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Abstract

We study the impact of technology adoption on asset prices in a dynamic model

that features a stochastic technology frontier. In equilibrium, firms operating with

old capital are riskier because costly technology adoption restricts their flexibilities in

upgrading to the latest technology, making them more exposed to technology frontier

shocks. Consistent with the model predictions, a long-short portfolio sorted on firm-

level capital age earns an average value-weighted return of 9% per year among U.S.

public companies. A proxy for technology frontier shocks captures the variation of the

capital age portfolios with a positive risk price, corroborating the model mechanism.
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1 Introduction

Over the last few decades, the nature of economic growth and productivity advancement

has transformed profoundly: technological changes taking the form of adopting the

technology frontier capital goods—especially in information and communication equipment

and software—have represented the major source of output growth in the United States

(Jorgenson (2001)). Productivity growth embodied in new and more productive capital has

accelerated significantly over the past 30 years, from 2 percent per year in the 1960s to 4.5

percent in the 1990s (See, e.g., Gordon (1990) and Cummins and Violante (2002)). In this

paper, we study how the time-variation of the aggregate technology frontier affects firms’

asset prices and real quantities. We show empirically and through the lens of a production-

based model that firms’ technology adoption decisions have a significant impact on the cross

section of stock returns.

We start by developing a dynamic model that features a stochastic technology frontier

and costly technology adoption. In the model, the technology frontier, which all firms have

access to, follows a stochastic process driven by a systematic shock1, similar to Abel and

Eberly (2012). Facing a stochastic technology frontier and the standard aggregate and firm-

specific productivity shocks, firms optimally choose to adopt the latest capital or to keep

operating with the existing vintage, which will become obsolete (i.e., less productive) over

time. The benefit of adopting the latest technology is a more efficient installed capital.

However, firms incur costs when adopting technology as in Cooper, Haltiwanger, and Power

(1999).

Adoption costs arise because not all firms’ existing expertise (human capital or workers’

skills) can be applied to the new technology. In the model, the adoption process involves

gross investment and a fixed adoption cost. Gross investment is larger when the firm’s

capital is further away from the technology frontier since current capital cannot be used for

the operation of the new technology. Fixed adoption costs capture the cost of learning a

new technology, workers training cost, the destruction cost of old organizational capital, etc.

This feature delivers lumpiness in the technology adoption policy implying that firms with

higher productivity or firms with older and less efficient capital are more likely to adopt the

latest technology. Through this channel, the model endogenously generates a cross-section of

firms with different capital age (i.e., different technical efficiency), measured as the number

of periods since last adoption.

1We assume the aggregate technology frontier shock carries a positive price of risk, for which we provide
evidence in the empirical analysis.
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Costly technology adoption restricts firms’ flexibilities in upgrading their capital stock

to the technology frontier, giving rise to the risk dispersion between technology-adopting

firms and non-adopting firms. The key insight is that firms that adopt the latest technology

or operate with the more efficient capital (i.e., young capital age firms) are less risky than

non-adopting firms operating with less efficient capital (i.e., old capital age firms). The

economic mechanism is as follows. Young capital age firms are productive firms that operate

with the recently upgraded capital and are close to the technology frontier. They have

low probabilities of adopting going forward, because the benefit of replacing their already-

efficient capital does not outweigh the adoption costs. As a result, their continuation value is

less tied to the fluctuations of the aggregate technology frontier. In contrast, old capital age

firms are low productivity firms that are far from the technology frontier. They are in need

of upgrading the obsolete technology, however, in equilibrium the adoption costs limit their

ability to do so. Thus, their continuation value is more exposed to the aggregate technology

frontier shock. As a result, young capital age firms earn lower expected returns than old

capital age firms. Linking capital age to the cross-sectional returns, the model generates

asset pricing implications that are distinct from those of standard investment-based asset

pricing models (e.g., Zhang (2005)) where capital vintage is homogeneous across firms and

there is no distinction between new and old capital.

Through several comparative static exercises, we show that the existence of technology

adoption costs is important for the good quantitative fit of the model. When technology

adoption is free of costs, firms’ average capital age drops substantially from 20 quarters

in the benchmark calibration to 2 quarters. Moreover, the capital age spread (the return

differential between old capital age and young capital age firms) becomes tiny, close to 0%

per annum vs 9.49% in the benchmark economy and 9.45% in the data. This is intuitive.

Without adoption costs, all firms can adopt the frontier technology freely, resulting in a

counterfactually low average capital age. This in turn implies that all firms can use the

same efficient capital and have the same exposure to the technology frontier shock, causing

the cross sectional risk dispersion to be tiny. In summary, our results suggest that costly

adoption decisions can have a significant impact on the cross-sectional variations of stock

returns.

Empirically, we recursively estimate a measure of capital age using firm–level investment

data of the U.S. public companies following the methodologies developed in the empirical

industrial organization literature (e.g., Salvanes and Tveteras (2004)). Given that firms’

capital age is not readily observable in the data, this exercise allows us to study the links
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between technology adoption and stock returns directly. We show that firms with young

capital age earn lower average returns than firms with old capital age, consistent with the

model’s prediction. In particular, a spread portfolio of stocks that goes long on old capital

age firms and short on young capital age firms generates a significant spread of 9% (value-

weighted) and 15% (equal–weighted) per annum. In firm-level regressions, a one standard

deviation increase in the firm’s current (log) capital age is associated with an increase of 4.8

percentage points in the firm’s annual future stock return. We show that the predictability of

capital age remains robust after controlling for well-known return predictors in the literature

including investment, size, book–to–market, and return on equity.

Furthermore, we show that the unconditional capital asset pricing model (CAPM)

cannot explain the capital age return spread in the data. The sensitivity of firms’ returns

with different capital age to the aggregate stock market factor is negatively correlated with its

average stock returns – the reverse of what the CAPM needs to explain the capital age return

spread. As a result, the CAPM alpha of the capital age return spread is larger than the capital

age return spread itself. The model replicates the failure of the CAPM. According to the

model, the aggregate stock market is mostly driven by the standard aggregate productivity

shock but less correlated with the aggregate technology frontier shock, which solely drives

the capital age return spread in the cross section. In addition, we show that other standard

asset pricing factor models (e.g., Fama and French (2015)) cannot explain the capital age

spread as well.

