown, Gregoriou, and Pascalau (2012), who show that tail risk (negative
skewness) is not diversified away as funds of hedge funds become more diversified, we calculate the portfolio-level
MAX for each of the decile portfolios sorted on MAX. We find that portfolio-level MAX increases monotonically
across the MAX-sorted decile portfolios. The result indicates that MAX aggregates, in the sense that a lottery
investor who invests in a large number of high MAX stocks has invested in a high-MAX portfolio.
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4.1 Bivariate Portfolio Analysis

We begin by employing bivariate portfolio analyses to assess the relation between market beta and

future stock returns after controlling for MAX and each of the other variables discussed in Table

1. Each month, we group all stocks in the sample into deciles based on an ascending sort of one

of these variables, which we refer to as the control variable. We then sort all stocks in each of the

control variable deciles into 10 decile portfolios based on an ascending ordering of β. The monthly

excess return of each portfolio is calculated as the equal-weighted one-month-ahead excess return.

Finally, each month, within each decile of β, we take the average portfolio return across all deciles

of the control variable. Table 3 presents the time-series average excess returns of these portfolios

for each decile of β, as well as for the High−Low β difference, the corresponding FFC4 alphas,

and NW-adjusted t-statistics (in parentheses). The first column of the table indicates the control

variable.

The results for the firm characteristic variables in Table 3 indicate that, after controlling for the

effect of lottery demand by first sorting on MAX, the betting against beta phenomenon disappears,

since the FFC4 alpha of the High−Low beta portfolio is only −0.14% per month, economically

small, and statistically insignificant, with a t-statistic of −0.85. The magnitude of the alpha of this

portfolio is slightly more than one-quarter of that generated by the unconditional portfolio analysis

(Table 1) and less than half of the corresponding values for the other bivariate portfolio analyses

presented in Table 3. This is our preliminary evidence that lottery demand explains the betting

against beta phenomenon. In Section VI and Table A5 of the online appendix, we demonstrate that

this result is robust when measuring lottery demand as the average of the k highest daily returns

of the given stock within the given month, for k ∈ {1, 2, 3, 4, 5}. In Section VII and Table A6 of

the online appendix, we demonstrate that the ability of lottery demand to explain the abnormal

returns of the betting against beta phenomenon persists in periods of expansion and contraction,

measured by positive and negative values, respectively, of the Chicago Fed National Activity Index

(CFNAI), and that the result is not driven by the financial crisis of 2007 through 2009.

The remaining results in the Firm Characteristics portion of Table 3 indicate that the bet-

ting against beta phenomenon persists after controlling for market capitalization (MKTCAP ), the

book-to-market ratio (BM), momentum (MOM), illiquidity (ILLIQ), and idiosyncratic volatility
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(IV OL), since the FFC4 alpha of the High−Low market beta portfolio remains negative, econom-

ically large, and statistically significant after controlling for each of these variables. Thus, of the

firm characteristics, only lottery demand explains the betting against beta phenomenon.

Moving on to the analyses that control for the risk measures and funding liquidity sensitivity

measures, presented in the bottom two panels of Table 3, the results indicate that none of these

variables are able to explain the betting against beta phenomenon. The FFC4 alphas of the

High−Low beta portfolios in these analyses are very similar to those generated by the univariate

portfolio analysis, ranging from -0.36% to -0.59% per month, with corresponding t-statistics between

-2.22 and -3.02.

In summary, the results of the bivariate portfolio analyses indicate that lottery demand explains

the betting against beta phenomenon, since the effect disappears when controlling for MAX. The

betting against beta phenomenon persists when controlling for all other firm characteristics, risk

measures, and funding liquidity sensitivities.

4.2 Regression Analysis

We continue our analysis of the betting against beta phenomenon by running FM regressions of

future stock returns on market beta and combinations of the firm characteristic, risk, and funding

liquidity sensitivity variables. Doing so allows us to simultaneously control for all other effects

when assessing the relation between market beta and future stock returns.

Each month, we run a cross-sectional regression of one-month-ahead future stock excess returns

(R) on β and combinations of the control variables. To isolate the effect of controlling for lottery

demand on the relation between beta and future stock returns, we run each regression specification

with and without MAX as an independent variable. The full cross-sectional regression specification

is

Ri,t = λ0,t + λ1,tβi,t−1 + λ2,tMAXi,t−1 + ΛtXi,t−1 + εi,t (1)

where Xi,t−1 is a vector containing the measures of firm characteristics (excluding MAX), risk, and

funding liquidity sensitivity. Table 4 presents the time-series averages of the regression coefficients,

along with NW-adjusted t-statistics testing the null hypothesis that the average slope coefficient is

equal to zero (in parentheses).
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The left panel of Table 4 shows that when the regression specification does not include MAX

(models (1) through (3)), the average coefficient on β is statistically indistinguishable from zero,

with values ranging from 0.060 to 0.263 and t-statistics between 0.44 and 1.08. When MAX is

added to the regression specification (models (4) through (6)), the average coefficients on β increase

dramatically, becoming positive and statistically significant, with values ranging from 0.265 to 0.470

and t-statistics between 1.90 and 2.34. Compared to the corresponding regression specifications

without MAX, including MAX as an independent variable increases the coefficient on β by at

least 0.20. The regression analyses indicate that the inclusion of MAX as an independent variable

results in the detection of a positive and statistically significant relation between β and future stock

returns, consistent with theoretical predictions.

Interpreting the coefficient on β as an estimate of the market risk premium, the regression

specification that includes all variables (regression model (6) in Table 4) indicates a market risk

premium of 0.47% per month, or 5.64% per year. Alternatively, this coefficient suggests that, all

else being equal, the difference in average monthly expected return for stocks in the highest quintile

of market beta compared to stocks in the lowest quintile of market beta is 0.76% per month, or

9.12% per year.14 Both of the numbers are quite reasonable estimates of the premium associated

with taking market risk.

Consistent with the negative relation between lottery demand and future stock returns docu-

mented by Bali et al. (2011), the results in Table 4 reveal a strong negative cross-sectional relation

between MAX and future stock returns after controlling for the other effects, since the average

slopes on MAX range from -0.223 to -0.358, with corresponding t-statistics between -6.16 and

-8.49.

The relations between firm characteristics and stock returns are also as predicted by previous

research. The log of market capitalization (SIZE) exhibits a negative relation with future stock

excess returns (R), while the analyses detect a positive relation between excess stock returns and the

book-to-market ratio (BM) and momentum (MOM). The relation between illiquidity (ILLIQ)

and excess stock returns is statistically insignificant. Consistent with the results of Ang, Hodrick,

14The average market beta for stocks in the first (fifth) beta quintile is 0.125 (1.740). These values are calculated
by taking the average market beta from decile portfolios 1 and 2 (9 and 10) from Table 1. The difference of 1.615
(1.740−0.125) between the top- and bottom-quintile beta is then multiplied by the regression coefficient 0.47 to obtain
0.76% per month.
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Xing, and Zhang (2006), when MAX is not included in the regression specification, the average

coefficient on idiosyncratic volatility (IV OL) is negative and highly statistically significant. As

demonstrated by Bali et al. (2011), when MAX is added to the specifications without the funding

liquidity sensitivities, the coefficient on IV OL flips signs and becomes positive. When funding

liquidity sensitivities and MAX are included, the regression analysis detects no relation between

idiosyncratic volatility and future stock returns.

As for the measures of risk, total skewness (TSKEW ) exhibits a significantly negative relation

with future stock returns. The results indicate no relation between stock returns and co-skewness

(COSKEW ) or tail beta (TRISK), since the average coefficients on these variables are small and

statistically insignificant. In the specifications that include the full set of control variables, the

regressions detect a negative relation between downside beta (DRISK) and future stock returns.

The regressions fail to detect any relation between the measures of funding liquidity sensitivity

(βTED, βV OLTED, βTBILL, βFLEV ) and future stock returns, since the average slope on each of

these variables is statistically insignificant in all specifications.

4.3 Bivariate Portfolio Analysis of β and MAX

We now present the results of a bivariate independent sort portfolio analysis of the relations between

each of β and MAX and future stock returns. Each month, all stocks are grouped into deciles

based on independent ascending sorts of both β and MAX. The intersections of each of the decile

groups are then used to form 100 portfolios. To better understand the relation between β and

MAX, Figure 1 presents a heat map of the number of stocks in each of the 100 portfolios. Light

purple cells represent a high number of stocks, while light blue cells represent portfolios with a

small number of stocks. The figure shows that stocks with high (low) market betas also tend to

have high (low) values of MAX. The figure also indicates that across all levels of β and MAX,

there appears to be a strong positive relation, since portfolios along the diagonal from the bottom

left to the top right of the map tend to contain more stocks than portfolios holding high-beta and

low-MAX stocks or vice versa.

Table 5 presents the time-series average monthly excess returns for each of the equal-weighted

portfolios. The row (column) labeled High−Low shows the returns of the zero-cost portfolio that

is long the β (MAX) decile 10 portfolio and short the β (MAX) decile 1 portfolio within the given
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decile of MAX (β), and the FFC4 α row (column) presents the corresponding abnormal returns

relative to the FFC4 model.

The last two rows of Table 5 show that the betting against beta effect disappears after con-

trolling for MAX in independent bivariate portfolios. Specifically, within each MAX decile, the

average return and alpha differences between the high-β and low-β portfolios are economically and

statistically insignificant. In unreported results, we find that the average High−Low β portfolio

across all deciles of MAX generates an average monthly return of −0.03% (t-statistic = −0.13)

and an FFC4 alpha of −0.15% per month (t-statistic = −0.76). Consistent with previous analyses,

these results indicate that the negative risk-adjusted return of the High−Low β portfolio is driven

by the relation between β and MAX, since the effect disappears when the portfolios are constructed

to be neutral to MAX. The analysis demonstrates that the betting against beta phenomenon is a

manifestation of lottery demand.

The last two columns of Table 5 show that the negative relation between MAX and future stock

returns persists after controlling for the effect of β. Within each β decile, the High−Low MAX

portfolio generates economically large and statistically significant average returns ranging from

−0.81% to −1.94% per month. The average High−Low MAX portfolio (unreported) generates

an average return of −1.33% per month, with a corresponding t-statistic of −6.59. Examination

of the risk-adjusted returns leads to similar conclusions, since the FFC4 alphas of the High−Low

MAX portfolios range from −1.23% to −2.20% per month, with t-statistics between −2.70 and

−7.43. The FFC4 alpha of the average High−Low MAX portfolio (unreported) is −1.64% per

month (t-statistic = −9.99). The results therefore demonstrate that the negative relation between

MAX and future excess stock returns (R) is not driven by market beta, since the relation persists

after controlling for β.

The results of the independent bivariate sort portfolio analysis indicate that the betting against

beta phenomenon is driven by the relation between lottery demand and future stock returns. The

negative relation between lottery demand and stock returns, however, persists after controlling for

market beta. To assess the robustness of these relations to the design of the portfolio analysis, we

repeat the analysis using a dependent sort procedure, sorting first on MAX and then on β and

then using the alternative sort order. The results of these analyses, presented in Section VII and
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Table A7 of the online appendix, are consistent with the independent sort analyses.15

4.4 Orthogonal Components of β and MAX

Our final examinations of the joint roles of market beta and lottery demand in predicting future

stock returns are univariate portfolio analyses using the portion of β that is orthogonal to MAX

(β⊥MAX) and the portion of MAX that is orthogonal to β (MAX⊥β) as sort variables. β⊥MAX is

calculated as the intercept term plus the residual from a cross-sectional regression of β on MAX.

MAX⊥β is calculated analogously by taking the intercept plus the residual from a cross-sectional

regression of MAX on β.

The top of Table 6 presents the results of a univariate portfolio analysis using the portion of β

that is orthogonal to MAX (β⊥MAX) as the sort variable. The results show that the average values

of β⊥MAX are quite similar in magnitude to the average values of β for the β decile portfolios (see

Table 1), with average values ranging from −0.02 for the β⊥MAX decile 1 portfolio to 1.90 for the

decile 10 portfolio. The similarities between the portfolios end here, however. Looking first at the

excess returns, we find that the High−Low β⊥MAX portfolio generates a positive but insignificant

average monthly return of 0.13%, compared to a negative and insignificant return of −0.35% for

the β-sorted portfolios. More importantly, the FFC4 alpha of the High−Low β⊥MAX portfolio of

0.05% per month is statistically indistinguishable from zero. Furthermore, the abnormal returns

of each of the β⊥MAX decile portfolios are statistically indistinguishable from zero, with decile 2

being the one exception. The results indicate that the abnormal returns of the portfolios formed by

sorting on β are a manifestation of the relation between MAX and β, since the effect disappears

when only the portion of β that is orthogonal to MAX is used to form the portfolios. The betting

against beta phenomenon does not exist when only the portion of market beta that is orthogonal

to lottery demand is used to form the portfolios.

The results of the univariate portfolio analysis of the relation between MAX⊥β and future

excess stock returns (R), presented in the last panel of Table 6, indicate that MAX⊥β has a strong

negative cross-sectional relation with future stock returns, since the −1.19% average monthly return

difference between the decile 10 and decile 1 portfolios is highly statistically significant, with a t-

15A summary of the dependent sort analysis sorting on MAX and then β was previously presented in the first row
of the Firm Characteristics panel in Table 3.
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statistic of −6.72. Similarly, the four-factor alpha of the High−Low portfolio is −1.44% (t-statistic

= −10.62). Furthermore, the abnormal returns of the portfolios decrease monotonically across

deciles of MAX⊥β. Consistent with previous analyses (Table 5), the results indicate that the

negative relation between MAX and future stock returns is not driven by the relation between

MAX and β, since the univariate portfolio analysis results generated using MAX⊥β as the sort

variable are very similar to those from the analysis sorting on MAX.16

In this section, we have used several different implementations of portfolio and regression analy-

sis to disentangle the joint relation between market beta, lottery demand, and future stock returns.

The results lead to two conclusions. First and most importantly, the analyses demonstrate that

the betting against beta phenomenon documented by FP is driven by the demand for lottery-like

assets. Using several different approaches to control for the effect of lottery demand, we find that

all approaches indicate that once the effect of lottery demand is accounted for, the betting against

beta phenomenon ceases to exist. Second, the negative relation between lottery demand and future

stock returns persists after accounting for the effect of market beta.

5 Lottery Demand Price Pressure

Having demonstrated that the betting against beta phenomenon is explained by lottery demand,

we now further examine the channel via which lottery demand impacts the slope of the capital

market line. Specifically, we investigate our hypothesis that high lottery demand stocks are also

predominantly high beta stocks, resulting in lottery demand-based upward price pressure on high-

beta stocks. The result of this price pressure is an increase in the prices of high lottery demand—

and therefore high-beta—stocks, and a corresponding decrease in the future returns of such stocks.

Additionally, following Kumar (2009), who demonstrates that demand for lottery-like stocks is

driven by individuals and not by institutional investors, we demonstrate that the betting against

beta phenomenon only exists among stocks with a low proportion of institutional owners and

disappears in stocks that are largely held by institutions. We find the same effect in the lottery

demand phenomenon.

16In Section V and Table A4 of the online appendix, we demonstrate that the high (low) MAX⊥β portfolio is in fact
a high (low) MAX asset. We show that portfolio-level MAX for MAX⊥β-sorted portfolios is nearly monotonically
increasing across the MAX⊥β deciles, indicating that a lottery investor who invests in a large number of high MAX⊥β

stocks has invested in a high-MAX portfolio.
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5.1 Correlation between β and MAX

We begin by analyzing the cross-sectional relation between lottery demand and beta. If high lottery

demand stocks are also predominantly high beta stocks, we expect a strong positive cross-sectional

relation between β and MAX. The increasing average MAX values across deciles of β observed in

Table 1 provides preliminary evidence that this is the case. Here, we examine this relation in more

detail.

Each month, we calculate the cross-sectional Pearson product moment correlations between β

and MAX, which we denote ρβ,MAX . β and MAX are highly cross-sectionally correlated, since the

average (median) value of ρβ,MAX is 0.30 (0.29). Furthermore, values of ρβ,MAX range from -0.03

to 0.84, with only four of the 593 months in the sample period generating a negative cross-sectional

correlation between β and MAX. Consistent with our hypothesis, therefore, in most months,

lottery stocks are predominantly high-beta stocks. Price pressure exerted by lottery demand will

therefore fall disproportionately on high-beta stocks, resulting in a flattening of the security market

line, which is tantamount to the betting against beta phenomenon.

5.2 Betting against Beta and ρβ,MAX

The driving factor behind our explanation for why lottery demand generates the betting against

beta phenomenon is that lottery demand-based price pressure falls heavily on high-beta stocks. As

discussed previously, in the average month, this is the case. However, there are several months

in which the cross-sectional correlation between β and MAX is not high, meaning that lottery

demand-based price pressure should fall nearly equally on high- and low-beta stocks. If our hy-

pothesis for why lottery demand produces the betting against beta effect is correct, then the betting

against beta phenomenon should exist only in months in which lottery demand-based price pressure

is predominantly exerted on high-beta stocks. When the price pressure exerted by lottery demand

is similar for low-beta and high-beta stocks, the betting against beta phenomenon should not exist.

To test whether this is the case, we divide the months in our sample into those with high and low

cross-sectional correlation between β and MAX (ρβ,MAX) and analyze the returns of the β-sorted

decile portfolios in each of these subsets. High-ρβ,MAX (low-ρβ,MAX) months are taken to be those

months with values of ρβ,MAX greater than or equal to (less than) the median ρβ,MAX .
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Panel A of Table 7 presents the results of univariate portfolio analyses of the relation between β

and future excess stock returns (R) for the high- and low-ρβ,MAX months. The results show that, in

high-ρβ,MAX months, the High−Low β portfolio generates an economically large, albeit statistically

insignificant, average monthly return of −0.68%. The FFC4 alpha of −0.72% per month is highly

statistically significant, with a t-statistic of −2.86. In low-ρβ,MAX months, the average High−Low

portfolio return is −0.01% per month and the risk-adjusted alpha is only −0.26% per month, both

statistically indistinguishable from zero. Consistent with the hypothesis that the betting against

beta effect is a manifestation of disproportionate lottery demand price pressure on high-beta stocks,

the phenomenon only exists in months in which the cross-sectional relation between MAX and β

is high. When these two variables are not strongly related, betting against beta fails to generate

economically important or statistically significant abnormal returns.