Lastly, we construct a proxy for the aggregate technology frontier shock by using the

introduction of new technology standards. Specifically, we follow Baron and Schmidt (2017)

and use the change in the number of technology standards released by both the U.S. and

International Standard Setting Organizations (SSOs), which we interpret as a proxy for

aggregate shocks to the technology frontier2. We show that the exposure to this proxy well

captures the cross-sectional variation in stock returns across the capital age portfolios. In

particular, old capital firms load more on this proxy than young capital firms, consistent with

the model. In addition, using a variety of test portfolios including size, book-to-market,

momentum and industry portfolios, we show that the aggregate frontier shock proxy is

positively and significantly priced. This finding provides support for the model’s assumption

that the aggregate frontier shock carries a positive risk price. Furthermore, the aggregate

technology frontier shock proxy is not subsumed by other macroeconomic shocks that have

explanatory power for the cross-section of stock returns. Taken together, our results show

2Baron and Schmidt (2017) show that the introduction of new technology standards anticipates the
adoption of new technologies and positively correlates with future productivity gains.
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that technology frontier shocks are a source of systematic risk that is positively priced by

investors.

The paper proceeds as follows. Section 2 discusses the related literature. Section 3

presents a dynamic model economy with technological shocks and costly technology adoption.

Section 4 reports model-implied links between firms’ capital age and the cross section of

expected stock returns and also provides a detailed analysis of the economic mechanisms

driving the model’s results. Section 5 describes the construction of the firm-level capital age

measure and its properties. Section 6 reports the empirical links between the capital age,

systematic risk, and the cross sectional returns. Finally, Section 7 concludes. The Appendix

provides additional results and robustness checks.

2 Related literature

This paper is related to the literature that examines the links between technological shocks

and asset prices. Albuquerque and Wang (2008) use investment-specific technological change

to examine the implications of imperfect investor protection for asset prices and welfare.

Pastor and Veronesi (2009) investigate technological revolutions and aggregate stock price

movements by focusing on the uncertainty of technological revolutions as the driving force for

the stock price ”bubbles”. Lustig, Syverson and Van Nieuwerburgh (2011) explore the impact

of technological change on the inequality of managerial compensation and the labor market

reallocation. Garleanu, Panageas and Yu (2012) examine the asset pricing implications of

technological growth with both small productivity shocks and large innovations. Kung and

Schmid (2015) study the implications of endogenous technological growth on asset prices

and aggregate quantities. We differ from these works by concentrating on the relationship

between firm-level technology adoptions of the frontier capital and the cross-sectional stock

returns. Furthermore, we construct a measure of firms’ capital age and show that old capital

age firms are riskier empirically. Papanikolaou (2011), Kogan and Papanikolaou (2014),

and Garlappi and Song (2016) study the effect of investment-specific technological shocks

on asset prices and real quantities. We show that our aggregate technology frontier shock

proxy remains significantly priced after controlling for the investment-specific technology

shock, implying that these two technological shocks capture different aggregate risks in the

economy.

A related literature which studies asset prices in production economies has primarily

focused on links between homogeneous capital across vintage and expected stock returns.
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Zhang (2005) investigates the value premium in a model with asymmetric capital adjustment

costs and time-varying price of risk; however in Zhang (2005) capital is homogeneous across

vintages. Another example with a model of homogeneous capital is Imrohoroglu and Tuzel

(2014) who show that high productivity firms are less risky. We differ from Zhang (2005)

and Imrohoroglu and Tuzel (2014) by allowing capital age and efficiency to vary over time

and across firms, and hence bring new theoretical insights in asset pricing, which we confirm

empirically as well.

Our work is also related to Ai, Croce and Li (2013) and Liao and Schmid (2017) who

explore asset pricing implications in models with heterogenous vintage capital. Similar to

us, Ai, Croce and Li (2013) show that firms with old capital vintage are riskier, but they

emphasize a different economic mechanism. In their model, older firms are more exposed to

aggregate productivity shocks because they adopt well-established technologies on a large

scale, whereas we explore a different source of systematic risk, i.e., fluctuations in the

aggregate technology frontier (different from aggregate productivity shocks). Our mechanism

hinges on costly technology adoption that makes old capital firms riskier. Liao and Schmid

(2017) study the impact of technological adoptions on the supply of collateral and the joint

dynamics of firms’ credit and risk premia. We complement Liao and Schmid (2017) by

directly studying the cross-sectional asset pricing implications of technology adoption.

The empirical methodology to measure a firm’s capital age closely follows the industrial

organization literature. In particular, we follow Salvanes and Tveteras (2004) who use the

time profile of investment expenditures to construct a measure of capital age in a panel of

Norwegian manufacturing plants.3 Our measure is closely related to the one used by Ai,

Croce and Li (2013), who estimate the capital age for a sample of U.S. publicly traded firms.

Using the same methodology as ours, Li, Tsou and Xu (2018) confirm our empirical finding

on the capital age spread and explore the link between capital age and capital allocation

efficiency through a learning channel. We contribute to this literature by measuring capital

age using the time profile of investment expenditures for a large set of U.S. publicly traded

companies and studying the asset pricing implications.

3The capital age measurement in Salvanes and Tveteras (2004) builds on Mairesse (1978), who estimates
capital age for a sample of French manufacturing firms. Hulten (1991) describes the challenges posed by the
measurement of a firm’s capital age.
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3 The model

In this section, we present a dynamic model economy with a stochastic technology frontier

and costly technology adoption to study the relationship between capital age and asset

returns.

3.1 Production technology

Firms use their physical capital (Kt) to produce a homogeneous good (Yt). To save on

notation, we omit firm index j whenever possible. The production function is given by:

Yt = XtZtKt, (1)

in which Xt is aggregate productivity and Zt is firm-specific productivity. The production

function exhibits constant returns to scale.

Aggregate productivity follows a random walk process with a drift

∆xt+1 = gx + σxε
x
t+1, (2)

in which xt+1 = log(Xt+1), ∆ is the first-difference operator, εxt+1 is an i.i.d. standard normal

shock, and µx and σx are the average log growth rate and volatility of aggregate productivity,

respectively.