To demonstrate that lottery demand-based price pressure persists in both high-ρβ,MAX and

low-ρβ,MAX months, we present the results of univariate portfolio analyses of the relation between

MAX and future excess stock returns (R) for each subset of months in Panel B of Table 7. In high-

ρβ,MAX months, the average High−Low return of −1.55% per month and FFC4 alpha of −1.76%

per month are economically large and highly statistically significant. In months in which ρβ,MAX

is low, the relation remains strong, since the average High−Low return of −0.74% per month is

both economically and statistically significant (t-statistic = −2.26). The same is true for the risk-

adjusted alpha of −1.05% per month (t-statistic = −5.77). The results demonstrate that the effect

of lottery demand on prices exists in both high-ρβ,MAX and low-ρβ,MAX months. Interestingly,

this effect appears to be stronger in months in which ρβ,MAX is high. As demonstrated in the next

section, high-ρβ,MAX months are characterized by high aggregate lottery demand, that is, months

in which lottery demand has a stronger cross-sectional impact on prices.

5.3 Aggregate Lottery Demand and ρβ,MAX

The next check of our proposed channel via which lottery demand generates the betting against

beta phenomenon is to examine the economic conditions in months characterized by high and low

correlation between beta and MAX (ρβ,MAX). Specifically, we examine the level of aggregate

lottery demand in high- and low-ρβ,MAX correlation months. Since substantial aggregate lottery

demand is a necessary component of the link between lottery demand and the betting against beta
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effect and the betting against beta phenomenon only exists in high-ρβ,MAX months, we expect

high-ρβ,MAX months to be characterized by high aggregate lottery demand.

We use five measures of aggregate lottery demand. The first three are the Aruoba-Diebold-

Scotti Business Conditions Index (ADS), the Chicago Fed National Activity Index (CFNAI), and

the volatility of daily market returns during the given month.17 Our fourth measure is the value of

MAX calculated for the market portfolio and our final measure is the value-weighted average value

of MAX across all stocks in the sample. The results of these analyses, presented and discussed

in detail in Section VIII and Table A8 of the online appendix, demonstrate that aggregate lottery

is significantly higher during months with high cross-sectional correlation between β and MAX.

High-ρβ,MAX months are more likely to be categorized as recessions (CFNAI and ADS) and to

have high market volatility, market MAX, and average MAX than low-ρβ,MAX months.

5.4 Institutional Holdings and Betting against Beta

Our final analysis demonstrating that the abnormal returns of the betting against beta strategy

are driven by lottery demand-based price pressure examines the strength of the betting against

beta phenomenon among stocks with differing levels of institutional ownership. An implication of

the FP story is that the betting against beta phenomenon is strongest for those stocks with the

greatest degree of institutional ownership (pension funds and mutual funds), since these investors

would be expected to face the most serious margin constraints. Kumar (2009) demonstrates that

lottery demand is prominent among individual investors but not among institutional investors. If

the betting against beta phenomenon is in fact driven by lottery demand, the alpha of the betting

against beta strategy is expected to be concentrated in stocks with low institutional ownership

and to not exist in stocks predominantly owned by institutions. To measure institutional holdings,

we define INST to be the fraction of total shares outstanding that are owned by institutional

investors as of the end of the most recent fiscal quarter. Values of INST are collected from the

Thomson-Reuters Institutional Holdings (13F) database.

To examine the strength of the betting against beta phenomenon among stocks with differing

levels of institutional ownership, we use a bivariate dependent sort portfolio analysis. Each month,

17Kumar (2009) demonstrates that aggregate lottery demand is highest during economic downturns. ADS and
CFNAI are designed to measure overall economic conditions. High market volatility is indicative of deteriorating
economic conditions.
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all stocks in the sample are grouped into deciles based on an ascending sort of the percentage

of shares owned by institutional investors (INST ). Within each decile of INST , we form decile

portfolios based on an ascending sort of β. In Panel A of Table 8, we present the time-series average

of the one-month-ahead equal-weighted portfolio returns for each of the 100 resulting portfolios,

as well as the average return, FFC4 alpha, and associated t-statistics, of the High–Low β portfolio

within each decile of INST . The results demonstrate that the betting against beta phenomenon

is very strong among stocks with low institutional ownership and non-existent for stocks with high

institutional ownership. The magnitudes of the average returns and FFC4 alphas of the High–

Low β portfolio are decreasing (nearly monotonically) across the deciles of INST . For decile one

through decile five of INST , the average returns and FFC4 alphas of the High–Low β portfolios are

negative, economically large, and highly statistically significant. For INST decile seven through

decile 10, the returns and alphas of the High–Low β portfolios are statistically insignificant. The

betting against beta strategy, therefore, generates large abnormal returns when implemented on

stocks with low institutional holdings but is ineffective when implemented only on stocks with high

institutional holdings, consistent with our hypothesis that demand for lottery generates the betting

against beta phenomenon.

To ensure that, in our sample, it is in fact individual investors that drive the lottery demand

phenomenon, we repeat the bivariate dependent sort portfolio analysis, sorting on INST and then

MAX. As shown in Panel B of Table 8, the magnitudes of the returns and FFC4 alphas of the

High–Low MAX portfolios are the largest and most statistically significant in the low deciles of

INST , and decrease substantially across the deciles of INST . The results demonstrate that, among

stocks with low institutional ownership, the lottery demand phenomenon is strong, but for stocks

with a high degree of institutional ownership, the lottery demand phenomenon does not exist.

In summary, in this section, we provide strong evidence that a disproportionate amount of

lottery demand-based price pressure on high-beta stocks generates the betting against beta phe-

nomenon. Specifically, we show that there is high cross-sectional correlation between β and MAX,

indicating that lottery demand price pressure is predominantly exerted on high-beta stocks. We

then show that in months where this correlation is low (high), the betting against beta portfolio

does not (does) generate significant abnormal returns, indicating that when lottery demand does

not (does) place disproportionate price pressure on high-beta stocks, the betting against beta ef-
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fect is non-existent (strong). In other words, without lottery demand-based priced pressure on

high-beta stocks, the betting against beta phenomenon does not exist. Since substantial aggre-

gate lottery demand is a necessary component of our proposed mechanism, we show that months

with a high cross-sectional correlation between β and MAX—months when the betting against

beta phenomenon exists—are characterized by high aggregate lottery demand and poor economic

conditions. Finally, we show that the betting against beta phenomenon only exists in stocks that

are most susceptible to lottery demand price pressure, namely, those stocks with low institutional

ownership.

6 Lottery-Demand Factor

We proceed now to generate a factor capturing the returns associated with lottery demand. We

then show that this lottery demand factor explains both the returns of the High−Low β portfolio

as well as the returns of the BAB factor generated by FP.

We form our lottery-demand factor, denoted FMAX, using the factor-forming technique pio-

neered by Fama and French (1993). Each month, we sort all stocks into two groups based on market

capitalization, with the breakpoint dividing the two groups based on the median market capital-

ization of stocks traded on the NYSE. We independently sort all stocks in our sample into three

groups based on an ascending sort of MAX. The intersections of the two market capitalization-

based groups and the three MAX groups generate six portfolios. The FMAX factor return is taken

to be the average return of the two value-weighted high-MAX portfolios minus the average return

of the two value-weighted low-MAX portfolios. As such, the FMAX factor portfolio is designed to

capture returns associated with lottery demand while maintaining neutrality to market capitaliza-

tion. The FMAX factor generates an average monthly return of −0.54% with an NW t-statistic of

−2.55.

6.1 FMAX Factor and β-Sorted Portfolio

We now assess the abnormal returns of the β-based portfolios relative to four different factor models.

The first model is the FFC4 model used throughout this paper. We then augment this model with
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Pastor and Stambaugh’s (2003) traded liquidity factor (PS).18 Each of these models is then further

augmented with the FMAX factor. The portfolios used in our analysis are the same univariate

β-sorted decile portfolios used to generate the results in Table 1.

Panel A of Table 9 presents the risk-adjusted alphas (column labeled α) as well as factor

sensitivities of the High−Low β portfolio, using each of the factor models. Using the FFC4 model,

as seen previously, the High−Low β portfolio generates an economically large and statistically

significant risk-adjusted return of −0.51% (t-statistic = −2.50) per month. The portfolio also

has significant positive sensitivities to the market factor (MKTRF) and the size factor (SMB)

and negative sensitivities to the value factor (HML) and momentum factor (UMD). Including the

PS factor in the model (FFC4+PS) has very little effect on the abnormal return or the factor

sensitivities. Using this model, the alpha of the High−Low portfolio is −0.49% per month, with a

t-statistic of −2.26.

Inclusion of the FMAX factor in the risk model has dramatic effects on both the abnormal

returns and factor sensitivities. When the FFC4 model is augmented with the FMAX factor

(FFC4+FMAX), the alpha of the High−Low portfolio of 0.06% per month is both economically

small and statistically indistinguishable from zero, with a t-statistic of 0.35. A similar result holds

when the illiquidity factor is also included (FFC4+PS+FMAX). Using this model, the High−Low

β portfolio’s alpha is 0.04% per month, with a t-statistic of 0.22. The results indicate that the

inclusion of the lottery demand factor (FMAX) in the factor model explains the abnormal returns

of the High-Low β portfolio. Furthermore, inclusion of the FMAX factor substantially decreases

the sensitivity of the High−Low β portfolio to the market (MKTRF), size (SMB), and value (HML)

factors, with the size factor sensitivity being statistically indistinguishable from zero in models that

include FMAX. The portfolio is highly sensitive to the FMAX factor, since the sensitivities using

the FFC4+FMAX and FFC4+PS+FMAX models of 0.85 (t-statistic = 12.49) and 0.82 (t-statistic

= 11.72), respectively, are highly statistically significant.

For robustness, we repeat the analysis in Panel A of Table 9 using only months with high

correlation between β and MAX and then, again, using only months with low correlation. The

results of these analyses, presented in Section IX and Table A9 of the online appendix, show that in

18The PS factor returns are only available for months beginning with January 1968. Thus, analyses that include
the PS factor are restricted to this time period.
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high-correlation months, augmenting the FFC4 or FFC4+PS factor models with FMAX explains

the abnormal returns of the High−Low beta portfolio. For low-correlation months, the High−Low

β portfolio does not generate significant risk-adjusted returns relative to the FFC4 or FFC4+PS

model. When the FMAX factor is appended to the model, the estimated alpha goes from negative

to positive but remains statistically insignificant. The results therefore indicate that even in states

of the world in which the betting against beta phenomenon is strong, the FMAX factor explains the

returns associated with the High−Low β portfolio. There are no instances in which the High−Low

β portfolio generates significant returns relative to a model that includes the FMAX factor.

In Panel B of Table 9, we present the abnormal returns for the β-sorted decile portfolios using

each of the factor models. The results for the FFC4 and FFC4+PS models show that the alpha of

the High−Low β portfolio is generated by both the high-β and low-β portfolios, since these portfolios

have abnormal returns of −0.29% (t-statistic = −2.22) and 0.22% (t-statistic = 2.22), respectively,

for the FFC4 model and−0.26% (t-statistic =−1.91) and 0.23% (t-statistic = 2.12), respectively, for

the FFC4+PS model. Thus, both the high-β and low-β portfolios generate economically important

and statistically significant abnormal returns, with the magnitude of the abnormal returns of the

high-β and low-β portfolios being approximately the same. Furthermore, the alphas of the portfolios

are nearly monotonically decreasing across the deciles of β.

When the FMAX factor is added to the FFC4 factor model, neither the low-β nor high-β

portfolio generates abnormal returns that are statistically distinguishable from zero, since the high-

β (low-β) portfolio generates an alpha of 0.14% per month, with a t-statistic of 1.37 (0.08% per

month, with a t-statistic of 0.85), using the FFC4+FMAX model. The results are similar when

using the FFC4+PS+FMAX model. Furthermore, the alphas of the decile portfolios using models

that include FMAX are not monotonic. The results indicate that inclusion of the FMAX factor in

the factor model explains not only the alpha of the High−Low portfolio, but also the alpha of the

each of the high-β and low-β portfolios, along with any patterns in the alphas across the β deciles.

6.2 BAB Factor or FMAX Factor

Having demonstrated that augmenting standard factor models with the FMAX factor explains

the abnormal returns of the High−Low β portfolio, we proceed by analyzing the returns of FP’s

BAB factor using factor models that include our lottery demand factor, FMAX, and vice versa.
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We obtained monthly U.S. equity BAB factor returns for August 1963 through March 2012 from

Lasse Pedersen’s website.19 Each month, FP create the BAB factor by forming two portfolios, one

holding stocks with market betas that are below the median beta and the other holding stocks

with above-median betas.20 The low-beta (high-beta) portfolio is weighted such that stocks with

the lowest (highest) betas have the highest weights. Both the low-beta and high-beta portfolios

are then rescaled to have a weighted average beta of one. The BAB factor return is then taken to

be the excess return of the low-beta portfolio minus the excess return of the high-beta portfolio. It

is worth noting that this portfolio is constructed to be neutral to market beta, not to have equal

dollars invested in the long and short portfolios. The difference in market values between the long

and short portfolios is accounted for by borrowing at the risk-free rate or investing in the risk-free

security. As such, the BAB factor portfolio is a zero-cost, beta-neutral portfolio.21

We analyze the BAB factor by regressing its monthly returns against the returns of the market

portfolio (MKTRF), as well as the size (SMB), value (HML), momentum (UMD), liquidity (PS),

and lottery demand (FMAX) factors. The results of the analysis using different models are pre-

sented in Panel A of Table 10. Consistent with the results of FP, we find that the BAB factor

generates an economically large and statistically significant alpha of 0.54% (0.57%) per month rel-

ative to the FFC4 (FFC4+PS) risk model. As expected, given the construction of the portfolio,

the BAB factor returns exhibit no statistically discernable relation to the market portfolio. The

returns are positively related to the value factor (HML) and momentum (UMD) factor returns.

When the FMAX factor is included in the model, the results in Panel A of Table 10 indicate

that the BAB factor no longer generates statistically positive abnormal returns, since the alphas

relative to the FFC4+FMAX and FFC4+PS+FMAX models are 0.17% (t-statistic = 1.23) and

0.22% (t-statistic = 1.39) per month, respectively. The results show that the premium captured

by the BAB factor is completely explained by the inclusion of the FMAX factor in the model. The

results also indicate substantial negative covariation in the returns of the BAB and FMAX factors,

since the sensitivity of the BAB factor returns to the FMAX factor is −0.55 (t-statistic = −11.84)

19The data were downloaded from http://www.lhpedersen.com/data. BAB factor returns for April 2012 through
December 2012 were not available.

20The calculation of market beta used by FP is not the same as our measure’s. The details of their measure of
market beta are presented in their Section 3.1 and equation (14). We address this issue in robustness checks discussed
in Section 6.3.

21The details of generating the BAB factor are presented in FP’s Section 3.2 and equations (16) and (17).
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using the FFC4+FMAX model and −0.54 (t-statistic = −11.11) using the FFC4+PS+FMAX

model. Furthermore, the adjusted R-squared values of the factor regressions increase dramatically

from around 22% when the FMAX factor is not included in the risk model to approximately 47%

when FMAX is included. Interestingly, despite the intent to design the BAB factor portfolio to

have no sensitivity to the excess market portfolio returns, when the FMAX factor is included in

the risk model, the regressions detect a positive and highly statistically significant sensitivity of the

BAB factor returns to the market excess return. This result is consistent with our earlier findings

in multivariate cross-sectional regressions. As presented in Table 4, when MAX is included as an

independent variable in the FM regressions, the average slope on β becomes positive and statistically

significant. In Section X and Table A10 of the online appendix, we demonstrate that when lottery

demand is measured using the k highest daily returns of the given stock, k ∈ {1, 2, 3, 4, 5}, and the

lottery demand factor is created based on these alternative lottery demand measures, the ability of

the lottery demand factor to explain the returns of the BAB factor is robust.

We now repeat the factor analysis, reversing the roles of FMAX and BAB. The results are

presented in Panel B of Table 10. Consistent with previous results, the FFC4 and FFC4+PS

factor models both indicate that the FMAX factor generates abnormal returns, since the alphas

of −0.67% and −0.65% per month, respectively, are highly statistically significant (t-statistics of

−5.12 and −4.60, respectively). When the BAB factor is added to the risk models, the FMAX

factor alphas of −0.35% (t-statistic = −2.88) and −0.32% (t-statistic = −2.32) per month for

the FFC4+BAB and FFC4+PS+BAB models, respectively, remain economically large and highly

statistically significant. Similar to Panel A, the regressions detect a statistically significant negative

relation between the FMAX and BAB factor returns. Despite substantial covariation between the

BAB and FMAX factors, the results show that the premium captured by the FMAX factor is not

explained by the BAB factor.22

22In unreported analyses, we find that the time-series correlation between the sentiment index of Baker and Wurgler
(2006) and the FMAX factor of -0.18 is highly statistically significant. The results are similar when using FMAX
factors created from alternative definitions of MAX as the average of the one, two, three, four, or five highest daily
returns of the stock within the given month. This indicates that when sentiment is high, FMAX is low (large negative
return), indicating that investors have higher demand for lottery-like stocks when sentiment is high and hence are
willing to accept lower returns on such stocks, consistent with the main finding of Stambaugh, Yu, and Yuan (2012).
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6.3 Frazzini and Pedersen’s Beta and Sample

The previously presented results give strong indications that the betting against beta phenomenon

documented by FP is actually a manifestation of lottery demand. However, there are a few notable

differences between the analyses performed by FP and those in this paper. The first is that FP use

a different methodology to estimate market beta. The second is that FP use a sample that includes

all stocks, while we exclude stocks with a market price of less than $5 per share. In Section XI of

the online appendix, we demonstrate that the results presented throughout this paper are robust

to the use of FP’s measure of beta and the different sample constructions.

In summary, in this section (Section 6) we created a lottery demand factor, FMAX, and exam-

ined its ability to explain the returns associated with the betting against beta phenomenon. We find

that the alpha of the High−Low β portfolio is economically small and statistically indistinguish-

able from zero when FMAX is included in the factor model. We also show that the FMAX factor

explains the returns of the BAB factor generated by FP, since the abnormal returns of the BAB

factor are statistically insignificant relative to factor models that include FMAX. The opposite is

not the case, however, since augmenting standard risk models with the BAB factor fails to explain

the abnormal returns of the FMAX factor. Finally, we show that our results are not driven by

sample differences or differences in the calculation of market beta between this paper and FP’s. In

short, we demonstrate that the FMAX factor explains the betting against beta phenomenon, but

the betting against beta factor cannot explain the lottery demand phenomenon.

7 Conclusion

Frazzini and Pedersen (2014) demonstrate that an investment strategy that takes a short position

in stocks with high market beta and a long position in stocks with low market beta generates

economically large abnormal returns relative to standard risk models. In their highly acclaimed

paper, Frazzini and Pedersen develop an equilibrium model in which leverage constraints generate

this betting against beta phenomenon. Consistent with the model’s predictions, they demonstrate

that the phenomenon is present in the markets for several different security classes in many different

nations. The prevalence and persistence of the betting against beta phenomenon in security markets

makes understanding its drivers a topic of great importance for both financial market participants
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and researchers.

In this paper, we find strong empirical confirmation of Frazzini and Pedersen’s findings using

data from U.S. equity markets. Their findings are robust to the definitions of the variables used and

the characteristics of their sample. We propose a behavioral phenomenon, demand for lottery-like

assets (Kumar (2009), Bali et al. (2011)), as an alternative driver of the betting against beta effect.

Lottery demanders exert upward price pressure on stocks with high probabilities of large up moves.

Since such up moves are partially driven by sensitivity to the market portfolio, lottery demanders

put disproportionate upward price pressure on high-beta stocks. This results in a flattening of

the security market line and positive alpha for a portfolio that is long low-beta stocks and short

high-beta stocks, consistent with the betting against beta phenomenon reported by FP.

Measuring lottery demand using MAX, defined as the average of the five highest daily returns

over the past month, we find strong and robust evidence that controlling for MAX explains the

betting against beta phenomenon. Bivariate portfolio analyses demonstrate that the abnormal re-

turns of the betting against beta portfolio disappear when the portfolio is constructed to be neutral

to MAX. Fama and MacBeth (1973) regressions show that market beta is positively related to

future stock returns when the regression specification includes MAX. Univariate portfolio analysis

that sorts on the portion of beta that is orthogonal to MAX fails to detect a pattern in returns.

When our lottery demand factor, FMAX, is included in factor models, the abnormal returns of the

betting against beta portfolio become economically small and statistically indistinguishable from

zero. We also find that the FMAX factor explains the returns of the betting against beta factor

generated by Frazzini and Pedersen (2014). In all of our analyses, the economic and statistical sig-

nificance of the lottery demand phenomenon persists after controlling for the betting against beta

effect. Several measures of firm characteristics, risk, and sensitivity to funding liquidity factors fail

to explain the betting against beta phenomenon.

We also show that the channel by which lottery demand generates the betting against beta

is disproportionate lottery demand price pressure on high-beta stocks. Our results demonstrate

that, in the average month, market beta and lottery demand have a high positive cross-sectional

correlation, indicating that lottery demand-based price pressure falls predominantly on high-beta

stocks. We also find that when this correlation is low (high), the betting against beta phenomenon

disappears (is strong), indicating that disproportionate lottery demand-based price pressure on
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high-beta stocks is in fact the driver of the betting against beta phenomenon. Additionally, we

demonstrate that the months in which this effect is strongest are characterized by high aggregate

lottery demand and poor economic conditions. Finally, consistent with previous evidence that

lottery demand is attributable to individual, not institutional, investors, we show that the betting

against beta phenomenon only exists in stocks that have low institutional ownership.

The results provide overwhelming support for our conclusion that, in the U.S. equity markets,

the abnormal returns generated by a portfolio that has short positions in high-beta stocks and

long positions in low-beta stocks are driven by demand for lottery-like stocks. This does not at all

rule out the possibility that the funding liquidity explanation presented by Frazzini and Pedersen

(2014) explains the betting against beta phenomenon in other markets or in other countries. Their

results persist not only in 20 different international equity markets, but also in the markets for U.S.

Treasury bonds, corporate bonds, and futures. Generalization of the results in our study beyond

the scope of the U.S. equity markets therefore represents an important direction for future research.
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Gârleanu, N. and Pedersen, L. H. 2011. Margin-based asset pricing and deviations from the law of
one price. Review of Financial Studies, 24(6), 1980–2022.

Harvey, C. R. and Siddique, A. 2000. Conditional skewness in asset pricing tests. Journal of
Finance, 55(3), 1263–1295.

Ingersoll, J., Spiegel, M., Goetzmann, W., and Welch, I. 2007. Portfolio performance manipulation
and manipulation-proof performance measures. Review of Financial Studies, 20(5), 1503–1546.

Jegadeesh, N. and Titman, S. 1993. Returns to buying winners and selling losers: Implications for
stock market efficiency. Journal of Finance, 48(1), 65–91.

Kelly, B. T. and Jiang, H. 2013. Tail risk and asset prices. Working Paper, University of Chicago.

Kumar, A. 2009. Who gambles in the stock market? Journal of Finance, 64(4), 1889–1933.

Lakonishok, J. and Shapiro, A. 1986. Systematic risk, total risk and size as determinants of stock
market returns. Journal of Banking & Finance, 10(1), 115–132.

Lintner, J. 1965. Security prices, risk, and maximal gains from diversification. Journal of Finance,
20(4), 687–615.

Mossin, J. 1966. Equilibrium in a capital asset market. Econometrica, 34(4), 768–783.

Newey, W. K. and West, K. D. 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.

Pastor, L. and Stambaugh, R. F. 2003. Liquidity risk and expected stock returns. Journal of
Political Economy, 111(3), 642–685.

Reinganum, M. R. 1981. A new empirical perspective of the CAPM. Journal of Quantitive and
Empirical Finance, 16(4), 439–462.

Ruenzi, S. and Weigert, F. 2013. Crash sensitivity and the cross-section of expected stock returns.
Working Paper, University of Mannheim.

Scholes, M. and Williams, J. T. 1977. Estimating betas from nonsynchronous data. Journal of
Financial Economics, 5(3), 309–327.

Sharpe, W. F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk.
Journal of Finance, 19(3), 425–442.

Shumway, T. 1997. The delisting bias in CRSP data. Journal of Finance, 52(1), 327–340.

Stambaugh, R. F., Yu, J., and Yuan, Y. 2012. The short of it: Investor sentiment and anomalies.
Journal of Financial Economics, 104(2), 288–302.

Thaler, R. H. and Ziemba, W. T. 1988. Paramutuel betting markets: Racetracks and lotteries.
Journal of Economic Perspectives, 2(2), 161–174.

Tversky, A. and Kahneman, D. 1992. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

31



Table 1: Univariate Portfolios Sorted on β
Each month, all stocks are sorted into ascending β decile portfolios. The panel labeled β and
Returns presents the time-series means of the monthly equal-weighted portfolio betas (β), excess
returns (R), and Fama and French (1993) and Carhart (1997) four-factor alphas (FFC4 α). The col-
umn labeled High-Low presents the mean difference between decile ten and decile one. t-statistics,
adjusted following Newey and West (1987), testing the null hypothesis of a zero mean or alpha,
are shown in parentheses. The Firm Characteristics panel presents the average firm characteristics
among firms in each of the decile portfolios. The firm characteristics are market capitalization
(MKTCAP ), log of book-to-market ratio (BM), momentum (MOM), illiquidity (ILLIQ), id-
iosyncratic volatility (IV OL), and lottery demand (MAX). The row labeled Mkt Shr presents the
percentage of total market capitalization in each portfolio. The Risk Measures panel shows average
portfolio values of co-skewness (COSKEW ), total skewness (TSKEW ), downside beta (DRISK),
and tail beta (TRISK). The Funding Liquidity Measures panel displays average portfolio values
of TED spread sensitivity (βTED), TED spread volatility sensitivity (βV OLTED), sensitivity to the
yield on U.S. Treasury bills (βTBILL), and financial sector leverage sensitivity (βFLEV ). The sam-
ple covers the months from August of 1963 through December of 2012 and includes all U.S. based
publicly traded common stocks with share price of at least $5.

1 10
(Low) 2 3 4 5 6 7 8 9 (High) High-Low

β and Returns

β -0.00 0.25 0.42 0.56 0.70 0.84 1.00 1.19 1.46 2.02

R 0.69 0.78 0.78 0.77 0.81 0.73 0.71 0.65 0.51 0.35 -0.35
(3.74) (3.90) (3.74) (3.54) (3.42) (2.90) (2.66) (2.26) (1.58) (0.89) (-1.13)

FFC4 α 0.22 0.24 0.16 0.11 0.10 -0.02 -0.05 -0.11 -0.18 -0.29 -0.51
(2.22) (2.77) (2.31) (1.59) (1.69) (-0.30) (-0.80) (-1.83) (-2.20) (-2.22) (-2.50)

Firm Characteristics

MAX 2.52 2.37 2.52 2.66 2.82 3.01 3.22 3.50 3.90 4.61
MKTCAP 288 1,111 1,636 1,827 1,689 1,619 1,652 1,794 1,894 1,775
BM 1.10 1.04 0.95 0.90 0.86 0.83 0.80 0.76 0.72 0.65
MOM 17.03 16.33 17.15 17.50 17.99 18.77 20.37 22.63 25.83 35.74
ILLIQ 3.75 1.92 1.30 1.07 0.94 0.79 0.69 0.59 0.48 0.35
IV OL 2.01 1.80 1.83 1.88 1.95 2.03 2.13 2.27 2.47 2.79
Mkt Shr 1.92% 4.71% 7.52% 9.14% 10.16% 11.20% 12.73% 14.59% 15.17% 12.86%

Risk Measures

COSKEW -4.75 -5.02 -5.34 -5.30 -5.22 -5.03 -4.89 -4.82 -4.52 -1.96
TSKEW 0.86 0.67 0.57 0.51 0.47 0.45 0.44 0.44 0.44 0.47
DRISK 0.09 0.35 0.52 0.67 0.81 0.95 1.11 1.31 1.58 2.10
TRISK 0.13 0.41 0.60 0.74 0.87 1.02 1.18 1.38 1.65 2.15

Funding Liquidity Measures

βTED -2.10 -1.88 -1.60 -1.56 -1.52 -1.54 -1.53 -1.35 -0.99 -0.10
βV OLTED -11.41 -10.25 -7.82 -6.23 -5.32 -5.54 -4.89 -4.64 -3.77 -1.19
βTBILL -0.51 -0.54 -0.55 -0.56 -0.58 -0.60 -0.64 -0.71 -0.79 -0.94
βFLEV -0.54 -0.61 -0.68 -0.72 -0.76 -0.80 -0.83 -0.87 -0.88 -0.91



Table 2: Univariate Portfolios Sorted on MAX
Each month, all stocks are sorted into ascending MAX decile portfolios. The table presents the
time-series means of the monthly equal-weighted portfolio values of MAX, excess returns (R), and
Fama and French (1993) and Carhart (1997) four-factor alphas (FFC4 α). The column labeled
High-Low presents the mean difference between decile ten and decile one. t-statistics, adjusted
following Newey and West (1987), testing the null hypothesis of a zero mean or alpha, are shown
in parentheses.

1 10
Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

MAX 0.66 1.25 1.69 2.09 2.49 2.91 3.41 4.04 4.98 7.62

R 0.74 1.00 0.96 0.94 0.90 0.82 0.80 0.67 0.36 -0.40 -1.15
(4.07) (4.95) (4.59) (4.25) (3.84) (3.29) (2.93) (2.29) (1.10) (-1.11) (-4.41)

FFC4 α 0.27 0.42 0.35 0.30 0.23 0.12 0.08 -0.07 -0.38 -1.14 -1.40
(3.01) (5.90) (5.89) (5.18) (3.95) (2.20) (1.53) (-1.50) (-6.05) (-10.43) (-8.95)
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Table 3: Bivariate Portfolio Analyses of Relation Between β and Returns
The table below presents the results of bivariate dependent sort portfolio analyses of the relation
between market beta (β) and future stock returns after controlling for firm characteristics (Firm
Characteristics panel), measures of risk (Risk Measures panel), and measures of funding liquidity
sensitivity (Funding Liquidity Measures panel). Each month, all stocks are sorted into 100 portfolios
based on dependent decile sorts on the control variable and then β. The table presents the time-
series means of equal-weighted excess returns (R) for the average control variable decile portfolio
within each decile of β, as well as the mean return differences between the high and low beta
portfolios (High-Low), and the Fama and French (1993) and Carhart (1997) four-factor alphas
(FFC4 α) for the High-Low portfolios. t-statistics for the High-Low returns and FFC4 alphas,
adjusted following Newey and West (1987) using six lags, are in parentheses.

1 10
(Low) 2 3 4 5 6 7 8 9 (High) High-Low FFC4 α

Firm Characteristics

MAX 0.70 0.69 0.67 0.68 0.67 0.70 0.66 0.65 0.70 0.68 -0.02 -0.14
(-0.10) (-0.85)

MKTCAP 0.62 0.69 0.78 0.77 0.80 0.80 0.73 0.70 0.56 0.35 -0.28 -0.45
(-0.91) (-2.48)

BM 0.66 0.65 0.67 0.72 0.69 0.70 0.70 0.65 0.70 0.59 -0.06 -0.33
(-0.26) (-1.87)

MOM 0.74 0.81 0.85 0.76 0.81 0.77 0.71 0.65 0.54 0.29 -0.45 -0.63
(-1.83) (-3.55)

ILLIQ 0.68 0.78 0.79 0.80 0.78 0.79 0.76 0.67 0.56 0.24 -0.44 -0.56
(-1.42) (-3.16)

IV OL 0.78 0.77 0.75 0.71 0.71 0.70 0.66 0.59 0.60 0.51 -0.28 -0.41
(-1.17) (-2.36)

Risk Measures

COSKEW 0.72 0.77 0.75 0.78 0.70 0.74 0.68 0.67 0.60 0.37 -0.35 -0.50
(-1.23) (-2.60)

TSKEW 0.69 0.75 0.78 0.79 0.77 0.75 0.71 0.66 0.56 0.32 -0.37 -0.52
(-1.24) (-2.63)

DRISK 0.77 0.76 0.73 0.79 0.72 0.71 0.67 0.60 0.62 0.42 -0.35 -0.36
(-2.36) (-2.97)

TRISK 0.75 0.75 0.79 0.75 0.72 0.67 0.73 0.65 0.59 0.37 -0.38 -0.45
(-1.46) (-2.63)

Funding Liquidity Measures

βTED 0.70 0.79 0.74 0.78 0.70 0.72 0.64 0.57 0.50 0.31 -0.40 -0.54
(-1.58) (-2.88)

βV OLTED 0.80 0.89 0.85 0.82 0.81 0.81 0.75 0.73 0.64 0.40 -0.40 -0.59
(-1.18) (-2.22)

βTBILL 0.76 0.80 0.85 0.80 0.77 0.79 0.72 0.71 0.61 0.45 -0.43 -0.57
(-1.57) (-3.02)

βFLEV 0.74 0.81 0.85 0.76 0.81 0.77 0.71 0.65 0.54 0.29 -0.34 -0.52
(-1.32) (-2.82)



Table 4: Fama-MacBeth Regressions
The table below presents the results of Fama and MacBeth (1973) regression analyses of the relation
between market beta and future stock returns. Each month, we run a cross-sectional regression of
one-month-ahead stock excess returns (R) on β and combinations of the firm characteristics, risk
measures, and funding liquidity sensitivity measures. The table presents the time-series averages
of the monthly cross-sectional regression coefficients. t-statistics, adjusted following Newey and
West (1987) using six lags, testing the null hypothesis that the average coefficient is equal to zero,
are shown in parentheses. The row labeled n presents the average number of observations used
in the monthly cross-sectional regressions. The average adjusted r-squared of the cross-sectional
regressions is presented in the row labeled Adj. R2.

Regressions without MAX Regressions with MAX

(1) (2) (3) (4) (5) (6)

β 0.060 0.174 0.263 0.265 0.427 0.470
(0.44) (0.97) (1.08) (1.93) (2.34) (1.90)

MAX -0.355 -0.358 -0.223
(-8.43) (-8.49) (-6.16)

SIZE -0.176 -0.180 -0.101 -0.165 -0.168 -0.102
(-4.51) (-4.70) (-2.57) (-4.26) (-4.41) (-2.70)

BM 0.176 0.176 0.181 0.189 0.186 0.173
(3.00) (3.03) (2.81) (3.20) (3.17) (2.71)

MOM 0.008 0.008 0.007 0.008 0.008 0.007
(5.89) (6.21) (5.87) (5.52) (5.80) (5.11)

ILLIQ -0.011 -0.011 -0.012 -0.010 -0.011 -0.009
(-0.64) (-0.64) (-1.13) (-0.60) (-0.64) (-0.79)

IV OL -0.345 -0.339 -0.266 0.110 0.117 -0.023
(-11.90) (-11.85) (-8.34) (1.84) (1.97) (-0.55)

COSKEW -0.006 -0.010 -0.008 -0.011
(-1.01) (-1.16) (-1.30) (-1.20)

TSKEW -0.065 -0.045 -0.043 -0.044
(-3.57) (-2.42) (-2.37) (-2.39)

DRISK -0.053 -0.240 -0.097 -0.260
(-0.55) (-1.78) (-1.03) (-1.96)

TRISK -0.057 -0.036 -0.060 -0.036
(-1.50) (-0.69) (-1.50) (-0.65)

βTED -0.005 -0.005
(-0.37) (-0.37)

βV OLTED -0.001 -0.001
(-0.35) (-0.39)

βTBILL 0.009 -0.009
(0.33) (-0.36)

βFLEV -0.024 -0.032
(-0.80) (-1.15)

Intercept 2.121 2.144 1.754 2.076 2.096 1.827
(6.94) (7.01) (5.09) (6.86) (6.90) (5.46)

n 2,450 2,450 2,931 2,450 2,450 2,931
Adj. R2 6.56% 6.99% 6.34% 6.97% 7.37% 6.54%



Table 5: Bivariate Independent Sort Portfolio Analysis of β and MAX
The table below presents the results of an independent sort bivariate portfolio analysis of the relation
between future stock returns and each of market beta (β) and MAX. The table shows the time-
series means of the monthly equal-weighted excess returns for portfolios formed on intersections of
β and MAX deciles. t-statistics, adjusted following Newey and West (1987) using six lags, testing
the null hypothesis that the mean monthly High-Low return difference or Fama and French (1993)
and Carhart (1997) four-factor alpha is equal to zero, are in parentheses.
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β 1 (Low) 0.61 0.94 0.94 1.05 0.96 0.93 0.86 0.71 0.66 -0.20 -0.81 -1.31
(-2.75) (-5.43)

β 2 0.71 1.00 0.95 0.92 0.77 0.97 1.00 0.68 0.47 -0.20 -0.92 -1.23
(-3.98) (-5.95)

β 3 0.77 0.94 1.00 0.92 0.83 0.88 0.78 0.85 0.44 -0.55 -1.32 -1.57
(-5.41) (-6.97)

β 4 0.92 1.03 0.92 0.88 1.00 0.75 0.65 0.75 0.24 -0.37 -1.28 -1.60
(-5.60) (-7.43)

β 5 1.00 0.98 1.04 1.08 0.95 0.73 0.79 0.66 0.34 -0.26 -1.26 -1.48
(-4.68) (-5.91)

β 6 1.10 1.04 1.00 0.93 0.96 0.78 0.70 0.59 0.24 -0.43 -1.50 -1.82
(-5.74) (-6.93)

β 7 0.90 1.14 0.95 0.77 0.89 0.88 0.87 0.56 0.35 -0.22 -1.19 -1.48
(-3.82) (-5.29)

β 8 1.38 1.10 0.94 0.82 0.85 0.81 0.85 0.72 0.41 -0.40 -1.75 -2.20
(-5.54) (-6.39)

β 9 1.45 0.87 0.97 0.88 0.84 0.73 0.80 0.54 0.22 -0.45 -1.94 -2.11
(-4.36) (-5.05)

β 10 (High) 0.33 1.36 1.32 1.25 0.93 0.78 0.66 0.79 0.28 -0.65 -1.05 -1.58
(-1.83) (-2.70)

High-Low -0.19 0.40 0.36 0.16 -0.05 -0.16 -0.20 0.07 -0.38 -0.42
(-0.35) (1.05) (0.94) (0.47) (-0.15) (-0.51) (-0.60) (0.23) (-1.15) (-1.09)

FFC4 α 0.00 -0.03 0.02 0.05 -0.29 -0.30 -0.30 0.02 -0.38 -0.31
(0.00) (-0.08) (0.04) (0.16) (-0.96) (-1.12) (-1.18) (0.06) (-1.61) (-1.02)
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Table 6: Univariate Portfolios Sorted on β⊥MAX and MAX⊥β
The table below presents the time-series averages of monthly average sort variable values, excess
returns (R), and Fama and French (1993) and Carhart (1997) four-factor alphas (FFC4 α) for decile
portfolios formed by sorting on each of the portion of β that is orthogonal to MAX (β⊥MAX) and
the portion of MAX that is orthogonal to β (MAX⊥β). t-statistics testing the null hypothesis
that the average excess return or alpha is equal to zero, adjusted following Newey and West (1987)
using six lags, are in parentheses.