Firm-specific productivity follows an AR(1) process

zt+1 = z̄(1− ρz) + ρzzt + σzε
z
t+1, (3)

in which zt+1 = log(Zt+1), εzt+1 is an i.i.d. standard normal shock that is uncorrelated across

all firms in the economy and independent of εxt+1, and z̄, ρz, and σz are the long run mean,

autocorrelation, and conditional volatility of firm-specific productivity, respectively.

3.2 Costly technology adoption

We denote the stock of general and scientific technology of the entire economy as Nt.

It captures new production technologies embodied in latest equipment and machines,

which generates productivity gains. Following Parente and Prescott (1994), Greenwood

and Yorukoglu (1997), and Cooper, Haltiwanger, and Power (1999), we assume that the
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technology frontier Nt grows at an i.i.d. stochastic rate,

Nt+1 = Nte
gN+σNηt , (4)

where gN is the average log growth rate, σN is the volatility and ηt denotes an i.i.d standard

normal random variable. Note that we assume the technology frontier at t+ 1 is determined

by the shock (ηt) at time t so that there is no built-in uncertainty in the gross investment

at t. As we describe in detail in Equation (6) below, gross investment (It) at t depends on

Nt+1 if a firm adopts the latest technology.

Given the aggregate and firm-specific productivities (xt, zt) and the level of technology

(Nt), the firm chooses between adopting the latest technology, Nt+1, or continue operating

on the existing vintage capital, Kt, for another period. Hence the capital stock for the firm

evolves as follows:

Kt+1 =

{
(1− δ)Kt if φt = 0

Nt+1 if φt = 1
, (5)

where δ is the rate of depreciation for capital. The choice variable in this model is φt where

φt = 1 means that new technology is adopted in period t and the existing vintage capital

is replaced; and φt = 0 means that the firm continues operating the existing old capital.

Accordingly, gross investment is given by

It =

{
0 if φt = 0

Nt+1 − (1− δ)Kt if φt = 1
. (6)

The gain of technology adoption is that the new capital is more efficient than old vintage

as it reflects the current technological progress. This can be seen by comparing two series

of capital over time: {N0, N1, N2, ..., Nt} and
{
N0, (1− δ)N0, (1− δ)2N0, ..., (1− δ)tN0,

}
.

The first series represents the case where the firm adopts the latest technology every period

and is able to stay on the technology frontier in the entire history, whereas the second case

represents another case where the firm is unable to adopt the latest technology and remains

operating the old vintage capital at all time. As the technology frontier evolves over time,

the capital of the firm in the first case is on average more productive in terms of efficiency

unit (units of output to be produced) than the capital in the second case which is effectively

obsolete. For example, at time t, the expected capital of the first firm is E[Nt] = egN t+
1
2
σ2
N tN0,

which is an order of magnitude more efficient than the capital of the second firm, (1− δ)tN0,
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when t is large.

All firms can adopt the latest technology, but it is costly to do so. We assume that

technology adoption costs, Ct, are given by

Ct =

{
0 if φt = 0

Xt (faKt + It) if φt = 1
. (7)

The adoption costs consist of two parts: a fixed cost (faKt) where fa is a constant with

fa > 0 and gross investment (It). Here, the fixed cost (as in Cooper, Haltiwanger, and

Power 1999) captures the cost of learning the new technology, workers training costs, and

the cost of abandoning old capital. It could also include the cost in the destruction of old

organizational capital or human capital of existing workers who are used to the old vintage

capital. Gross investment (It) captures the amount of gross investment that firms need

to take on so as to reach the frontier. Lastly, the cost per unit of investment (Xt) varies

over time and it is driven by aggregate productivity as in Jermann (1998) and Eisfeldt and

Papanikolaou (2013). Under this assumption, gross investment grows at the same rate as

aggregate output so that the detrended model is stationary.

Notably the fixed investment cost in Equation (7) also causes asynchronous technology

adoption as in Jovanovic and Stolyarov (2000). That is, a technology frontier shock does not

induce firms with the same technology efficiency to adopt the latest capital vintage at the

same time. Depending on the level of the firm-specific productivity (zt) and capital stock

(Kt), more productive (high zt) firms and firms with less efficient capital (small Kt) are

more likely to adopt the new technology, while less productive (low zt) firms and firms with

more efficient capital (large Kt) are more likely to find the the adoption too costly relative

to its benefit and choose to keep operating the existing capital vintage. This leads to firms’

heterogeneity in technical efficiency.

Finally, firms’ dividend Dt is given by

Dt = Yt − Ct − foXtNt,

where foXtNt is a fixed operating cost that firms need to pay regardless of adoption

decisions.4

4We assume that the fixed production costs grow at the same rate as the rest of the economy so that the
model is stationary after removing the stochastic trend.
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3.3 Firms’ problem

The firm takes as given the stochastic discount factor Mt,t+1 used to value the cash flows

arriving in period t+ 1. We specify the log stochastic discount factor to be a function of the

two aggregate shocks in the economy:

logMt,t+1 = −rf −
1

2
λ2
ε −

1

2
λ2
η − λεεxt+1 − ληηt+1. (8)

The sign of the risk factor loading parameters (λε and λη) is positive. The specification

λε > 0 is consistent with most equilibrium models (e.g., Jermann(1998)). Low aggregate

productivity states are associated with low output and thus low consumption and high

marginal utility. The specification λη > 0 is consistent with the empirical findings that

times of technological progress are associated with an increase in consumption and output

and hence are lower marginal utility states. We also provide empirical support from asset

prices in Section 6.5. rf denotes the continuously compounded risk-free rate which is assumed

to be a constant. This allows us to focus on risk premia as the main driver of the results

in the model as well as to avoid parameter proliferation. Note that the moment condition

E[Mt,t+1] = e−rf = 1/Rf is satisfied.

The firm maximizes shareholders’ value by choosing to adopt the frontier technology

(φt = 1) or keep using its existing capital (φt = 0):

V (Zt, Kt, Xt, Nt) = max
φt

Dt + Et[Mt,t+1V (Zt+1, Kt+1, Xt+1, Nt+1)].

Since both aggregate productivity and the technology frontier follow random walk

processes, the firm’s problem is non-stationary. We show how to obtain a detrended version

of the model economy in the Appendix (Section A1).