Sort 1 10
Variable Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

β⊥Max β⊥MAX -0.02 0.31 0.47 0.60 0.73 0.85 0.99 1.16 1.40 1.90

R 0.45 0.70 0.71 0.71 0.74 0.79 0.77 0.73 0.61 0.58 0.13
(2.01) (3.43) (3.36) (3.21) (3.17) (3.21) (2.99) (2.66) (2.00) (1.56) (0.50)

FFC4 α -0.11 0.16 0.11 0.05 0.05 0.07 0.02 -0.03 -0.09 -0.06 0.05
(-1.12) (2.11) (1.58) (0.90) (0.91) (1.23) (0.40) (-0.56) (-1.17) (-0.49) (0.25)

MAX⊥β Max⊥β -0.03 0.57 0.91 1.24 1.57 1.94 2.38 2.94 3.81 6.44

R 0.90 0.91 0.89 0.85 0.90 0.82 0.77 0.61 0.43 -0.29 -1.19
(3.75) (4.21) (4.19) (3.83) (3.92) (3.36) (3.00) (2.24) (1.49) (-0.88) (-6.72)

FFC4 α 0.35 0.34 0.31 0.25 0.27 0.14 0.07 -0.11 -0.33 -1.09 -1.44
(3.85) (5.77) (5.68) (4.92) (5.19) (2.97) (1.41) (-2.22) (-6.11) (-11.99) (-10.62)
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Table 7: Univariate Portfolios for Months with High and Low ρβ,MAX

The table below presents the time-series averages of monthly average sort variable values, excess
returns (R), and Fama and French (1993) and Carhart (1997) four-factor alphas (FFC4 α) for
decile portfolios formed by sorting on β (Panel A) and MAX (Panel B). Each panel presents results
for the subset of months when the cross-sectional correlation between β and MAX (ρβ,MAX) is
high and low, where the cutoff between high and low ρβ,MAX is taken to be the median month’s
cross-sectional correlation of 0.2917. t-statistics testing the null hypothesis that the average excess
return or alpha is equal to zero, adjusted following Newey and West (1987) using six lags, are in
parentheses.

Panel A: Portfolios Sorted on β

1 10
ρβ,MAX Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

High β 0.05 0.27 0.43 0.57 0.71 0.86 1.02 1.23 1.52 2.09

R 0.74 0.88 0.93 0.94 1.02 0.84 0.81 0.68 0.40 0.05 -0.68
(2.72) (2.86) (2.86) (2.65) (2.67) (2.07) (1.86) (1.42) (0.74) (0.08) (-1.34)

FFC4 α 0.23 0.29 0.29 0.24 0.30 0.09 0.07 -0.05 -0.23 -0.49 -0.72
(1.84) (2.56) (3.35) (2.52) (3.30) (1.14) (0.72) (-0.56) (-1.83) (-2.76) (-2.86)

Low β -0.06 0.23 0.41 0.55 0.69 0.83 0.98 1.16 1.41 1.94

R 0.65 0.69 0.62 0.61 0.60 0.61 0.61 0.62 0.62 0.64 -0.01
(3.00) (3.07) (2.83) (2.68) (2.44) (2.39) (2.29) (2.15) (1.92) (1.54) (-0.02)

FFC4 α 0.19 0.18 0.01 -0.03 -0.10 -0.12 -0.17 -0.18 -0.17 -0.08 -0.26
(1.21) (1.32) (0.12) (-0.32) (-1.39) (-1.54) (-2.63) (-2.70) (-1.93) (-0.40) (-0.86)

Panel B: Portfolios Sorted on MAX

1 10
ρβ,MAX Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

High MAX 0.61 1.19 1.67 2.12 2.54 3.00 3.52 4.18 5.15 7.71

R 0.84 1.16 1.11 1.05 1.01 0.92 0.89 0.73 0.28 -0.71 -1.55
(2.89) (3.59) (3.30) (3.01) (2.73) (2.30) (2.00) (1.54) (0.54) (-1.22) (-3.97)

FFC4 α 0.31 0.56 0.50 0.45 0.37 0.25 0.18 0.00 -0.45 -1.44 -1.76
(2.53) (5.65) (5.59) (5.50) (4.32) (3.07) (2.15) (0.04) (-4.52) (-9.14) (-7.63)

Low MAX 0.71 1.32 1.71 2.07 2.43 2.83 3.30 3.90 4.81 7.53

R 0.65 0.84 0.82 0.83 0.78 0.72 0.71 0.60 0.43 -0.09 -0.74
(3.43) (3.96) (3.72) (3.59) (3.14) (2.84) (2.58) (2.03) (1.27) (-0.23) (-2.26)

FFC4 α 0.18 0.25 0.20 0.14 0.10 0.00 0.00 -0.15 -0.32 -0.87 -1.05
(1.63) (2.73) (2.41) (1.85) (1.31) (-0.03) (-0.03) (-2.44) (-3.82) (-7.03) (-5.77)
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Table 8: Institutional Holdings, Betting Against Beta, and Lottery Demand
The table below presents the results of dependent sort bivariate portfolio analyses of the relation
between future stock returns and each of market beta (β, Panel A) and lottery demand (MAX,
panel B) after controlling for institutional holdings (INST ). The table shows the time-series means
of the monthly equal-weighted excess returns for portfolios formed by sorting all stocks into deciles
of INST and then, within each decile of INST , into deciles of β or MAX. t-statistics, adjusted
following Newey and West (1987) using six lags, testing the null hypothesis that the mean monthly
High-Low return difference or Fama and French (1993) and Carhart (1997) four-factor alpha is
equal to zero, are in parentheses.

Panel A: Portfolios Sorted on INST then β
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β 1 (Low) 0.45 0.93 0.85 0.82 0.85 0.74 0.68 0.86 0.76 0.75
β 2 0.59 1.08 0.94 0.82 0.91 0.77 0.90 0.74 0.78 0.84
β 3 0.72 0.75 0.80 0.91 0.82 0.78 0.83 0.84 0.90 0.67
β 4 0.67 0.86 0.91 0.76 0.81 0.87 0.92 0.88 0.84 0.99
β 5 0.76 0.76 0.78 0.88 0.95 0.76 0.85 0.89 0.91 0.90
β 6 0.61 0.47 0.63 0.59 0.66 0.64 0.95 0.72 0.81 0.94
β 7 0.45 0.47 0.45 0.71 0.70 0.68 0.74 0.92 0.95 1.03
β 8 0.37 0.24 0.37 0.50 0.50 0.60 1.02 0.98 0.93 1.05
β 9 -0.30 -0.27 0.17 0.20 0.24 0.58 0.65 0.77 0.92 1.21
β 10 (High) -1.16 -0.87 -0.44 -0.31 -0.06 0.10 0.50 0.81 0.88 1.18

High-Low -1.61 -1.80 -1.29 -1.13 -0.91 -0.64 -0.18 -0.05 0.12 0.43
(-4.42) (-4.10) (-2.87) (-2.44) (-1.98) (-1.43) (-0.43) (-0.12) (0.29) (1.02)

FFC4 α -1.91 -1.91 -1.31 -1.22 -1.01 -0.75 -0.18 -0.03 0.11 0.41
(-6.88) (-6.00) (-3.59) (-3.15) (-3.07) (-2.77) (-0.64) (-0.10) (0.31) (1.17)

Panel B: Portfolios Sorted on INST then MAX
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MAX 1 (Low) 0.53 0.83 0.57 0.86 0.69 0.84 0.86 1.00 1.17 1.06
MAX 2 0.94 0.97 1.00 1.02 0.95 0.91 1.09 1.13 1.03 1.11
MAX 3 0.99 0.96 0.93 1.05 1.01 0.96 1.07 0.89 1.04 1.01
MAX 4 0.79 0.93 0.94 1.08 0.83 0.88 0.89 1.03 0.86 0.93
MAX 5 0.88 0.85 1.02 0.91 0.82 0.86 1.02 0.87 0.86 0.91
MAX 6 0.69 0.44 0.62 0.79 0.93 0.60 0.84 0.72 0.93 0.91
MAX 7 0.43 0.55 0.60 0.63 0.72 0.67 0.94 0.75 0.81 0.87
MAX 8 0.18 0.33 0.54 0.36 0.44 0.72 0.65 0.87 0.95 0.89
MAX 9 -0.48 -0.32 0.03 -0.13 0.22 0.34 0.44 0.72 0.50 0.94
MAX 10 (High) -1.82 -1.12 -0.80 -0.68 -0.23 -0.26 0.21 0.46 0.56 0.92

High-Low -2.36 -1.94 -1.37 -1.53 -0.92 -1.10 -0.64 -0.54 -0.60 -0.14
(-6.54) (-5.32) (-3.01) (-3.71) (-2.09) (-2.71) (-1.67) (-1.42) (-1.72) (-0.41)

FFC4 α -2.68 -2.14 -1.55 -1.73 -1.11 -1.22 -0.80 -0.65 -0.74 -0.19
(-9.18) (-7.58) (-4.93) (-6.33) (-3.60) (-4.35) (-2.82) (-2.25) (-2.57) (-0.73)
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Table 9: Factor Sensitivities and Risk-Adjusted Alphas for β Portfolios
Panel A presents factor sensitivities of the High-Low univariate sort beta portfo-
lio returns using several different risk models. The columns labeled βF , F ∈
{MKTRF, SMB,HML,UMD,PS, FMAX}, present the factor sensitivities. N indicates the
number of months for which factor returns are available. Adj. R2 is the adjusted r-squared of the
factor model regression. Panel B presents the risk-adjusted alphas for each of the decile portfolios,
as well as the High-Low β portfolio, for each of the risk models. t-statistics, adjusted following
Newey and West (1987) using six lags, are in parentheses.

Panel A: Factor Sensitivities

α βMKTRF βSMB βHML βUMD βPS βFMAX N Adj. R2

FFC4 -0.51 0.98 0.58 -0.74 -0.21 593 73.43%
(-2.50) (13.46) (8.26) (-6.36) (-2.68)

FFC4+PS -0.49 0.98 0.53 -0.77 -0.24 -0.09 540 74.58%
(-2.26) (13.17) (7.34) (-6.60) (-3.05) (-1.35)

FFC4+FMAX 0.06 0.61 0.09 -0.30 -0.19 0.85 593 84.79%
(0.35) (10.31) (1.12) (-4.69) (-4.11) (12.49)

FFC4+PS+FMAX 0.04 0.63 0.07 -0.32 -0.21 -0.03 0.82 540 85.06%
(0.22) (10.50) (0.92) (-4.79) (-4.21) (-0.75) (11.72)

Panel B: Portfolio Alphas

(Low) 2 3 4 5 6 7 8 9 (High) High-Low

FFC4 0.22 0.24 0.16 0.11 0.10 -0.02 -0.05 -0.11 -0.18 -0.29 -0.51
(2.22) (2.77) (2.31) (1.59) (1.69) (-0.30) (-0.80) (-1.83) (-2.20) (-2.22) (-2.50)

FFC4 + PS 0.23 0.24 0.16 0.10 0.09 -0.03 -0.07 -0.10 -0.18 -0.26 -0.49
(2.12) (2.51) (2.09) (1.34) (1.36) (-0.48) (-1.04) (-1.76) (-2.18) (-1.91) (-2.26)

FFC4 + FMAX 0.08 0.06 -0.04 -0.09 -0.05 -0.15 -0.12 -0.10 -0.01 0.14 0.06
(0.85) (0.83) (-0.66) (-1.64) (-0.92) (-2.56) (-2.01) (-1.69) (-0.17) (1.37) (0.35)

FFC4 + PS + FMAX 0.10 0.07 -0.03 -0.09 -0.06 -0.16 -0.15 -0.11 -0.03 0.14 0.04
(0.92) (0.86) (-0.55) (-1.64) (-1.14) (-2.66) (-2.26) (-1.71) (-0.36) (1.23) (0.22)
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Table 10: Factor Sensitivities for BAB and FMAX Factors
The table below presents the alphas and factor sensitivities for the BAB factor (Panel A)
and the FMAX factor (Panel B) using several factor models. The column labeled α presents
the risk-adjusted alpha for each of the factor models. The columns labeled βf , f ∈
{MKTRF, SMB,HML,UMD,PS, FMAX,BAB} present the sensitivities of the BAB or FMAX
factor returns to the given factor. The BAB factor is taken from Lasse H. Pedersen’s website. The
sample covers the period from August of 1963 through March of 2012. The numbers in parentheses
are t-statistics, adjusted following Newey and West (1987) using six lags, testing the null hypothesis
that the coefficient is equal to zero. The column labeled N indicates the number of monthly returns
used to fit the factor model. The column labeled Adj. R2 presents the adjusted r-squared of the
factor model regression.

Panel A: Sensitivities of BAB Factor

Specification α βMKTRF βSMB βHML βUMD βPS βFMAX N Adj. R2

FFC4 0.54 0.05 -0.01 0.51 0.18 584 21.03%
(3.38) (1.06) (-0.09) (5.01) (2.87)

FFC4+PS 0.57 0.06 0.02 0.53 0.20 0.06 531 23.44%
(3.34) (1.23) (0.30) (5.18) (3.13) (0.96)

FFC4+FMAX 0.17 0.29 0.31 0.21 0.17 -0.55 584 46.95%
(1.23) (8.22) (5.46) (3.49) (4.39) (-11.84)

FFC4+PS+FMAX 0.22 0.29 0.32 0.24 0.19 0.03 -0.54 531 47.38%
(1.39) (7.96) (5.29) (3.72) (4.43) (0.63) (-11.11)

Panel B: Sensitivities of FMAX Factor

Specification α βMKTRF βSMB βHML βUMD βPS βBAB N Adj. R2

FFC4 -0.67 0.43 0.58 -0.53 -0.01 584 62.24%
(-5.12) (8.36) (6.39) (-4.59) (-0.19)

FFC4+PS -0.65 0.42 0.56 -0.54 -0.03 -0.06 540 62.36%
(-4.60) (8.17) (5.51) (-4.72) (-0.41) (-1.00)

FFC4+BAB -0.35 0.46 0.58 -0.23 0.09 -0.60 584 74.64%
(-2.88) (13.06) (8.22) (-3.09) (1.67) (-11.44)

FFC4+PS+BAB -0.32 0.46 0.57 -0.24 0.09 -0.02 -0.59 531 74.20%
(-2.32) (12.66) (7.35) (-3.11) (1.46) (-0.55) (-10.90)
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Figure 1: Heat Map of β and MAX
The figure below is a heat map of the number of stocks in the 100 portfolios formed using an
independent decile sort on β and MAX. The colors in each of the cells indicate the average
number of stocks in each of the portfolios, as shown by the scale on the right side of the map.
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Betting Against Beta or Demand for Lottery

Online Appendix

Section I provides details on the calculation of the variables used in the paper. In Section
II we demonstrate that the insignificant relation between β and future stock returns and the
negative and significant relation between β and risk-adjusted alpha (the betting against beta
phenomenon) are robust when using alternative measures of market beta. In Section III we show
that the negative relation between lottery demand and stock returns is robust to alternative
measures of lottery demand. In Section IV we examine the betting against beta and lottery
demand phenomena using the manipulation proof performance measure of Ingersoll, Spiegel,
Goetzmann, and Welch (2007). In Section V we demonstrate that MAX aggregates by showing
that the high (low) MAX portfolio is itself a high (low) MAX asset. Section VI presents the
results of bivariate-sort analyses examining the ability of lottery demand to explain the betting
against beta phenomenon using alternative definitions of lottery demand. In Section VII we show
that the results of the bivariate independent sort portfolio analyses of the relation between future
stock returns and each of β and MAX are robust when a dependent sort portfolio analysis is
used. We also show demonstrate that the ability of lottery demand to explain the betting against
beta phenomenon persists under different economic conditions. In Section VIII we demonstrate
that months in which there is high cross-sectional correlation between beta and lottery demand
are characterized by poor economic conditions and high aggregate lottery demand. Section IX
presents evidence that in both high and low β, MAX correlation months, the alpha of the
High−Low β portfolio is statistically insignificant when FMAX is included in the factor model.
In Section X we demonstrate the the ability of the lottery demand factor to explain the returns
of the BAB factor is robust to the use of alternative measures of lottery demand when creating
the lottery demand factor. Section XI demonstrates that the joint relations between future stock
returns, market beta, and lottery demand persist when market beta is measured according to
Frazzini and Pedersen (2014) and are not sample specific.



I Variables

In this Section, we describe in detail how each of the variables used in this paper is calculated.

For variables calculated using one year’s worth of daily data (β, COSKEW , TSKEW , DRISK,

TRISK), we require a minimum of 200 valid daily return observations during the calculation

period. For variables calculated using one month’s worth of daily data (MAX, IV OL, ILLIQ),

we require 15 valid daily return observations during the given month. For variables calculated using

five years’ worth of monthly data (βTED, βV OLTED, βTBILL, and βFLEV ), we require a minimum

of 24 valid monthly return observations during the five-year measurement period. Observations

not satisfying these requirements are discarded. Variables that are measured on a return scale (R,

MAX, MOM , IV OL) are recorded as percentages.

Market Beta (β): We calculate β using a one factor market model regression specification applied

to one year worth of daily return data. The regression specification is

ri,d = a+ b1MKTRFd + ei,d, (A1)

where ri,d and MKTRFd are the excess returns of the stock and the market portfolio, respectively,

on day d. β is taken to be the fitted value of the regression coefficient b1. The regression is fit

using daily return data covering the 12-months up to and including the month for which β is being

calculated. Daily stock return data come from CRSP. Daily market excess return and risk-free

security return data are taken from Kenneth French’s data library at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. The stock excess re-

turn is calculated as the stock return minus the return on the risk-free security.

Monthly Stock Excess Return (R): The monthly excess return of a stock (R) is calculated

as the monthly return of the stock, taken from the CRSP database, minus the monthly return of

the risk-free security, taken from Kenneth French’s data library. We adjust the monthly returns

from CRSP for delisting according to Shumway (1997). Specifically, if a delisting return is provided

in the CRSP database, we take the monthly return of the stock to be the delisting return. If no

delisting return is available, then we determine the stock’s monthly return based on the delisting

code in CRSP. If the delisting code is 500 (reason unavailable), 520 (went to OTC), 551–573 or 580
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(various reasons), 574 (bankruptcy), or 584 (does not meet exchange financial guidelines), we take

the stock’s return during the delisting month to be −30%. If the delisting code has a value other

than the previously mentioned values and there is no delisting return, we take the stock’s return

during the delisting month to be −100%.

Market Capitalization and Size (MKTCAP and SIZE): We calculate the market capitaliza-

tion (MKTCAP ) of a stock as the month-end stock price times the number of shares outstanding,

taken from CRSP and measured in millions of dollars. Since the distribution of MKTCAP is

highly skewed, in statistical analyses that rely on the magnitude of market capitalization, we use

the natural log of MKTCAP , which we denote SIZE.

Book-to-Market Ratio (BM): Following Fama and French (1992, 1993), we define the book-to-

market ratio for the months from June of year y through May of year y+ 1 to be the book value of

equity of the stock, calculated using balance sheet data from Compustat for the fiscal year ending

in calendar year y−1, divided by the market capitalization of the stock at the end of calendar year

y− 1. The book value of equity is defined as stockholders’ equity plus balance sheet deferred taxes

plus investment tax credit minus the book value of preferred stock. The book value of preferred

stock is taken to be either the redemption value, the liquidating value, or the convertible value,

taken as available in that order. For observations where the book value is negative, we deem the

book-to-market ratio to be missing. We define our main measure of book-to-market ratio, BM , to

be the natural log of the book-to-market ratio.

Momentum (MOM): To control for the medium-term momentum effect of Jegadeesh and Titman

(1993), we define the momentum variable (MOM) to be the stock return during the 11-month

period up to but not including the current month. MOM is calculated using monthly return data

from CRSP.

Illiquidity (ILLIQ): We define illiquidity (ILLIQ) following Amihud (2002) as the average of

the absolute value of the stock’s return (taken as a decimal) divided by the dollar volume traded in

the stock (in millions of dollars), calculated using daily data from the month for which ILLIQ is

being calculated. Following Gao and Ritter (2010), we adjust for institutional features of the way

that volume on the NASDAQ is reported. Specifically, we divide the volume reported in CRSP for

stocks that trade on the NASDAQ by 2.0, 1.8, 1.6, and 1 for the periods prior to February 2001,

between February 2001 and December 2001, between January 2002 and December 2003, and during
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or subsequent to January 2004, respectively. ILLIQ is defined as

ILLIQ =

∑n
d=1

|rd|
V olume$d

n
, (A2)

where rd is the stock’s return on day d, V olume$d is the dollar volume traded in the stock on day

d, and the summation is taken over all trading days in the given month. V olume$d is calculated

as the last trade price times the number of shares traded, both on day d.

Idiosyncratic Volatility (IV OL): We calculate idiosyncratic volatility (IV OL) following Ang,

Hodrick, Xing, and Zhang (2006) as the standard deviation of the residuals from a Fama and French

(1993) three-factor regression of the stock’s excess return on the market excess return (MKTRF ),

size (SMB), and book-to-market ratio (HML) factors using daily return data from the month for

which idiosyncratic volatility is being calculated. The regression specification is

ri,d = a+ b1MKTRFd + b2SMBd + b3HMLd + ei,d, (A3)

where SMBd and HMLd are the returns of the size and book-to-market factors of Fama and French

(1993), respectively, on day d.

Lottery Demand (MAX): Following Bali et al. (2011), we measure lottery demand using MAX.

MAX is calculated as the average of the five highest daily returns of the given stock during the

given month.

Co-Skewness (COSKEW ): Following Harvey and Siddique (2000), we define the co-skewness

(COSKEW ) of a stock in any month to be the estimated slope coefficient on the squared market

excess return from a regression of the stock’s excess return on the market’s excess return and the

squared market excess return using one year of daily data up to and including the given month.

Specifically, COSKEW is the estimated b2 coefficient from the regression specification

ri,d = a+ b1MKTRFd + b2MKTRF 2
d + ei,d. (A4)

Total Skewness (TSKEW ): We define the total skewness (TSKEW ) of a stock to be the

skewness of the stock’s daily returns calculated using one year of data up to and including the

given month.
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Downside Beta (DRISK): Following Ang, Chen, and Xing (2006), we define downside beta

(DRISK) as the fitted slope coefficient from a one-factor market model regression using daily

returns from the past year from days when the market return was below the average daily market

return during that year. The regression specification is given in equation (A1). DRISK is taken

to be the fitted value of the coefficient b1.

Tail Beta (TRISK): Tail beta (TRISK) is calculated as the fitted slope coefficient from a one-

factor market model regression using daily returns from the past year from days when the market

return was in the bottom 10% of market returns during that year. The regression specification is

given in equation (A1). TRISK is taken to be the fitted value of the coefficient b1.

TED Spread Sensitivity (βTED): The TED spread sensitivity (βTED) of a stock is defined as the

fitted slope coefficient from a regression of the stock’s monthly excess returns on the TED spread

using five years’ worth of monthly data. The TED spread is defined as the difference between the

three-month LIBOR and the yield on three-month U.S. Treasury bills. The regression specification

is

Ri,t = a+ b1TEDt + ei,t, (A5)

where Ri,t is the excess return of stock i during month t and TEDt is the TED spread at the end of

month t. Three-month LIBOR and U.S. Treasury bill yields are downloaded from Global Insight.

Month-end TED spread data is available beginning in January of 1963, thus βTED is only available

beginning in January 1965.

TED Spread Volatility Sensitivity (βV OLTED): The sensitivity to TED spread volatility

(βV OLTED) of a stock is defined as the fitted slope coefficient from a regression of the stock’s

monthly excess returns on TED spread volatility using five years worth of monthly data. The TED

spread volatility for a given month is defined as the standard deviation of the daily TED spreads

within the given month. The regression specification is

Ri,t = a+ b1V OLTEDt + ei,t, (A6)

where Ri,t is the excess return of stock i during month t and V OLTEDt is the TED spread volatility

during month t. Daily TED spread data is available beginning in January 1977, thus βV OLTED is
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available beginning in January of 1979.

Treasury Bill Sensitivity (βTBILL): The sensitivity to U.S. Treasury bill rates (βTBILL) of a

stock is defined as the fitted slope coefficient from a regression of the stock’s monthly excess returns

on the three-month U.S. Treasury bill rate using five years’ worth of monthly data. The regression

specification is

Ri,t = a+ b1TBILLt + ei,t, (A7)

where Ri,t is the excess return of stock i during month t and TBILLt is the yield on the three-

month U.S. Treasury bill at the end of month t. Yields on the three-month U.S. Treasury bills are

taken from the FRED database.

Financial Sector Leverage Sensitivity (βFLEV ): The financial sector leverage sensitivity

(βFLEV ) of a stock is defined as the fitted slope coefficient from a regression of the stock’s monthly

excess returns on the month-end leverage of the financial sector (FLEV ) using five years’ worth of

monthly data. The regression specification is

Ri,t = a+ b1FLEVt + ei,t, (A8)

where Ri,t is the excess return of stock i during month t and FLEVt is the financial sector leverage

at the end of month t. Financial sector leverage is defined as the total balance sheet assets of

all financial sector firms divided by the total market value of equity of all financial sector firms.

Firm-level balance sheet assets are taken from Compustat’s quarterly database and aggregated to

calculate the total balance sheet assets of all firms in the sector. Since the firm-level assets are

reported quarterly, to obtain monthly firm-level assets, we use the balance sheet assets reported

for the fiscal quarter ending in month t as the assets for months t − 1 and months t + 1 as well.

Firm level market capitalization is simply MKTCAP , defined above, and is aggregated in the same

manner. Financial sector firms are taken to be firms with Standard Industrial Classification (SIC)

codes between 6000 and 6999, inclusive.

Orthogonal Portion of β to MAX (β⊥MAX): The component of β that is orthogonal to MAX

is calculated as the fitted intercept coefficient plus the residual from a cross-sectional regression of
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β on MAX. The regression specification is

βi = a+ b1MAXi + εi. (A9)

β⊥MAX is then defined as

β⊥MAX,i = a+ εi. (A10)

Orthogonal Portion of MAX to β (MAX⊥β): The component of MAX that is orthogonal to

β is calculated as the fitted intercept coefficient plus the residual from a cross-sectional regression

of MAX on β. The regression specification is

MAXi = a+ b1βi + εi. (A11)

MAX⊥β is defined as:

MAX⊥β,i = a+ εi. (A12)

FP Beta (βFP ): FP calculate market beta as

βFP,i = 0.6ρi
σi
σm

+ 0.4 (A13)

where ρi is the correlation between three-day log returns of the stock and three-day log returns

of the market, calculated using five years’ worth of daily return data. Specifically, defining the

three-day log return on day d as r3di,d =
∑2

j=0 ln(1 + ri,d−j), where ri,d is the stock’s return on

day d, the correlation ρi is calculated as the correlation between this measure calculated for the

stock and for the market portfolio (using excess returns) on each day during the past five years.

The objective of FP in taking three-day returns is to control for nonsynchronous trading. Five

years of data are used because correlations tend to move slowly. A total of 750 days of valid stock

returns are required when calculating ρi. σi and σm are the standard deviations of daily log stock

returns and daily log market excess returns, respectively, using one year’s worth of data. At least

120 days of stock return data during the calculation period are required when calculating σi. The

time period used for the calculation of the standard deviation is shorter because volatilities tend

to change more quickly than correlations. Multiplication by 0.6 and the addition of 0.4 come from
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an effort to reduce outliers. More discussion of the calculation of βFP can be found in Section 3.1

of FP.

II Alternative Measures of Beta and Returns

In this section we demonstrate that the results of the univariate portfolio analysis examining the

relation between market beta and future stock returns are robust to the use of alternative measures

of market beta. Scholes and Williams (1977) find that when trading is non-synchronous, the

standard CAPM-regression method of estimating beta used in our primary calculation of market

beta—β, described in the main paper—may be biased. To adjust for this bias, Scholes and Williams

(1977) propose calculating beta as the sum of estimated slope coefficients from separate regressions

of the stock’s excess return on each of the contemporaneous, one-day lagged, and one-day ahead

market excess return, divided by one plus two times the serial correlation of the market excess

return, all calculated using one year’s worth of daily return data up to and including month t.

Thus, we define βSW as

βSW =
b̂1 + b̂2 + b̂3

1 + 2ρm
(A14)

where ρm is the serial correlation of the market excess return, b̂1, b̂2, and b̂3 are the fitted slope

coefficients from regression models

ri,d = a+ b1rm,d−1 + ei,d, (A15)

ri,d = a+ b2rm,d + ei,d, (A16)

and

ri,d = a+ b3rm,d+1 + ei,d (A17)

and ri,d and rm,d are the excess returns of the stock i and the market, respectively, on day d.

Similarly, Dimson (1979) finds that for infrequently traded securities the standard estimates of

beta may be biased, and shows that this bias can be addressed by estimating beta as the sum of the

slope coefficients from a regression of stock excess returns on the contemporaneous market excess

returns along with the market excess returns from each of the previous and next five days. Thus,
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following Dimson (1979), we define βD as

βD =
k=5∑
k=−5

b̂k (A18)

where the b̂k represent the estimated slope coefficients from regression model

Ri,d = a+

k=5∑
k=−5

bkRm,d+k + ei,d. (A19)

The results of univariate decile portfolio analyses of the relation between market beta and future

stock returns using each of the alternative measures of market beta are presented in Table A1. The

results are highly similar to those generated using the standard measure of market beta (β) used in

the main paper (repeated in Table A1 to facilitate comparison). Regardless of the measure of beta,

the average monthly return difference between the decile ten and decile one portfolios (High−Low

portfolio) is negative but statistically insignificant. The risk-adjusted alpha relative to the Fama and

French (1993) and Carhart (1997) four-factor (FFC4) model is negative and statistically significant.

This result indicates that the betting against beta phenomenon is robust to the use of alternative

measures of market beta.

III Alternative Measures of Lottery Demand and Returns

In this section we show that the negative relation between lottery demand and future stock returns

is robust to alternative measures of lottery demand. Specifically, we calculate lottery demand to

be MAX (k), k ∈ {1, 2, 3, 4, 5}, where MAX (k) is defined as the average of the k highest daily

returns of the given stock within the given month. In Table A2 of this online appendix we present

the results of univariate decile portfolio analyses of the relation between lottery demand and future

stock returns using each of these measures of lottery demand as the sort variable. The table shows

that the negative relation between lottery demand and future stock returns is strong regardless of

which measure of lottery demand is used. The average monthly returns of the zero-cost portfolio

that is long the decile 10 portfolio and short the decile 1 portfolio range from -0.95% for portfolios

formed by sorting on MAX(1) to -1.15% for portfolios sorted on MAX(5), with Newey and West
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(1987) t-statistics of -3.91 and -4.41, respectively. The Fama and French (1993) and Carhart (1997)

four-factor alphas (FFC4 α) for these portfolios range from -1.05% to -1.15% per month with t-

statistics between -8.95 and -9.12. The results indicate that the negative relation between lottery

demand and future stock returns is robust regardless of the measure of lottery demand.

IV Manipulation Proof Performance Measure

In this section, we analyze the performance of decile portfolios formed by sorting on each of β and

MAX using the manipulation proof performance measure (MPPM) of Ingersoll, Spiegel, Goetz-

mann, and Welch (2007). The objective of this analysis is to ensure that the betting against beta

and lottery demand phenomena are not driven by active portfolio management designed to generate

an indication of positive abnormal returns when in fact none exist.

The MPPM of a portfolio p is calculated as:

MPPM =
12

1− ρ
ln

(
1

M

M∑
m=1

[(1 + rp,m) / (1 + rf,m)]1−ρ
)

(A20)

where rp,m and rf,m are the return of the portfolio and the risk-free security, respectively, in month

m, M = 593 is the total number of months in our sample, and ρ = 2.2 is found by maximizing the

value of MPPM with respect to ρ when the calculation is applied to the returns of the CRSP value-

weighted index. MPPM is interpreted as an annualized continuously compounded excess return

certainty equivalent for the portfolio. This means that an investor is indifferent between owning

the portfolio in question and a risk-free portfolio earning an annual return of eln(1+rf)+MPPM.

To assess the statistical significance of MPPM for a portfolio, standard errors are calculated

using a bootstrap approach. We randomly select 593 months, with replacement, from our sample

period, and calculate MPPM using the returns of the given portfolio and the risk-free security for

the selected months. We repeat this process 1,000 times, and take the standard error of MPPM to

be the standard deviation of the 1,000 MPPM values. t-statistics for MPPM are then calculated

as the estimated MPPM using the full sample divided by the standard errors estimated from the

bootstrap procedure.

The MPPM and associated t-statistics for each of the β-sorted decile portfolios, shown in the
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row labeled β in Table A3, indicate that the betting against beta phenomenon is not a result of

performance manipulation. MPPM is nearly monotonically decreasing across the deciles of β. As

with the FFC4 alpha (see Table 1 of the main paper), the exception is decile 1. The MPPM for

the High-Low portfolio of -16.96 is both economically large and highly statistically significant with

an associated t-statistic of -6.34. The results indicate that for the β-sorted portfolios, assessing

portfolio performance using the FFC4 alpha and the MPPM lead to the same conclusion. On a

risk-adjusted basis, a portfolio that is long stocks in the highest decile of beta and short stocks in

the lowest decile of beta exhibits economically large and statistically significant under-performance.

The MPPM for each of the MAX-sorted decile portfolios are shown in the row labeled MAX

in Table A3. Portfolio MPPM decreases from 9.46% per annum for decile 2 of MAX to -13.65%

per annum for MAX decile 10. The annual MPPM of the High-Low MAX portfolio is -23.78%

with a corresponding t-statistic of -9.92. The results indicate that the lottery-demand phenomenon

is not a result of performance manipulation.

V Portfolio-Level MAX

In this section, we examine whether MAX aggregates by testing whether the high (low) MAX

portfolio is in fact a high (low) MAX asset. Each month we sort all stocks into decile portfolios

based on an ascending sort of MAX or the component of MAX that is cross-sectionally orthogonal

to market beta (MAX⊥β). We then calculate daily returns for each decile portfolio over all days in

the month subsequent to portfolio formation. The portfolio-level MAX is taken to be the average

of the five highest daily returns of the given portfolio within the given month.