3.4 Risk and expected stock return

In the model, risk and expected stock returns are determined endogenously along with firms’

value-maximization. Using the value function, we obtain

Vt = Dt + Et [Mt,t+1Vt+1] (9)

⇒ 1 = Et [Mt,t+1Rt+1] , (10)
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where Equation (9) is the Bellman equation for the value function and Equation (10) follows

from the standard formula for stock return Rs
t+1 = Vt+1/ [Vt −Dt] .

Substituting the stochastic discount factor from Equation (8) into Equation (10), and

using some algebra, yields the following equilibrium asset pricing equation:5

Et
[
ret+1

]
= λε × Cov

(
ret+1, ε

x
t+1

)
+ λη × Cov

(
ret+1, ηt+1

)
(11)

in which ret+1 = Rs
t+1 −Rf is the stock excess return.

According to Equation (11), the equilibrium risk premiums in the model are determined

by the endogenous covariances of the firm’s excess stock returns with the two aggregate

shocks (quantity of risk) and by the loading of the stochastic discount factor on the two

risk factors (λε and λη) in Equation (8). The pre-specified positive sign of the loadings

imply that, all else equal, assets with returns that have a high positive covariance with

the aggregate productivity shock are risky and offer high average returns in equilibrium.

Similarly, all else equal, assets with returns that have a high positive covariance with the

aggregate technological frontier shock are risky and offer high average returns in equilibrium.

4 Model results

In this section we discuss the solution and the calibration of the model. After detrending,

all the endogenous variables are functions of three state variables: (i) the endogenous

detrended capital kt; (ii) the firm–level productivity zt; and (iii) the technology frontier

shock ηt. Because the functional forms of the value function and policy functions are not

available analytically, we solve for these functions numerically. Appendix A1 detrends the

model. Appendix A2 provides a description of the solution algorithm and the numerical

implementation of the model.

The model is solved at a quarterly frequency to be consistent with the frequency of

capital age in the data. To neutralize the impact of initial conditions, we simulate a panel of

5, 000 firms for 1000 quarters to generate a stationary cross sectional distribution of firms.

Each firm is characterized by the firm–level state variables zt and kt. The latter variable is

determined by optimal adoption decisions before t. Then, using this distribution of firms as

5This derivation is standard. Equation (10) implies Et
[
Mt,t+1

(
Rst+1 −Rf

)]
= 0 because Et [Mt,t+1]Rf =

1. Using a first-order log-linear approximation of the SDF Mt,t+1 defined in Equation (8), and applying the
formula for covariance Cov(X,Y ) = E[XY ]− E[X]E[Y ] to the previous equation, plus some algebra, yields
Equation (11).
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initial condition, we simulate 5,000 firms and 120 quarters to be consistent with the sample

length in the data. We aggregate quarterly variables to annual and report the cross-sample

average results.

Table 1 reports the parameter values used in the baseline calibration. The model is

calibrated using parameter values reported in previous studies, whenever possible, or by

matching a set of empirical moments. Table 2 reports the model–generated moments together

with their empirical counterparts. Because we do not explicitly target the cross section of

return spreads in the baseline calibration, we use these moments to evaluate the model in

Section 4.3.

4.1 Calibration

Stochastic processes: We set the quarterly average log growth of the technological frontier

(gN) equal to 0.02/4, consistent with the estimate in Greenwood, Hercowitz and Krusell

(1997).6 In the model, the aggregate productivity shock xt is essentially a profitability shock.

We set the quarterly average log growth of aggregate productivity (gx) equal to 0.012/4 to

match the average growth of aggregate profits and the quarterly volatility of the aggregate

productivity shock to be σx = 0.047 to match the volatility of aggregate profits. In the data,

we measure aggregate profits using data from the National Income and Product Accounts

(NIPA). Given the volatility of the aggregate productivity shock, we set the volatility of

log technology frontier to σN = 0.0775 to match the standard deviation of capital age in

the data. The long-run average of firm-specific productivity, z̄, is a scaling variable, which

determines the long-run average productivity of the representative firms. We set z̄ = −2.8

which implies that the average physical capital scaled by the technology frontier (kt) across

firms is around 0.7. To calibrate the persistence ρz and conditional volatility σz of firm-

specific productivity, we restrict these two parameters using their implications on the degree

of dispersion in the cross-sectional distribution of firms’ stock return volatilities. We set

ρz = 0.973 and σz = 0.26, which implies an average annual volatility of individual stock

returns of 45%, close to the data counterpart at 49%.

Firm’s technology: The quarterly capital depreciation rate (δ) is set to 0.028 which is close

to 0.025 in Jermann (1998). The fixed cost of technology adoption (fa) is the key parameter

6Because the growth rate of technology frontier gN is not directly available in the data, we choose
to calibrate it following the investment specific technological change as in Greenwood et al (1997), The
quantitative implications of the model remain unchanged with different values of the growth rate gN .
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that drives the adoption frequency in the model. The higher the fixed cost of adoption,

the lower the adoption frequency and hence the larger the average capital age. We set the

fixed cost of technology adoption, fa, equal to 0.8 to match the average capital age in the

data. The model implied average capital age is 20 quarters, close to the average age of 23

quarters in the data. It also implies that the correlation between capital age and investment

is −0.19, close to the value of −0.24 in the data. On average, aggregate fixed adoption cost

is 25% of aggregate output of the economy. The fixed operating cost (fo) mainly affects the

cross-sectional correlation between capital age and book-to-market ratio. We set fo = 0.012

implying the cross-sectional correlation between capital age and book-to-market ratio of 0.15,

close to 0.19 in the data. The model also implies that capital age and firm productivity are

negatively correlated with a correlation of -0.45, consistent with the data. Hence, old capital

firms tend to be low productive firms.

Pricing kernel: The quarterly real risk-free rate is chosen to match the data r = 0.016/4.

Given the calibrated volatilities of aggregate shocks, we set the price of aggregate risk to be

λε = 5σx = 0.235 and the price the technology risk to be λη = 8σN = 0.62 to match the

average excess stock market return and the Sharpe ratio. This implies an average annual

market excess return of 7.1% and a Sharpe ratio of 45%, close to their empirical counterparts.

4.2 Properties of model solutions

In this section, we discuss the policy functions of interest including the optimal adoption

decision, the capital age, and the model implied risk premium. Figure 1 depicts these policy

functions with all exogenous shocks set at their long run values.