Table A4 presents the time-series averages of the monthly portfolio-level values of MAX for

each of the decile portfolios. The column labeled High-Low shows the average difference between

the decile 10 and decile 1 portfolio-level MAX along with the Newey and West (1987) adjusted

t-statistic testing the null hypothesis that the average difference in portfolio-level MAX between

the decile ten and decile one portfolios is equal to zero. The results show that when the portfolios

are formed by sorting on MAX, the portfolio-level values of MAX are monotonically increasing

from 0.50% to 1.41% across the deciles of MAX. The average difference between decile 10 and

decile 1 of 0.91% is both economically large and highly statistically significant, with a t-statistic of
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13.13. This indicates that by investing in a portfolio with a large number of high-MAX stocks, a

lottery investor has not diversified away the lottery-like feature of the investment, as the resulting

portfolio is itself a high-MAX asset. When sorting on MAX⊥β, the results are similar, but not

quite as strong. The average portfolio-level value of MAX increases (nearly monotonically, the

exception is decile portfolio one) from 0.91% for decile 1 to 1.16% for decile 10, giving an average

High-Low difference of 0.25% with a corresponding t-statistic of 8.50. This result indicates that it

is not the cross-sectional correlation between β and MAX that causes MAX to aggregate, as the

high (low) MAX⊥β portfolio is, in and of itself, a high (low) MAX asset.

VI Bivariate Sort Analyses with Alternative Measures of Lottery

Demand

In this section we present the results of bivariate dependent sort portfolio analyses examining the

robustness of the ability of lottery demand to explain the betting against beta phenomenon. Each

month, all stocks in the sample are grouped into ascending deciles of MAX(k), where MAX(k)

is defined as the average of the k highest daily returns of the given stock within the given month.

Within each decile of MAX(k), we then sort all stocks into ten decile portfolios based on an

ascending sort of β. The excess return of each of these 100 portfolios is then taken to be the

equal-weighted average excess return of all stocks in the given portfolio. Each month, the average

excess return, within each decile of β, across all deciles of the given measure of lottery demand,

is calculated. Table A5 presents the average monthly return for each of these β-decile portfolios

as well as the High–Low β portfolio, along with the Fama and French (1993) and Carhart (1997)

four-factor alpha (FFC4 α) of the High–Low β portfolio. t-statistics, adjusted following Newey

and West (1987) using six lags, are presented in parentheses. The results demonstrate that re-

gardless of which measure of lottery demand is used, lottery demand explains the betting against

beta phenomenon, as all of the High–Low β portfolios have excess and abnormal returns that are

statistically indistinguishable from zero.

11



VII Bivariate Dependent Sort Analyses with β and MAX

We begin this section by investigating whether the ability of lottery demand to explain the betting

against beta phenomenon persists across different economic conditions. To do so, we examine three

subsets of the months during our sample period. The first subset of months consists of those months

where the Chicago Fed National Activity Index (CFNAI) is less than or equal to zero. Such months

represent months where economic conditions are at or below median levels. The second subset is

comprised of months where the CFNAI is greater than zero, and therefore corresponds to months

with above median economic activity. Finally, to ensure that our results are not driven by the

financial crisis beginning in 2007, we examine the subset of non-crisis months. Crisis months are

taken to be December 2007 through June 2009, inclusive. All remaining months during our sample

period from August 1963 through December 2012 are considered non-crisis months.

In Table A6 of this online appendix we report the results of the bivariate dependent sort portfolio

analysis of the relation between β and future stock returns after controlling for MAX (sort first

on MAX and then on β). Each month, all stocks are grouped into ascending deciles of MAX.

Within each MAX decile, all stocks are sorted into portfolios based on ascending deciles of β. The

table presents the time-series average of the monthly portfolio excess returns within each decile of

β. The excess return for a given β decile portfolio in a given month is taken to be the average,

across all deciles of MAX and within the given decile of β, of the individual portfolios formed by

sorting on MAX then β. The table shows that, after controlling for MAX, the average excess

return as well as the FFC4 alpha of the High–Low β portfolio is statistically insignificant for each

subset. The results indicate that the ability of lottery demand to explain the betting against beta

phenomenon persists under all economic conditions.

We proceed by checking the robustness of the bivariate independent sort portfolio analysis

of the relations between future stock returns and each of β and MAX, presented in Section 3

and Table 5 of the main paper, by performing dependent sort analyses of these same relations.

Panel A of Table A7 presents the average excess returns of each of the 100 resulting portfolios as

well as the difference in returns and FFC4 alphas of the zero-cost portfolios that are long the β

decile ten portfolio and short the β decile one portfolio (High−Low portfolio) within each MAX

decile. The results are consistent with the independent sort portfolio analysis presented in the main
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paper. The average returns and risk-adjusted alphas of the High−Low portfolios are all statistically

indistinguishable from zero, with the one exception being the first decile of MAX, for which the

return difference is positive and statistically significant. In unreported results, we find that the

average High−Low β portfolio, across all deciles of MAX, returns -0.02% per month (t-statistic

= -0.10) and generates an FFC4 alpha of -0.14% (t-statistic = -0.85) per month. The analysis

indicates that after controlling for the effect of lottery demand (MAX), the abnormal return of

the High−Low market beta portfolio disappears.

To assess the relation between MAX and returns after controlling for β, we repeat the bivariate

dependent sort portfolio analysis, this time sorting on β then MAX. The results are shown in Panel

B of Table A7. Once again consistent with the results from the independent sort analysis in the main

paper, we find that the negative returns and risk-adjusted alphas of the High−Low MAX portfolios

persist after controlling for β, as eight of the ten β deciles produce High−Low MAX portfolio

returns that are statistically negative, and the risk-adjusted alphas of all ten of these portfolios

are negative and statistically distinguishable from zero. Taking the average across all deciles of β

(unreported in the table), we find that the average High−Low MAX portfolio generates a return

of −1.12% per month (t-statistic = −6.62) and a monthly FFC4 alpha of −1.36% (t-statistic =

−11.32). The results show that after controlling for the effect of market beta, the negative relation

between lottery demand and future stock returns persists.

VIII Aggregate Lottery Demand and ρβ,MAX

In this section, we examine the aggregate lottery demand in months characterized by high and low

correlation between beta and MAX (ρβ,MAX). We use five measures of aggregate lottery demand.

Kumar (2009) demonstrates that aggregate lottery demand is highest during economic downturns.

Our first two measures are therefore based on the Aruoba-Diebold-Scotti Business Conditions Index

(ADS) and the Chicago Fed National Activity Index (CFNAI).1 Both variables are dummy variables

indicating recession. We define RECADS to be 1 if the ADS index has a value of less than -0.50 at

the end of the given month, and 0 otherwise. Similarly, we take RECCFNAI to be 1 if the CFNAI

index is less than -0.70 for the given month, and 0 otherwise. Next, as high market volatility is

1ADS data are from the Federal Reserve Bank of Philadelphia. CFNAI data are from the Federal Reserve Bank
of Chicago.
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an indication of deteriorating economic conditions, our third measure of aggregate lottery demand

is the annualized standard deviation of the daily returns of the CRSP value-weighted portfolio,

denoted V OLMKTRF . Our fourth measure, MAXMKTRF , is the value of MAX for the CRSP

value-weighted portfolio, and our final measure, MAXAgg, is the value-weighted average value of

MAX across all stocks in the sample.

Table A8 presents the average value of each measure of aggregate lottery demand during high-

ρβ,MAX and low-ρβ,MAX months. The table demonstrates that, regardless of the measure used,

aggregate lottery demand is substantially higher during months with high cross-sectional correlation

between β and MAX. The results using ADS indicate that high-ρβ,MAX months have a 30% chance

of being characterized as recessions, compared to only a 10% chance for low-ρβ,MAX months. The

difference of 20% is highly significant, both economically and statistically, with a t-statistic of 3.71.

The results are similar using the CFNAI. Market volatility (V OLMKTRF ) is also much higher during

months characterized by high-ρβ,MAX , with an average value of 15.56%, compared to an average

of 11.18% during months with low-ρβ,MAX , resulting in an economically large and statistically

significant difference of 4.38% (t-statistic = 3.71). Finally, MAXMKTRF and MAXAgg are both

higher in high-ρβ,MAX months than in low ρβ,MAX months, with differences of 0.37 (t-statistic =

4.15) and 0.43 (t-statistic = 3.62), respectively. The results provide strong evidence that months

with high cross-sectional correlation between β and MAX are characterized by poor economic

conditions and high aggregate lottery demand.

IX Months with High and Low β, MAX Correlation

In this section we demonstrate that the ability of factor models that include FMAX to explain the

returns of the High−Low β portfolio is robust in both high and low β, MAX correlation months.

We begin by dividing the sample into months for which the cross-sectional correlation between β

and MAX is low and those in which the correlation is high, as described in Section 5.2 of the

main paper. We then calculate the risk-adjusted alphas and factor loadings of the High−Low β

portfolio relative to four different factor models. The first model is the FFC4 model. The second

is the FFC4 model augmented with Pastor and Stambaugh’s (2003) liquidity factor (FFC4+PS).2

2PS factor returns are only available for January 1968 and after. Thus, analyses that include the PS factor are
restricted to this time period.
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The third and fourth models are formed by adding the FMAX factor to each of the FFC4 and

FFC4+PS models (FFC4+FMAX, FFC4+PS+FMAX). The portfolios used in our analysis are the

same univariate β-sorted decile portfolios used to generate the results in Table 1 of the main paper.

The results of the factor analysis for high β, MAX correlation months, presented in Panel A

of Table A9, indicate that, consistent with what is demonstrated in Section 5.2 and Table 7 of the

main paper, the alpha of the High−Low β portfolio is negative and statistically significant relative

to the FFC4 and FFC4+PS models. When FMAX is included in the factor model, however, even

in the high β, MAX correlation months, the alpha of the High−Low β portfolio becomes positive

and statistically indistinguishable from zero. Thus, the addition of FMAX to the model explains

the abnormal return (relative to other models) of the High−Low β portfolio. In months where

the correlation between β and MAX is low, the alpha of the High−Low β portfolio is statistically

insignificant regardless of the factor model being employed.

X Alternative Lottery Demand Factors

In this section, we examine whether alternative lottery demand factors created using MAX(k) as

the measure of lottery demand, can explain the returns of Frazzini and Pedersen’s BAB factor.

MAX(k) is defined as the average of the k highest daily returns of the given stock in the given

month, and we examine k ∈ {1, 2, 3, 4, 5}. We define the FMAX(k) factor as the factor created

using MAX(k) as the measure of lottery demand. The FMAX(k) factors are created using the

same procedure defined in Section 6 of the main paper. The only difference is that instead of using

MAX = MAX(5) as the measure of lottery demand, here we use MAX(k), k ∈ {1, 2, 3, 4, 5}.

In Table A10 we present the alphas and factor sensitivities of the BAB factor relative to sev-

eral different factor models. Specifically, we present results for the factor models that include

the Fama and French (1993) and Carhart (1997) factors augmented with the FMAX(k) factor

(FFC4+FMAX(k), k ∈ {1, 2, 3, 4, 5}) as well as for the FFC4 factors augmented with the Pastor

and Stambaugh (2003) factor and the FMAX(k) factor (FFC4+PS+FMAX(k)). The results in-

dicate that regardless of which measure of lottery demand is used to create the lottery demand

factor, the lottery demand factor explains the returns of the BAB factor, as the abnormal return of

the BAB factor is economically small and statistically insignificant when any version of the lottery
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demand factor is included in the factor model.

XI Frazzini and Pedersen (2014) Beta and Sample

In this section, we demonstrate that the main results of the paper are robust when market beta is

calculated following Frazzini and Pedersen (2014, FP hereafter) and are not sample specific.

FP estimate a stock’s market beta using a two-step process. First, they calculate an estimated

beta to be the product of the correlation between the stock return and the excess market return,

multiplied by the ratio of the standard deviation of the stock’s return to that of the market. In

calculating this value, they measure the correlation (ρi) using five years’ worth of overlapping three-

day log returns. The standard deviations (σi and σm) are calculated using one year of daily log

return data. They take their final measure of beta, which we denote βFP , to be 0.6 times the

previously described value plus 0.4:

βFP,i = 0.6ρi
σi
σm

+ 0.4. (A21)

The rationale for this measure is discussed in FP’s Section 3.3. A more detailed description of the

calculation and further discussion is provided in Section I of this online appendix.

We begin our analysis of the relation between βFP and future stock returns with a univariate

decile portfolio analysis using βFP as the sort variable. The results of this analysis are presented

in Table A11. Similar to the results for portfolios sorted on β (Table 1 of the main paper), the

average return of the High−Low βFP portfolio of −0.20% per month is negative but statistically

indistinguishable from zero with a t-statistic of −1.30. Assessing the returns of this portfolio using

the FFC4 and FFC4+PS risk models, we see that both models indicate that this portfolio generates

economically important negative and statistically significant abnormal returns. The High−Low βFP

portfolio generates an alpha of −0.31% per month (t-statistic = −2.67) using the FFC4 model and

−0.29% per month (t-statistic = −2.49) using the FFC4+PS model. Adding the FMAX factor to

each of the risk models reduces the abnormal return to a statistically insignificant−0.07% per month

for the FFC4+FMAX model and -0.08% per month for the FFC4+PS+FMAX model, indicating

that the FMAX factor explains the returns of the High−Low βFP portfolio. Furthermore, none of
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the decile portfolios generate risk-adjusted returns that are statistically different than zero when

FMAX is included in the factor model. As with the results for the β-based portfolios presented in

Section 6 of the main paper, inclusion of the FMAX factor in the risk model explains the abnormal

returns of the High−Low βFP -based portfolio.

We then repeat the portfolio analysis, this time sorting on the portion of βFP that is orthogonal

to MAX, denoted βFP⊥MAX , which we calculate by running a cross-sectional regression of βFP

on MAX and taking a stock’s βFP⊥MAX to be the estimated intercept coefficient plus the residual

from the regression. The results of this portfolio analysis show that, similar to the results for

β⊥MAX (Table 6 of the main paper), the High−Low FFC4 alpha is substantially reduced to only

−0.15% per month and is no longer statistically distinguishable from zero, indicating that negative

alpha of the High−Low βFP portfolio is driven by the relation between βFP and MAX. When the

effect of MAX on βFP is removed, the High−Low portfolio no longer generates negative alpha.

When we sort on the portion of MAX that is orthogonal to βFP (MAX⊥βFP
), we find that both

the returns and alpha of the High-Low MAX⊥βFP
portfolio are negative, economically large in

magnitude, and highly statistically significant, demonstrating that the negative returns and alpha

of the High−Low MAX portfolio persist when only the portion of MAX that is orthogonal to βFP

is used as the sort variable. This result is consistent with the results using MAX⊥β from Table 6

of the main paper.

In Table A12 we present the results of a bivariate independent sort portfolio analysis of the

relation between future stock returns and each of βFP and MAX. Within each MAX decile, the

average return of the High−Low βFP portfolio, as well as the abnormal return relative to the FFC4

model, is statistically indistinguishable from zero, indicating that after controlling for the effect of

MAX there is no relation between βFP and future stock returns. Unreported results show that

the return of the average High-Low βFP portfolio across all MAX deciles is −0.06% per month (t-

statistic = −0.52), and the FFC4 alpha of this portfolio is −0.11% per month (t-statistic = −1.23).

The results indicate that the negative abnormal return of the High−Low βFP portfolio is explained

by MAX. The relation between MAX and future stock returns, however, remains negative and

highly statistically significant after controlling for βFP , as the High−Low MAX average return and

risk-adjusted alpha is negative, economically large, and statistically significant for each decile of

βFP . Across all βFP deciles, unreported results show that average monthly return of the High−Low
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MAX portfolio is −0.98% per month (t-statistic = −4.47), and the FFC4 alpha of this portfolio

is −1.24% per month (t-statistc = −9.14). The results presented in Table A12 are very similar

to those found when using the standard CAPM measure of market beta (β, Table 5 of the main

paper). The abnormal return of the High−Low portfolio formed on market beta disappears after

controlling for lottery demand, yet the returns of the High−Low lottery demand portfolio remain

significantly negative after controlling for β.

We check the robustness of the independent sort portfolio analysis by using dependent sort

analyses. The results of bivariate dependent sort portfolio analyses of the conditional relations

between future stock returns and each of βFP and MAX are presented in Table A13. The results

in Panel A show that within each MAX decile the FFC4 alpha of the High−Low βFP portfolio is

small in magnitude and statistically indistinguishable from zero. In unreported results we find that

the average abnormal return of the High−Low βFP portfolio, across all deciles of MAX, is −0.07%

per month with a corresponding t-statistic of −0.73. Panel B shows the results of the portfolio

analysis that sorts first on βFP and then on MAX. The results demonstrate that the average return

and FFC4 alpha of the High−Low MAX portfolio within each decile of βFP is negative and highly

statistically significant. The average High−Low MAX portfolio across all deciles of βFP generates

average monthly returns of −0.99% (t-statistic = −4.61) and an FFC4 alpha of −1.24% per month

(t-statistic = −8.97). The results in both Panels of Table A13 are consistent with those found when

using the standard measure of market beta (β, results in Table A7 of this online appendix).

Finally, we examine whether the different beta calculation or different sample used by FP has

an impact on our analyses of the BAB and FMAX factor returns. To do so, we repeat the factor

analyses in Table 10 of the main paper using a betting against beta factor constructed from our

sample using our standard measure of market beta (β). All other aspects of the portfolio, including

the weighting scheme and zero-beta construction, are identical to those used for FP’s BAB factor

as described in FP’s Section 3.2 and equations (16) and (17). We denote this new factor BAB $5.

The results of the factor analyses of the BAB $5 and FMAX returns, presented in Table A14, are

consistent with the results in Table 10 of the main paper. Using models that do not include the

FMAX factor, BAB $5 generates a positive and statistically significant alpha. When the FMAX

factor is included in the model, the alpha decreases to an economically insignificant level and is

no longer statistically distinguishable from zero. In untabulated analyses, we find that this result
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is robust when the lottery demand factor is created using alternative measures of lottery demand

defined as the average of the k highest daily returns of the given stock in the given month for

k ∈ {1, 2, 3, 4, 5}. On the other hand, the FMAX alpha remains negative and statistically significant

regardless of whether or not BAB $5 is included in the factor model.