4.2.1 Optimal Adoption and Capital Age

Panel A in Figure 1 reports the optimal technology adoption policy (φt) as a function of

detrended capital kt. φt is equal to 1 if the firm adopts the technology frontier capital and

0 otherwise. Note that after detrending, the optimal technology frontier capital takes the

value of 1.7 Given the firm-level productivity, the optimal adoption policy implies a threshold

value for the current capital such that firms optimally choose not to adopt and operate with

the existing capital (φt = 0) when the current capital kt is efficient and close to the frontier

7When a firm adopts at t, its detrended capital next period kt+1 = 1. In the model, we do note that
a small fraction of firms adopted at t − 1 may operate on kt slightly higher than 1 when there is a large
negative shock to the technology frontier at t. But these firms do not drive our main results.
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(i.e., larger than the threshold value). If the current capital kt is obsolete and far away from

the frontier (i.e., smaller than the threshold value), firms adopt the frontier capital (φt = 1).

To analyze the relationship between capital age and current capital, we define the capital

age of a firm operating with the capital on the technology frontier as zero (the detrended

capital kt of the firm is 1), and the capital age of a non-adopting firm as the number of

quarters since last adoption. Then we derive in the model the relationship between the

expected capital age, E[T ], and the log capital level log kt as8

E[T ] =
log kt

log(1− δ)− gN
. (13)

Panel B reports the expected capital age as a function of detrended capital kt. The

expected capital age decreases in current capital kt. Intuitively, firms using capital closer to

the frontier (kt+1 = 1) have younger capital age and are more efficient, whereas firms that

operate with capital further away from the frontier have old capital age and are less efficient.

Therefore, the model endogenously generates a broad spectrum of firms with heterogeneous

capital age.

Panel C reports the probability of adoption next year which is a key driver of the

endogenously determined firm-level risks in the cross section. Given the optimal adoption

policy function φ(zt, ηt, kt), we compute the probability of adoption next period as

Probt[Adoptiont+1] = E
[
φ(zt+1, ηt+1, k

∗
t+1)|zt, ηt, kt

]
, (14)

where k∗t+1 denotes the optimal capital next period. We use this equation recursively to

obtain the probability of adoption for the next four quarters and approximate the probability

of adoption next year by taking the sum.9 Panel C reports the probability of adoption next

year as a function of the detrended capital. The adoption probability decreases in current

capital. Intuitively, firms with efficient capital that are closer to the frontier (kt = 1) are less

8Iterating the detrended capital dynamics in Equation (31) in the Appendix A1, we can solve for the
capital age (T ) of a non-adopting firm as a function of log current capital and past technology frontier shocks
since last adoption when kt−T = 1 as follows

log kt = T log(1− δ)− gNT − σN
T∑
j=1

η′t−j . (12)

Taking expectation on both sides of the above equation leads to Equation (13).
9Admittedly, the simple sum is not exactly the probability of adoption next year due to the possibility

of multiple adoptions within a year. But this possibility is tiny under the fixed adoption cost.
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likely to adopt. Comparing with Panel A, we observe that the adoption probability rises to

1 when the detrended capital approaches the threshold of adoption. Combining with Panel

B, the adoption probability is increasing in capital age. Namely, old capital firms are more

likely to adopt than young capital firms.

4.2.2 Risk and expected return

After detrending the model, a stock return can be written as

Rt+1 =
Vt+1

Vt −Dt

=
vt+1

vt − dt
egN+σNηt+∆xt+1 . (15)

The annual risk premium is computed as four times the quarterly risk premium

Et [Rt+1]− rf = Et

[
Vt+1

Vt −Dt

]
− rf . (16)

Panel D in Figure 1 plots the annual risk premium of a stock as a function of the detrended

capital. The stock risk premium decreases in current capital for non-adopting firms. That

is, firms that are closer to the frontier with more efficient (i.e., higher values of) capital and

lower capital age offer less expected returns.

We then decompose the risk premium into factor covariances and factor risk prices as

in Equation (11). In the model, factor risk prices are exogenously specified in the pricing

kernel. Panels E and F report the covariances with the aggregate productivity shock and the

technology frontier shock as functions of the detrended capital. Interestingly, the covariance

with the aggregate productivity shock is flat, independent of the cross sectional capital age.

This happens because both vt and dt in Equation (15) are only functions of state variables (zt,

ηt, kt), the first term vt+1

vt−dt does not depend on the aggregate productivity shock ∆xt+1. Thus,

the covariances with the aggregate productivity shock ∆xt+1 across all firms with different

capital age are equal to a constant. That is, the exposure to the aggregate productivity

shock does not drive the cross sectional stock return.

In Panel F, the covariance with the technology frontier shock is decreasing in capital.

Comparing with Panels B and C, the intuition behind the model is clear. As the capital

of a non-adopting firm depreciates over time, both its capital age and adoption probability

increase and hence its exposure (measured by the covariance) to the technology frontier shock

increases. Therefore, its risk premium also increases with the risk price of the frontier shock

being positive. This mechanism also allows the model to generate a failure of the standard

15



capital asset pricing model (CAPM) in capturing the cross sectional risk premia because the

aggregate productivity shock only drives the market return.

4.3 Cross sectional stock returns

An important characteristic that distinguishes the model from the standard investment-based

models is capital age. The technology frontier represents the latest technology embodied in

the newest capital, which is defined as age zero. Firms that are close to the technology

frontier have a young capital age; in contrast, firms that are far from the technology frontier

operate with old capital. Our model predicts that old capital firms are riskier and earn higher

expected returns than young capital firms. In this section, we perform asset pricing tests

using the model–generated data to quantitatively explore the relationship between capital

age and stock returns in the cross section.

4.3.1 Capital age sorted portfolios

In the model, we measure a firm’s capital age as the number of quarters since the firm’s last

adoption. Once a firm adopts the frontier technology, we reset its capital age to zero by

assuming that it reinstalls all of its capital using the latest technology.

We create ten value- and equal-weighted portfolios sorted on capital age that we

rebalance at a quarterly frequency. Table 3 reports the average portfolio returns and the

asset pricing test results. Panel A shows that the average return of old capital firms (column

‘O’) is higher than the average return of young capital firms (column ‘Y’). The implied return

differential (column ‘OMY’) is about 9.5% and 17% per annum for value- and equal-weighted

portfolios, respectively10.