In summary, the results in Tables A11, A12, and A13 demonstrate that the main findings re-

garding the relation between market beta and future stock returns are similar regardless of whether

we use the standard measure of beta (β) or the FP measure. The portfolio that is long high-beta

stocks and short low-beta stocks generates negative risk-adjusted returns relative to standard risk

models. When the portfolio is formed to be neutral to lottery demand (MAX), this result dis-

appears. Using a factor model approach, adding a lottery demand factor (FMAX) to the risk

models explains the alpha of the beta-based portfolio. Finally, the results in Table A14 demon-

strate that the results are not driven by the difference in samples between this paper and FP, as

a betting against beta factor constructed using only stocks from our sample produces results that

are qualitatively the same as the results generated using FP’s BAB factor.
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Table A1: Univariate Portfolios Sorted on Alternative Measures of Market Beta
Each month, all stocks are sorted into ascending decile portfolios based on a measure of market beta.
β is the standard CAPM regression-based measure of beta. βSW is calculated following Scholes and
Williams (1977) and βD is calculated following Dimson (1979). The table presents the time-series
means of the monthly equal-weighted excess returns for each of the decile portfolios. The column
labeled High-Low presents the mean difference between decile ten and decile one. The row labeled
FFC4 α presents the alpha of the High-Low portfolio relative to the Fama and French (1993) and
Carhart (1997) four-factor model. t-statistics, adjusted following Newey and West (1987), testing
the null hypothesis of a zero mean return or alpha, are shown in parentheses.

Sort 1 10
Variable Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

β β -0.00 0.25 0.42 0.56 0.70 0.84 1.00 1.19 1.46 2.02

R 0.69 0.78 0.78 0.77 0.81 0.73 0.71 0.65 0.51 0.35 -0.35
(3.74) (3.90) (3.74) (3.54) (3.42) (2.90) (2.66) (2.26) (1.58) (0.89) (-1.13)

FFC4 α 0.22 0.24 0.16 0.11 0.10 -0.02 -0.05 -0.11 -0.18 -0.29 -0.51
(2.22) (2.77) (2.31) (1.59) (1.69) (-0.30) (-0.80) (-1.83) (-2.20) (-2.22) (-2.50)

βSW βSW 0.00 0.30 0.48 0.63 0.78 0.94 1.10 1.31 1.59 2.18

R 0.63 0.77 0.77 0.76 0.79 0.75 0.75 0.68 0.55 0.35 -0.28
(3.38) (4.05) (3.83) (3.41) (3.34) (2.98) (2.85) (2.33) (1.67) (0.87) (-0.90)

FFC4 α 0.14 0.23 0.16 0.08 0.08 0.02 0.00 -0.05 -0.15 -0.30 -0.44
(1.44) (2.82) (2.39) (1.22) (1.32) (0.25) (-0.01) (-0.88) (-2.04) (-2.45) (-2.27)

βD βD -0.21 0.26 0.50 0.69 0.88 1.07 1.29 1.55 1.91 2.74

R 0.51 0.66 0.73 0.75 0.82 0.80 0.81 0.80 0.66 0.25 -0.25
(2.53) (3.39) (3.59) (3.47) (3.51) (3.27) (3.14) (2.78) (2.02) (0.66) (-0.96)

FFC4 α -0.06 0.09 0.12 0.08 0.12 0.09 0.10 0.08 -0.03 -0.41 -0.35
(-0.74) (1.25) (1.77) (1.33) (1.94) (1.50) (1.92) (1.50) (-0.42) (-3.82) (-2.12)
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Table A2: Univariate Portfolios Sorted on Alternative Measures of Lottery Demand
Each month, all stocks are sorted into ascending decile portfolios based on a measure of lottery
demand. The measures of lottery demand are MAX (k), k ∈ {1, 2, 3, 4, 5}, where MAX (k) is
defined as the average of the k highest daily returns of the given stock within the given month. The
table presents the time-series means of the monthly equal-weighted excess returns for each of the
decile portfolios. The column labeled High-Low presents the mean difference between decile ten
and decile one. The row labeled FFC4 α presents the alpha of the High-Low portfolio relative to
the Fama and French (1993) and Carhart (1997) four-factor model. t-statistics, adjusted following
Newey and West (1987), testing the null hypothesis of a zero mean return or alpha, are shown in
parentheses.

Sort 1 10
Variable Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

MAX(5) MAX(5) 0.66 1.25 1.69 2.09 2.49 2.91 3.41 4.04 4.98 7.62

R 0.74 1.00 0.96 0.94 0.90 0.82 0.80 0.67 0.36 -0.40 -1.15
(4.07) (4.95) (4.59) (4.25) (3.84) (3.29) (2.93) (2.29) (1.10) (-1.11) (-4.41)

FFC4 α 0.27 0.42 0.35 0.30 0.23 0.12 0.08 -0.07 -0.38 -1.14 -1.40
(3.01) (5.90) (5.89) (5.18) (3.95) (2.20) (1.53) (-1.50) (-6.05) (-10.43) (-8.95)

MAX(4) MAX(4) 0.78 1.45 1.95 2.38 2.81 3.28 3.83 4.54 5.60 8.63

R 0.73 0.98 0.92 0.97 0.90 0.83 0.81 0.68 0.35 -0.40 -1.13
(4.05) (4.99) (4.43) (4.35) (3.78) (3.36) (2.94) (2.35) (1.07) (-1.10) (-4.35)

FFC4 α 0.26 0.40 0.33 0.33 0.22 0.13 0.08 -0.05 -0.39 -1.12 -1.38
(2.93) (6.18) (5.42) (5.45) (3.61) (2.34) (1.49) (-0.95) (-6.35) (-10.64) (-8.98)

MAX(3) MAX(3) 0.91 1.70 2.24 2.70 3.18 3.71 4.34 5.15 6.37 9.98

R 0.73 0.94 0.95 0.96 0.89 0.87 0.81 0.65 0.36 -0.38 -1.11
(4.14) (4.76) (4.54) (4.28) (3.76) (3.46) (2.97) (2.21) (1.12) (-1.07) (-4.30)

FFC4 α 0.26 0.36 0.33 0.32 0.21 0.17 0.08 -0.08 -0.37 -1.10 -1.36
(3.01) (5.74) (5.52) (5.33) (3.58) (3.02) (1.55) (-1.66) (-6.03) (-10.74) (-9.12)

MAX(2) MAX(2) 1.09 2.00 2.57 3.09 3.64 4.26 4.99 5.96 7.43 11.99

R 0.71 0.92 0.93 0.99 0.90 0.90 0.79 0.65 0.35 -0.34 -1.05
(4.06) (4.68) (4.40) (4.43) (3.76) (3.50) (2.89) (2.22) (1.09) (-0.97) (-4.14)

FFC4 α 0.23 0.34 0.31 0.34 0.23 0.18 0.06 -0.08 -0.37 -1.05 -1.28
(2.74) (5.54) (5.37) (5.72) (3.95) (3.26) (1.09) (-1.54) (-6.18) (-10.57) (-8.91)

MAX(1) MAX(1) 1.35 2.33 2.98 3.61 4.27 5.03 5.95 7.17 9.11 15.77

R 0.72 0.89 0.94 0.93 0.94 0.87 0.76 0.61 0.36 -0.23 -0.95
(4.14) (4.54) (4.44) (4.12) (3.86) (3.42) (2.70) (2.10) (1.13) (-0.67) (-3.91)

FFC4 α 0.23 0.31 0.32 0.28 0.26 0.16 0.02 -0.11 -0.36 -0.93 -1.15
(2.89) (5.10) (5.59) (4.87) (4.36) (3.28) (0.44) (-2.25) (-5.97) (-10.40) (-8.95)
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Table A3: Univariate Portfolio MPPM
Each month, all stocks are sorted into decile portfolios based on ascending sorts of either β or
MAX. The table presents the manipulation proof performance measure (MPPM) of Ingersoll,
Spiegel, Goetzmann, and Welch (2007) for each of the decile portfolios. t-statistics, calculated
using standard errors generated using a bootstrap approach, testing the null hypothesis of a zero
MPPM, are shown in parentheses.

Sort 1 10
Variable (Low) 2 3 4 5 6 7 8 9 (High) High-Low

β 6.81 7.42 6.83 6.28 6.12 4.58 3.65 1.98 -1.56 -7.82 -16.96
(5.26) (5.74) (4.95) (4.57) (4.20) (3.28) (2.63) (1.42) (-0.97) (-2.80) (-6.34)

MAX 7.23 9.46 8.67 8.01 7.14 5.64 4.66 2.23 -2.91 -13.65 -23.78
(5.79) (7.06) (6.67) (6.13) (5.40) (4.12) (3.28) (1.53) (-1.64) (-5.78) (-9.92)

Table A4: Portfolio-Level MAX
Each month, all stocks are sorted into ascending decile portfolios based on either MAX or the
portion of MAX that is orthogonal to beta (MAX⊥β). The portfolio-level MAX for each decile
portfolio is calculated as the average of the five highest daily portfolio-level returns in the month
subsequent to portfolio formation. The table presents the time-series averages of the portfolio-level
values of MAX for each of the decile portfolios. The column labeled High-Low presents the mean
difference between decile ten and decile one. t-statistics, adjusted following Newey and West (1987),
testing the null hypothesis that average difference in portfolio-level MAX between the decile ten
and decile one portfolios is zero, are shown in parentheses.

Sort 1 10
Variable (Low) 2 3 4 5 6 7 8 9 (High) High-Low

MAX 0.50 0.70 0.81 0.89 0.97 1.04 1.13 1.23 1.33 1.41 0.91
(13.13)

MAX⊥β 0.91 0.86 0.88 0.92 0.97 1.00 1.04 1.08 1.13 1.16 0.25
(8.50)
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Table A5: Bivariate Dependent Sort Portfolio Analyses - Alternative Measures of
Lottery Demand
The table below presents the results of bivariate dependent sort portfolio analyses of the relation
between future stock returns and β after controlling for lottery demand. The measures of lottery
demand are MAX (k), k ∈ {1, 2, 3, 4, 5}, where MAX (k) is defined as the average of the k highest
daily returns of the given stock within the given month. Each month, all stocks in the sample are
sorted into ten groups, each having an equal number of stocks, based on an ascending sort of the
given measure of lottery demand. Within each group, decile portfolios based on an ascending sort
of β are created. The table presents the time-series means of equal-weighted excess returns (R)
for the average lottery demand decile portfolio within each decile of β, as well as the mean return
differences between the high and low beta portfolios (High-Low), and the Fama and French (1993)
and Carhart (1997) four-factor alphas (FFC4 α) for the High-Low portfolios. t-statistics for the
High-Low returns and FFC4 alphas, adjusted following Newey and West (1987) using six lags, are
in parentheses.

Lottery
Demand 1 10
Measure (Low) 2 3 4 5 6 7 8 9 (High) High-Low FFC4 α

MAX(5) 0.70 0.69 0.67 0.68 0.67 0.70 0.66 0.65 0.70 0.68 -0.02 -0.14
(-0.10) (-0.85)

MAX(4) 0.73 0.68 0.67 0.66 0.67 0.72 0.66 0.63 0.70 0.66 -0.07 -0.18
(-0.29) (-1.07)

MAX(3) 0.74 0.68 0.70 0.65 0.69 0.70 0.66 0.61 0.69 0.67 -0.07 -0.21
(-0.33) (-1.20)

MAX(2) 0.73 0.72 0.71 0.64 0.69 0.70 0.65 0.66 0.66 0.63 -0.10 -0.24
(-0.45) (-1.37)

MAX(1) 0.75 0.71 0.73 0.66 0.68 0.72 0.67 0.64 0.65 0.58 -0.17 -0.31
(-0.70) (-1.77)
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Table A6: Sub-Period Bivariate Dependent Sort Portfolio Analyses
The table below presents the results of bivariate dependent sort portfolio analyses of the relation
between future stock returns and β after controlling for MAX for different subsets of months
covered by our sample. The table presents results for the subset of months for which the Chicago
Fed National Activity Index (CFNAI) is less than or equal to zero (CFNAI ≤ 0), months for
which the CFNAI is greater than zero (CFNAI > 0), and months that are not part of the financial
crisis of 2007 through 2009 (Non-Crisis). Non-crisis months are taken to be all months except for
those from December 2007 through June 2009, inclusive. Each month, all stocks in the sample
are sorted into 10 groups, each having an equal number of stocks, based on an ascending sort of
MAX. Within each control variable group, decile portfolios based on an ascending sort of β are
created. Each month, the equal-weighted one-month-ahead excess returns for each of the resulting
portfolios is calculated. The excess return in each month for each β decile is then taken to be the
average excess return, across all deciles of MAX, of the portfolios in the given decile of β. The
table presents the time-series average excess return for each of these β decile portfolios. The row
labeled High-Low presents the mean monthly return difference between the β decile 10 and decile
1 portfolio. The row labeled FFC4 α presents the risk-adjusted alpha of the High–Low portfolio
relative to the Fama and French (1993) and Carhart (1997) four-factor risk model. The numbers
in parentheses are t-statistics, adjusted following Newey and West (1987) using six lags, testing the
null hypothesis that the mean monthly return or risk-adjusted alpha is equal to zero.

Market 1 10
Conditions (Low) 2 3 4 5 6 7 8 9 (High) High-Low FFC4 α

CFNAI ≤ 0 0.49 0.55 0.60 0.61 0.73 0.75 0.66 0.70 0.75 0.70 0.21 0.07
(0.58) (0.30)

CFNAI > 0 0.90 0.82 0.72 0.75 0.61 0.64 0.67 0.61 0.64 0.66 -0.24 -0.35
(-0.92) (-1.50)

Non-Crisis 0.80 0.77 0.75 0.78 0.75 0.77 0.75 0.73 0.78 0.76 -0.04 -0.19
(-0.18) (-1.10)
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Table A7: Bivariate Dependent Sort Portfolio Analyses - β and MAX
The table below presents the results of bivariate dependent sort portfolio analyses of the relation
between future stock returns and each of β (Panel A) and MAX (Panel B) after controlling for
the other. Each month, all stocks in the sample are sorted into ten groups, each having an equal
number of stocks, based on an ascending sort of the control variable (MAX in Panel A, β in
Panel B). Within each control variable group, decile portfolios based on an ascending sort of the
predictive variable (β in Panel A, MAX in Panel B) are created. The table presents the time-series
means of the equal-weighted one-month-ahead excess returns for each of the portfolios. The row
labeled High-Low presents the mean monthly return difference between the β (MAX) decile ten
and decile one portfolio for the given MAX (β) decile. The row labeled FFC4 α presents the risk-
adjusted alpha of the difference portfolio relative to the Fama and French (1993) and Carhart (1997)
four-factor risk model. The numbers in parentheses are t-statistics, adjusted following Newey and
West (1987) using six lags, testing the null hypothesis that the mean monthly return difference or
risk-adjusted alpha is equal to zero.

Panel A: Sort By MAX then β

M
A
X

1

M
A
X

2

M
A
X

3

M
A
X

4

M
A
X

5

M
A
X

6

M
A
X

7

M
A
X

8

M
A
X

9

M
A
X

10

β 1 (Low) 0.52 0.95 0.91 0.99 0.91 0.86 0.94 0.73 0.51 -0.30
β 2 0.62 1.02 0.92 0.93 0.83 1.02 0.84 0.76 0.37 -0.42
β 3 0.60 0.84 1.00 0.92 0.84 0.79 0.68 0.75 0.46 -0.19
β 4 0.60 0.99 0.96 0.87 1.07 0.74 0.78 0.55 0.48 -0.23
β 5 0.65 0.92 0.95 1.07 0.87 0.73 0.80 0.63 0.25 -0.18
β 6 0.71 0.94 0.93 1.00 0.98 0.86 0.82 0.61 0.48 -0.37
β 7 0.84 0.97 0.96 0.94 0.84 0.90 0.88 0.58 0.25 -0.55
β 8 0.80 1.16 0.97 0.82 0.87 0.76 0.81 0.59 0.22 -0.50
β 9 1.02 1.13 1.01 0.83 0.91 0.75 0.78 0.72 0.39 -0.56
β 10 (High) 1.11 1.10 1.05 1.02 0.83 0.79 0.68 0.75 0.16 -0.72

High-Low 0.59 0.16 0.14 0.04 -0.08 -0.06 -0.25 0.02 -0.35 -0.42
(3.03) (0.87) (0.71) (0.16) (-0.34) (-0.23) (-0.82) 0.06 (-1.04) (-1.01)

FFC4 α 0.27 -0.09 -0.10 -0.17 -0.27 -0.16 -0.33 -0.06 -0.28 -0.24
(1.78) (-0.56) (-0.54) (-0.89) (-1.30) (-0.69) (-1.36) (-0.22) (-1.00) (-0.74)
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Table A7: Bivariate Dependent Sort Portfolio Analyses - β and MAX - continued

Panel B: Sort By β then MAX

β
1

β
2

β
3

β
4

β
5

β
6

β
7

β
8

β
9

β
10

MAX 1 (Low) 0.35 0.47 0.71 0.90 0.98 1.06 1.08 1.04 0.98 1.04
MAX 2 0.75 0.85 0.93 1.07 1.02 0.95 0.90 0.93 0.99 0.86
MAX 3 0.73 0.95 0.93 0.92 0.93 0.95 0.83 0.86 0.77 0.82
MAX 4 0.85 1.03 0.91 0.89 1.11 0.93 0.97 0.79 0.73 0.77
MAX 5 0.95 1.03 0.95 0.91 1.02 0.99 0.86 0.87 0.76 0.69
MAX 6 0.97 0.83 0.93 1.02 0.89 0.87 0.91 0.87 0.59 0.46
MAX 7 1.03 0.89 0.93 0.86 0.79 0.75 0.79 0.64 0.44 0.15
MAX 8 0.91 0.80 0.77 0.59 0.72 0.59 0.63 0.58 0.42 0.06
MAX 9 0.46 0.80 0.69 0.59 0.61 0.48 0.38 0.36 0.13 -0.31
MAX 10 (High) -0.01 0.19 0.03 -0.03 0.01 -0.33 -0.23 -0.46 -0.71 -1.07

High-Low -0.36 -0.28 -0.68 -0.93 -0.97 -1.39 -1.31 -1.50 -1.69 -2.11
(-1.45) (-1.66) (-3.50) (-5.21) (-4.56) (-6.75) (-4.82) (-6.87) (-5.86) (-7.48)

FFC4 α -0.83 -0.59 -0.88 -1.21 -1.18 -1.64 -1.54 -1.66 -1.97 -2.14
(-4.14) (-3.88) (-5.23) (-7.76) (-6.49) (-8.69) (-7.81) (-7.77) (-8.37) (-8.59)

Table A8: Aggregate Lottery Demand and ρβ,MAX

The table below presents the average values of measures characterizing market conditions in months
with high and low ρβ,MAX . RECADS and RECCFNAI are dummies indicating a recession period
according to the Aruoba-Diebold-Scotti Business Conditions Index (ADS) and the Chicago Fed
National Activity Index (CFNAI), respectively. Values of ADS less than -0.5 and values of CFNAI
less than -0.7 are taken to indicate recession. MAXMKTRF and MAXAgg are measures of aggregate
lottery demand. V OLMKTRF is the realized annualized volatility of the MKTRF factor during
the month. MAXMKTRF is the average of the five highest daily returns of the MKTRF factor
during the given month. MAXAgg is the value-weighted average MAX across all stocks in the
sample during the given month. The row labeled high (low) presents the average value for the
given variable during months with above (below) median ρβ,MAX , and the row labeled High-Low
presents the difference. The t-statistic testing the null hypothesis that the difference is equal to
zero, adjusted following Newey and West (1987) using six lags, is presented in parentheses.