We then test the standard capital asset pricing model (CAPM) using the ten value-

and equal-weighted capital age portfolios as test assets. The market return is defined as the

average return across all stocks weighted by their market equity. The market factor (Mktt+1)

is the difference between the market return and the risk-free rate. We test the CAPM using

the time-series regression,

Re
j,t = αj + βj,MMktt + εj,t, (17)

10Because firms are all-equity financed in the model, but use both debt and equity in the real data, we
leverage up all returns generated in the model to make them comparable with the data. We compute the
model-implied levered return as ret+1 = (1 + Debt/Equity) × (Rat − Rf ), where Ra is the return of the all-
equity firm in the model and Rf is the risk-free rate. We set the debt-to-equity ratio equal to 0.67, which is
the average value of book value of debt over market value of equity for U.S. publicly listed firms.
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where Re
j,t denotes the portfolio excess return, βj,M measures the quantity of the market risk,

and αj denotes the abnormal return. The results reported in Panel C of Table 3 show that

the market risk does not explain the cross sectional returns of the capital age portfolios. In

the model, the annual abnormal returns of the value- and equal-weighted OMY portfolio are

about 9.2% and 16.6%, respectively, close to the raw return spreads without adjusting the

market risk. The CAPM fails in explaining the cross-sectional variations of the capital age

portfolio returns.11

Then we investigate a two-factor model where the market excess return is the first factor

and the technology frontier shock is the second. Specifically, we use the following stochastic

discount factor (investors’ marginal utility):

Mt = 1− bM ×Mktt − bη × Frontiert, (18)

which states that investors’ marginal utility is driven by two aggregate shocks, Mkt, which is

the market factor in the standard capital asset pricing model (CAPM), and Frontier, which

is the technology frontier shock (∆ logNt+1). Note that the specification of the stochastic

discount factor in Equation (8) is closely related to that in the model given in Equation (18)

because the market factor is used here as a proxy for the aggregate productivity shock12.

We then estimate the risk factor loadings on the two aggregate shocks (bM and bη) by the

generalized method of moments (GMM) using the standard asset pricing moment condition

E [reitMt] = 0, in which reit is the excess return on test asset i. To help in the interpretation

of the results, this moment condition can be written as:

E [reit] = αi + bMCov(Mktt, r
e
it) + bηCov(Frontiert, r

e
it), (19)

where we added the term αi (alpha), the pricing error (abnormal return) associated with

asset i.

11Note that the model includes two sources of priced aggregate shocks where the conditional CAPM
(market as a single factor) does not hold either. Consistent with Belo and Lin (2012) who show that a
production economy with one aggregate systematic shock cannot replicate the failure of the CAPM, we
highlight the importance of multiple sources of aggregate risk in generating large CAPM alphas in our
model, which is verified in the data.

12We include market excess return as a factor because this allows us to compare the two factor model
results with the CAPM. Furthermore, in the model, across panels, a multivariate time-series regression of
the aggregate stock market return on the two risk factors has an average regression R2 of 95%, a univariate
regression on the aggregate productivity shock has an average regression R2 of 95%, but a univariate
regression on the technological frontier shock has an average regression R2 of almost zero (results not
tabulated).
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Panel B in Table 3 reports the multivariate covariances implied by the two-factor model,

while Panel C reports the estimated alphas. Through this decomposition, we find that

firms with old capital are more exposed to the technology frontier shock than firms with

young capital. With the assumption of a positive price for the technology frontier risk, the

exposures to the technology frontier shock across the capital age portfolio explain the cross

sectional expected returns. Specifically, the covariance between portfolio returns and the

frontier shocks is monotonically increasing in capital age. And the covariance of the spread

OMY portfolio with the technology frontier shock is 1.13% and 2.25% for the value- and

equal-weighted portfolios, respectively. Both are statistically significant.

Figure 2 plots the covariances of 10 value-weighted capital age-sorted portfolio returns

with the aggregate productivity shock (Panel A) and the technology frontier shock (Panel

B) in the simulated data. Even though old (10) and young capital age (1) portfolios have

the same exposure to aggregate productivity, they significantly differ in their exposure to the

technology frontier risk. This is the channel that generates the cross-sectional dispersion in

average returns across the capital age portfolios. Panel C reports the adoption probability

next year computed using Equation 14 averaging within each simulated portfolio. It is

monotonically increasing in capital age. This pattern confirms that old capital firms are

more likely to adopt and hence are more correlated with the frontier shocks.

4.4 Inspecting the mechanism

In this section we perform several analyses to understand the economic mechanism

driving the cross-sectional variation of the capital age portfolios. We examine alternative

specifications of the model and compare the key moments with the benchmark model. Table 4

reports the results.

The role of a positive λη: We first set the price of the technology frontier shock (λη) to

be zero (Specification 2). We find that a positive λη is necessary for the model to generate

cross sectional risk premia. In this specification, even though the technology frontier shock

affects firms’ cash flows, it does not affect the marginal utility of investors and hence it is

not a priced risk. As a result, the risk exposure to this shock is not associated with any

risk premium. This explains why the OMY portfolio has a spread of almost zero (for both

the return and CAPM alpha spreads) even though the spread portfolio’s covariance with

the technology frontier is 0.64% with t-stat equal to 6.1 (not tabulated). The covariance

between portfolio returns and the frontier shocks is still monotonically increasing in capital
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age. Note that setting λη = 0 does affect the real quantities in the model. The average

capital age is 33 quarters, bigger than the benchmark calibration (Specification 1). This is

because the market return is higher with λη = 0 resulting in higher cost of equity, thus firms

on average adopt new technologies less frequently.

The role of adoption costs. The presence of a fixed technology adoption cost is key to

match both firms’ capital age dynamics and the cross sectional risk premia. In Specification

3, we set fa = 0, i.e., there is no fixed adoption cost. The average capital age drops from

20 quarters in the benchmark calibration to 2 quarters. This happens because all firms that

are willing to adopt the latest capital will be able to reach the technology frontier, resulting

in a lower average capital age in the economy. Moreover, without fixed adoption costs, firms

burdened with old capital can now upgrade to the frontier technology freely. As a result,

the cross sectional risk dispersion between young and old capital firms drops substantially;

the capital age spread is almost 0%.