ρβ,MAX R
E
C
A
D
S

R
E
C
C
F
N
A
I

V
O
L
M
K
T
R
F

M
A
X
M
K
T
R
F

M
A
X
A
g
g

High 0.30 0.24 15.56 1.28 2.53
Low 0.10 0.11 11.18 0.91 2.10

High-Low 0.20 0.13 4.38 0.37 0.43
(3.71) (2.37) (3.71) (4.15) (3.62)
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Table A9: High and Low β, MAX Correlation Factor Sensitivities
Panel A presents factor sensitivities of the High-Low univariate sort beta portfolio returns using
several different risk models for months where the cross-sectional correlation between β and MAX is
high. Panel B presents the results for months when the correlation is low. The columns labeled βF ,
F ∈ {MKTRF, SMB,HML,UMD,PS, FMAX}, present the factor sensitivities. N indicates
the number of months for which factor returns are available. Adj. R2 is the adjusted r-squared of
the factor model regression. t-statistics, adjusted following Newey and West (1987) using six lags,
are in parentheses.

Panel A: High β, MAX Correlation

α βMKTRF βSMB βHML βUMD βPS βFMAX N Adj. R2

FFC4 -0.72 1.08 0.60 -0.79 -0.15 296 77.34%
(-2.86) (11.17) (5.21) (-5.34) (-1.73)

FFC4+PS -0.72 1.10 0.52 -0.78 -0.19 -0.15 269 78.66%
(-2.63) (11.63) (4.28) (-5.82) (-2.15) (-1.70)

FFC4+FMAX 0.09 0.53 0.13 -0.18 -0.09 1.07 296 91.67%
(0.53) (9.22) (2.16) (-3.53) (-2.26) (18.82)

FFC4+PS+FMAX 0.03 0.56 0.11 -0.18 -0.10 -0.01 1.04 269 91.89%
(0.19) (9.49) (1.83) (-3.21) (-2.28) (-0.30) (17.54)

Panel B: Low β, MAX Correlation

α βMKTRF βSMB βHML βUMD βPS βFMAX N Adj. R2

FFC4 -0.26 0.83 0.57 -0.63 -0.21 297 66.11%
(-0.86) (8.96) (6.13) (-4.08) (-2.27)

FFC4+PS -0.19 0.82 0.56 -0.68 -0.24 -0.01 271 67.10%
(-0.62) (8.57) (6.09) (-4.47) (-2.54) (-0.09)

FFC4+FMAX 0.08 0.65 0.15 -0.44 -0.30 0.59 297 73.04%
(0.30) (7.72) (0.94) (-3.68) (-3.41) (4.65)

FFC4+PS+FMAX 0.11 0.66 0.15 -0.49 -0.32 -0.01 0.56 271 73.25%
(0.41) (7.50) (0.98) (-3.96) (-3.37) (-0.12) (4.38)
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Table A11: Univariate Portfolio Results Sorting on βFP , βFP⊥MAX , and MAX⊥βFP

The table below presents the results of univariate portfolio analyses of the relation between future
stock returns and each of FP’s market beta (βFP ), the portion of βFP that is orthogonal to MAX
(βFP⊥MAX), and the portion of MAX that is orthogonal to βFP (MAX⊥βFP

). t-statistics, adjusted
following Newey and West (1987) using six lags, testing the null hypothesis that the average monthly
excess return, alpha, or sensitivity, is equal to zero, are presented in parentheses.

Sort 1 10
Variable Value (Low) 2 3 4 5 6 7 8 9 (High) High-Low

βFP βFP 0.64 0.76 0.83 0.88 0.93 0.99 1.04 1.11 1.20 1.41

R 0.83 0.81 0.80 0.79 0.80 0.75 0.73 0.70 0.64 0.63 -0.20
(4.19) (3.90) (3.62) (3.50) (3.40) (3.12) (2.82) (2.63) (2.35) (2.12) (-1.30)

FFC4 α 0.22 0.18 0.13 0.13 0.12 0.06 0.02 -0.02 -0.06 -0.08 -0.31
(3.44) (3.24) (2.33) (2.70) (2.41) (1.30) (0.36) (-0.33) (-1.13) (-1.09) (-2.67)

FFC4 + PS α 0.23 0.19 0.14 0.15 0.11 0.05 0.01 -0.05 -0.08 -0.07 -0.29
(3.31) (3.26) (2.28) (2.97) (1.94) (0.97) (0.19) (-1.01) (-1.41) (-0.88) (-2.49)

FFC4 + FMAX α 0.09 0.05 0.02 0.03 0.03 0.00 -0.02 -0.03 -0.05 0.02 -0.07
(1.46) (0.99) (0.46) (0.66) (0.56) (-0.08) (-0.45) (-0.70) (-0.76) (0.21) (-0.68)

FFC4 + PS + FMAX α 0.09 0.06 0.04 0.05 0.01 -0.02 -0.04 -0.07 -0.08 0.01 -0.08
(1.43) (1.18) (0.63) (1.05) (0.21) (-0.38) (-0.67) (-1.41) (-1.23) (0.11) (-0.74)

βFP⊥MAX βFP⊥MAX 0.60 0.72 0.79 0.84 0.89 0.95 1.00 1.07 1.16 1.36

R 0.76 0.77 0.80 0.74 0.80 0.77 0.69 0.76 0.69 0.71 -0.05
(3.66) (3.59) (3.56) (3.24) (3.38) (3.23) (2.69) (2.94) (2.56) (2.49) (-0.39)

FFC4 α 0.15 0.13 0.14 0.07 0.11 0.09 -0.01 0.05 -0.03 0.00 -0.15
(2.38) (2.46) (2.40) (1.52) (2.12) (1.97) (-0.25) (1.06) (-0.51) (0.04) (-1.48)

MAX⊥βFP
MAX⊥βFP

-1.19 -0.19 0.42 1.00 1.60 2.28 3.11 4.24 6.04 12.39

R 0.80 0.89 0.94 0.88 0.95 0.94 0.87 0.68 0.53 0.01 -0.79
(4.13) (4.35) (4.47) (4.01) (4.10) (3.82) (3.30) (2.49) (1.79) (0.02) (-4.04)

FFC4 α 0.27 0.29 0.32 0.24 0.26 0.24 0.10 -0.07 -0.22 -0.74 -1.01
(3.48) (4.46) (5.78) (4.71) (4.78) (4.59) (1.99) (-1.39) (-3.76) (-8.66) (-8.57)

30



Table A12: Bivariate Independent Sort Portfolio Analysis for βFP and MAX
The table below presents the results of an independent sort bivariate portfolio analysis of the relation
between future stock returns and each of FP’s market beta (βFP ) and MAX. The table shows
the time-series means of the monthly equal-weighted excess returns based for portfolios formed on
intersections of β and MAX deciles. t-statistics, adjusted following Newey and West (1987) using
six lags, testing the null hypothesis that the mean monthly High-Low return difference or Fama
and French (1993) and Carhart (1997) four-factor alpha is equal to zero, are in parentheses.

M
A
X

1

M
A
X

2

M
A
X

3

M
A
X

4

M
A
X

5

M
A
X

6

M
A
X

7

M
A
X

8

M
A
X

9

M
A
X

10

M
A
X

A
v
g.

H
ig

h
-

L
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F

C
4
α

βFP 1 (Low) 0.81 0.89 0.97 1.02 0.99 0.87 0.98 0.99 0.73 0.00 0.83 -0.80 -1.17
(-2.89) (-4.96)

βFP 2 0.74 1.03 1.08 0.89 1.01 0.98 0.86 0.91 0.45 -0.07 0.79 -0.82 -1.09
(-3.40) (-5.51)

βFP 3 0.80 0.99 0.87 0.98 0.93 0.89 0.95 0.73 0.60 -0.12 0.76 -0.92 -1.14
(-3.62) (-5.78)

βFP 4 0.92 1.00 0.94 0.95 0.93 0.80 0.76 0.83 0.37 0.06 0.76 -0.86 -1.05
(-2.80) (-4.07)

βFP 5 0.98 0.96 1.05 0.98 0.81 0.91 0.85 0.84 0.55 0.11 0.80 -0.87 -1.07
(-3.32) (-5.71)

βFP 6 0.92 1.12 1.07 0.78 0.91 0.84 0.71 0.83 0.47 -0.24 0.74 -1.16 -1.50
(-4.60) (-7.82)

βFP 7 0.88 1.10 1.06 0.93 0.95 0.76 0.79 0.64 0.55 -0.05 0.76 -0.93 -1.26
(-3.21) (-5.93)

βFP 8 1.00 1.04 1.03 0.91 0.93 0.83 0.76 0.73 0.50 -0.24 0.75 -1.23 -1.42
(-4.52) (-6.26)

βFP 9 0.85 1.19 0.81 0.93 0.99 0.79 0.93 0.67 0.32 -0.22 0.72 -1.07 -1.31
(-3.87) (-5.63)

βFP 10 (High) 0.78 1.00 1.23 0.95 1.01 0.89 0.86 0.75 0.47 -0.32 0.76 -1.10 -1.38
(-3.60) (-5.87)

β Avg. 0.87 1.03 1.01 0.93 0.95 0.86 0.84 0.79 0.50 -0.11

High-Low -0.03 0.11 0.27 -0.08 0.02 0.02 -0.12 -0.24 -0.25 -0.32
(-0.13) (0.85) (1.39) (-0.49) (0.10) (0.12) (-0.62) (-1.33) (-1.06) (-0.78)

FFC4 α -0.05 0.01 0.15 -0.16 -0.08 -0.03 -0.11 -0.29 -0.30 -0.20
(-0.30) (0.06) (0.87) (-1.04) (-0.55) (-0.23) (-0.60) (-1.77) (-1.36) (-0.80)

31



Table A13: Bivariate Dependent Sort Portfolio Analyses - βFP and MAX
The table below presents the results of dependent sort bivariate portfolio analyses of the relation
between future stock returns and each of βFP (Panel A) and MAX (Panel B) after controlling
for the other. Each month, all stocks in the sample are sorted into ten groups, each having an
equal number of stocks, based on an ascending sort of the control variable (MAX in Panel A, βFP
in Panel B). Within each control variable group, decile portfolios based on an ascending sort of
the predictive variable (βFP in Panel A, MAX in Panel B) are created. The table presents the
time-series means of the equal-weighted one-month-ahead excess returns for each of the portfolios.
The row labeled High-Low presents the mean monthly return difference between the βFP (MAX)
decile ten and decile one portfolio for the given MAX (βFP ) decile. The row labeled FFC4 α
presents the risk-adjusted alpha of the difference portfolio relative to the Fama and French (1993)
and Carhart (1997) four-factor risk model. The numbers in parentheses are t-statistics, adjusted
following Newey and West (1987) using six lags, testing the null hypothesis that the mean monthly
return difference or risk-adjusted alpha is equal to zero.

Panel A: Sort By MAX then βFP
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βFP 1 (Low) 0.74 0.86 0.93 1.00 0.95 0.93 0.95 0.89 0.52 -0.01 0.78
βFP 2 0.82 0.97 1.04 0.96 1.02 0.88 0.90 0.81 0.49 -0.25 0.76
βFP 3 0.78 1.01 0.98 0.90 0.84 0.85 0.90 0.83 0.57 0.18 0.79
βFP 4 0.75 1.05 0.82 0.97 1.03 0.83 0.77 0.85 0.50 -0.12 0.75
βFP 5 0.81 0.97 1.03 0.91 0.75 0.93 0.87 0.81 0.59 -0.24 0.74
βFP 6 0.91 0.95 1.04 0.89 1.02 0.82 0.70 0.63 0.43 -0.17 0.72
βFP 7 1.03 1.06 0.97 0.80 0.92 0.84 0.73 0.72 0.49 -0.07 0.75
βFP 8 0.77 1.09 1.05 1.02 0.85 0.87 0.85 0.80 0.41 -0.23 0.75
βFP 9 0.92 1.04 0.91 0.89 0.96 0.76 0.87 0.64 0.32 -0.44 0.69
βFP 10 (High) 0.89 1.03 1.02 0.94 1.00 0.82 0.86 0.74 0.54 -0.25 0.76

High-Low 0.15 0.17 0.09 -0.06 0.05 -0.11 -0.09 -0.15 0.02 -0.23 -0.02
(1.16) (1.49) (0.66) (-0.42) (0.34) (-0.72) (-0.49) (-0.88) (0.11) (-0.96) (-0.14)

FFC4 α 0.09 0.05 0.00 -0.12 -0.05 -0.15 -0.08 -0.19 0.00 -0.22 -0.07
(0.66) (0.39) (0.03) (-0.85) (-0.35) (-1.02) (-0.52) (-1.21) (-0.01) (-0.97) (-0.73)
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Table A13: Bivariate Dependent Sort Portfolio Analyses - βFP and MAX - continued

Panel B: Sort By βFP then MAX
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MAX 1 (Low) 0.73 0.72 0.74 0.91 0.93 0.94 0.90 0.95 0.93 1.01 0.88
MAX 2 0.87 0.94 1.02 1.00 0.97 1.10 1.04 0.99 0.96 0.93 0.98
MAX 3 0.97 1.02 0.97 0.99 1.07 1.04 1.02 0.99 0.83 0.96 0.99
MAX 4 0.96 1.04 0.86 0.92 0.88 0.82 0.89 0.90 0.88 0.76 0.89
MAX 5 0.97 0.98 1.02 0.91 0.83 0.96 0.84 0.89 0.99 0.95 0.93
MAX 6 0.85 0.92 0.90 0.81 0.96 0.74 0.70 0.83 0.84 0.71 0.83
MAX 7 0.99 0.83 0.89 0.77 0.83 0.79 0.78 0.74 0.65 0.84 0.81
MAX 8 0.89 0.93 0.81 0.85 0.90 0.85 0.55 0.59 0.53 0.46 0.74
MAX 9 0.87 0.64 0.78 0.65 0.53 0.49 0.59 0.47 0.10 0.20 0.53
MAX 10 (High) 0.17 0.05 -0.03 0.12 0.13 -0.25 -0.10 -0.36 -0.30 -0.53 -0.11

High-Low -0.55 -0.67 -0.78 -0.79 -0.80 -1.19 -1.01 -1.32 -1.23 -1.55 -0.99
(-2.42) (-3.23) (-3.37) (-2.93) (-3.35) (-4.84) (-3.49) (-4.95) (-4.37) (-5.03) (-4.61)

FFC4 α -0.91 -0.96 -1.00 -1.00 -0.99 -1.53 -1.33 -1.52 -1.44 -1.71 -1.24
(-5.04) (-5.98) (-5.46) (-4.50) (-6.06) (-8.06) (-6.11) (-7.29) (-6.24) (-6.53) (-8.97)
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Table A14: Factor Sensitivities for BAB $5 and FMAX Factors
The table below presents the alphas and factor sensitivities for the $5 stock BAB $5 factor
(Panel A) and FMAX factor (Panel B) using several factor models. The column labeled α
presents the risk-adjusted alpha for each of the factor models. The columns labeled βf , f ∈
{MKTRF, SMB,HML,UMD,PS, FMAX,BAB $5} present the sensitivities of the BAB $5 or
FMAX factor returns to the given factor. The BAB $5 factor is constructed following equations
(16) and (17) in Frazzini and Pedersen (2014) using only stocks with share price greater than $5.00.
The numbers in parentheses are t-statistics, adjusted following Newey and West (1987) using six
lags, testing the null hypothesis that the coefficient is equal to zero. The column labeled N indi-
cates the number of monthly returns used to fit the factor model. The column labeled Adj. R2

presents the adjusted r-squared of the factor model regression.

Panel A: Sensitivities of BAB $5 Factor

Specification α βMKTRF βSMB βHML βUMD βPS βFMAX N Adj. R2

FFC4 0.30 0.21 0.07 0.29 0.07 593 29.60%
(3.38) (6.75) (1.56) (5.68) (2.22)

FFC4+PS 0.32 0.22 0.09 0.30 0.09 0.03 540 33.08%
(3.44) (6.99) (1.85) (5.90) (2.57) (1.03)

FFC4+FMAX 0.10 0.33 0.24 0.13 0.07 -0.29 593 49.67%
(1.30) (12.62) (7.25) (3.77) (3.31) (-10.66)

FFC4+PS+FMAX 0.14 0.33 0.24 0.15 0.08 0.01 -0.28 540 51.27%
(1.60) (12.31) (7.01) (4.15) (3.59) (0.69) (-9.77)

Panel B: Sensitivities of FMAX Factor

Specification α βMKTRF βSMB βHML βUMD βPS βBAB $5 N Adj. R2

FFC4 -0.67 0.43 0.58 -0.53 -0.02 593 62.14%
(-5.12) (8.36) (6.39) (-4.59) (-0.19)

FFC4+PS -0.65 0.42 0.56 -0.54 -0.03 -0.06 540 62.36%
(-4.60) (8.17) (5.51) (-4.72) (-0.41) (-1.00)

FFC4+BAB $5 -0.37 0.63 0.65 -0.24 0.06 -0.99 593 72.93%
(-3.15) (13.95) (9.78) (-3.03) (0.99) (-10.02)

FFC4+PS+BAB $5 -0.34 0.64 0.64 -0.25 0.05 -0.03 -0.98 540 72.59%
(-2.54) (13.68) (8.74) (-2.98) (0.87) (-0.71) (-9.59)
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