The role of operating costs. Turning off the fixed operating cost does not affect the capital

age spread much. The model implied capital age spread remain sizable at 11.19% which is

slightly higher than the benchmark calibration (9.49%). This is because the cross sectional

variation of the capital age portfolio is mainly driven by firms’ exposure to the technology

frontier shock. However, the fixed operating cost has an impact on the model’s ability to

generate a sizable value premium, because it affects firms’ cash flows through the operating

leverage channel (more on this effect in Section 4.4.1 below).

The role of technology frontier risk. In the last specification, we explore the role of

technology frontier risk for asset returns. In particular, we make this risk negligible, i.e.,

lowering σN to 10% of the benchmark value, and keep the price of risk the same as the

benchmark model. We find that there is virtually no heterogeneity in cross-sectional equity

returns, because the cross-sectional variation of firms’ exposure to the frontier shock shrinks

to almost zero.

To summarize, we find that costly technology adoption combined with a positively

priced and sizable technology frontier shock are important for the model to generate the

cross sectional variation of stock returns close to the data.
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4.4.1 Value premium

In addition to generating risk dispersion between young and old capital age firms, the model

also provides a novel explanation for the value premium, which we explore in this section.

Specifically, we form ten value-weighted portfolios sorted on firms’ book-to-market ratios

(BM). We define the book-to-market ratio as the ratio of physical capital over ex-dividend

market value of equity. The portfolios are rebalanced at a quarterly frequency and the

reported returns are annualized.

The model generates a sizable value premium at 5.2% per annum, close to the data

counterpart of 8.7%, reported in Table 4. In addition, the model implied CAPM alpha spread

is 5% per annum, close to the data as well. In the model, value firms have experienced a

sequence of low productivity shocks that, given the presence of adoption costs, has prevented

them from upgrading to the technology frontier. As a result, they are burdened with old

capital. Conversely, growth firms have experienced a sequence of high productivity shocks

that allows them to take on the adoption costs to replace the old capital. As a result, growth

firms are operating with the latest technology. Thus, value firms in the model have higher

capital age and are more exposed to the technology frontier shocks than growth firms which

are low capital age firms. This can be seen in Specification 3 in Table 4 where we remove

the adoption cost, which causes the value premium to become negative. Another equally

important channel for the sizable value premium is the operating leverage channel. Removing

the fixed operating costs (Specification 4 in Table 4) also results in a tiny value premium.

This happens because value firms in the model are also the firms that have higher fixed

operating costs relative to sales than growth firms. Taken together, the model implied value

premium is driven by both the technology adoption costs and the operating costs, whereas

the capital age spread is mainly driven by the costly technology adoption channel.

5 Measuring capital age

As discussed in the related literature, the firm’s capital age is not directly observable.

Because there is no readily available data, we follow the empirical industrial organization

literature to measure capital age of U.S. public companies. This measurement exercise is key

for our analysis, because it allows us to link firms’ capital age to the cross-sectional returns

in the data and test the models’ predictions.
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5.1 Data

Monthly stock returns are from the Center for Research in Security Prices (CRSP) for

the period of October 1976 to December 2016 and accounting information is from the

CRSP/Compustat Merged Quarterly Industrial Files for the period of 1975q1 to 2016q4. The

sample includes firms with common shares (shrcd=10 and 11) and firms traded on NYSE,

AMEX, and NASDAQ (exchcd=1, 2, and 3). We omit firms whose primary standard industry

classification (SIC) is between 4900 and 4999 (utility/regulated firms) or between 6000 and

6999 (financial firms) or greater than 9000 (government/administrative institutions). We also

exclude R&D–intensive sectors (SIC codes 737, 384, 382, 367, 366, 357, and 283) from our

sample,13 because our theoretical model applies to firms that upgrade the technology through

investing in the latest machines and equipment which embody the frontier technology

(exogenous in our model). Our setup is not necessarily suitable to study R&D-intensive firms

whose investments are primarily in knowledge development, know-how, and wages/salaries

for scientists and engineers (e.g., Brown and Petersen (2011)).

5.2 Capital age

Dunne (1994) shows that technology embodied in new capital (i.e., capital age) and the

firm’s age (i.e., years from IPO or years from incorporation) display little comovement 14.

For this reason, we measure capital age following methodologies developed in the empirical

industrial organization literature (e.g., Salvanes and Tveteras (2004)).

We include a firm in our dataset the first time it has observations on net property plant

and equipment (Compustat item ppentq) for two consecutive quarters, which we identify

as quarter 0 and quarter 1. The initial measure of real capital stock (Ki,0) is firm i’s net

property plant and equipment deflated using the seasonally adjusted implicit price deflator

for non–residential fixed investment. The initial measure of firm–level capital age (AGEi,0)

is calculated using the ratio of accumulated depreciation and amortization (item dpactq)

over current depreciation and amortization (item dpq)15.

13We define R&D–intensive sectors following the definition of Brown, Fazzari, and Petersen (2009).
14Our analysis confirms Dunne (1994)’s findings. The correlation between our measure of capital age and

firm’s age measured as time from IPO is only 0.30.
15Calculating an asset’s average age using accumulated depreciation over current depreciation is standard

practice in financial accounting (e.g., Rich et al. (2014) among many others). If accumulated depreciation
and amortization (dpactq) in a given fiscal quarter is missing, we use the end of the fiscal year value. When

the fiscal year end–value is missing, we use the following estimated value: d̂pactq = β̂jKt, where β̂j is
the pooled OLS estimate in the 2–digit SIC industry j. If dpq is missing, we set it equal to the industry
depreciation rate times physical capital (ppentq).
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We calculate the net investment INi,t and gross investment Ii,t of firm i between period t

and t+ 1 as

INi,t = Ki,t+1 −Ki,t, (20)

Ii,t = δjKi,t + INi,t, (21)

respectively. In the above equation, δj denotes the depreciation rate of industry j calculated

using depreciation data from the BEA.16

Given a time–series of real capital stock and gross investment observations for a firm,

we solve for the capital age of firm i over time recursively starting from its initial capital age

AGEi,0 using equations:

AGEi,t =

{
(1−δj)Ki,t−1

Ki,t
(AGEi,t−1 + 1) +

Ii,t−1

Ki,t
if Ii,t−1 > 0,

AGEi,t−1 + 1 if Ii,t−1 ≤ 0.
(22)

When gross investment Ii,t−1 is positive at quarter t, the investment at t − 1 has a capital

age of 1 quarter and the capital installed at t− 1 has a capital age of AGEi,t−1 + 1 quarters.

The capital age at t is defined as the weighted average of the two where weights are the real

capital stock at t − 1 after depreciation scaled by the real capital stock at t
(

(1−δj)Ki,t−1

Ki,t

)
and real gross investment scaled by the real capital stock at t

(
Ii,t−1

Ki,t

)
.17 Note that the sum

of the two weights equals to 1 because Ki,t = (1− δj)Ki,t−1 + Ii,t−1. When gross investment

Ii,t−1 is negative, we assume that firms dispose of all capital vintages in proportion to their

contribution to the total installed capital. Hence, the capital age increases by one quarter.18

Quarterly coverage of net property plant and equipment in Compustat becomes

systematic starting in the period 1975/1976.19 For this reason, we construct capital age

starting from the first quarter of 1975. However, our portfolio formation starts using

16We calculate industry-level (3-digit SIC codes) depreciation rates using depreciation and capital stock
data for private fixed asset from the BEA. If a company has only a 2-digit (1-digit) SIC code, we use
the average depreciation rate at the 2-digit (1-digit) level. For companies without a SIC code, we set the
depreciation rate equal to the unconditional average value calculated using firm-level observations for which
the depreciation rate is available.

17If real capital stock is missing for one quarter, we linearly interpolate the real capital stock from two
nearby quarters to compute the capital age. If real capital stock is missing for two consecutive quarters, we
drop the rest of the observations for a firm.

18Given the lack of information about the capital age of acquired assets, we assume that the capital age
increases by one quarter when there is an acquisition larger than 50% of the beginning of the quarter capital
stock. This assumption has no material effect on our empirical analysis.

19For the fiscal year 1974, only 11% of firms report ppentq for fiscal quarters other that the last one. This
percentage increases to 50% in the fiscal year 1975 and to 93% in the fiscal year 1976.
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accounting data from the first quarter of 1976 to allow for a sufficiently large number of

observations in each portfolio.

5.3 Summary statistics

In addition to capital age, we also keep track of the following variables, the (gross) investment

rate, return on equity (ROE), market capitalization (i.e., size), and the book–to–market

ratio. Their detailed definition is in Appendix A3. We include in our dataset only firms that

have all of the above available in a given quarter. In total, our sample consists of 311,717

firm–quarter observations. All the quantities are winsorized at the top and bottom 1 percent

to attenuate the impact of outliers.

Panel A in Table 5 reports the summary statistics for the measure of capital age and

the above variables. The mean (median) firm-level capital age in the sample is 22.6 (20.7)

quarters with a volatility of 12.5 quarters.20 Quarterly firm-level investment rate is 5.4%

with a volatility of 14.7%. The average firms’ return on equity and book-to-market ratio are

0.5% and 0.83, respectively, with respective volatilities of 11% and 0.7, consistent with the

range of empirical estimates in the literature. The average log size of the firms in the sample

is 5 when we measure size in 2009 (million) dollar term.

A natural concern for the measure of capital age is whether the capital age merely

captures the (inverse) investment effect (i.e., firms with new capital invest more). Panel B in

Table 5 reports the correlation matrix of the variables used in the empirical analysis. Notably,

capital age and investment rate are only moderately correlated at −0.24, suggesting that

capital age and investment contain different information. Furthermore, capital age is also

only weakly correlated with book-to-market, return-on-equity and log size with correlations

of 0.19, 0.10 and 0.12, respectively.

5.4 Alternative measure of capital age

We also consider an alternative (albeit related) measure of capital age to show the robustness

of our main measure. Specifically, we calculate capital age under the assumption that when

Ii ≤ 0 the firm disposes of oldest capital vintages first. We do this because we do not observe

the sales of capital disaggregated at the vintage level and because it is plausible to assume

that disinvestment activities concern less productive (i.e., oldest) capital (Salvanes and

20Ai, Croce, and Li (2013) also calculate a firm’s capital age using data on investment expenditures and
find a median value of five years.
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Tveteras (2004)). The drawback of this alternative approach is that we lose the convenient

recursive formulation in Equation (22).

Overall, the alternative measure of capital age delivers similar summary statistics to

our baseline measure of capital age and it also produces similar correlations with the key

variables used in the empirical analysis. Table 5 reports the results. For example, the

alternative measure of capital age (labelled as Capital Age Alt) has a mean of 20 quarters

with a volatility of 11 quarters, fairly close to those of the baseline measure of capital

age. More importantly, the correlation between the alternative measure of capital age and

our baseline measure is quite high, at 94%, suggesting that these measures of capital age

capture the same information about firms’ investment in capital. The alternative measure

of capital age is weakly correlated with investment, return on equity and book-to-market

with correlations of −0.20, 0.13, and 0.18, respectively. We report the results from several

robustness checks using this alternative measure of capital age in Appendix A4.

6 Empirical analysis

In this section, we provide evidence on the relation between capital age and the cross–

section of stock returns. We first show that capital age positively predicts the cross-

sectional expected stock returns, consistent with the model. Then we perform a battery

of asset pricing tests. We also investigate the joint link between capital age and other firm-

level characteristics on one hand and future stock returns on the other using multivariate

regression techniques. Lastly, we construct a proxy for the aggregate technology frontier

shock, which we show is a positively priced source of aggregate risk and that old capital age

firms are more exposed to this shock than young capital age firms, corroborating the model

mechanism.

6.1 Capital age spread

To investigate the link between capital age and future stock returns in the cross section, we

construct ten portfolios sorted on the firm’s current capital age and report the portfolio’s

post-formation average stock returns. We construct the capital age portfolios at a quarterly

frequency as follows. At the beginning of January, April, July, and October of each year, we

sort the universe of common stocks into ten portfolios based on the firm’s capital age 6 months

prior to portfolio formation to avoid a look-ahead bias. We define the capital age breakpoints

used to allocate firms into portfolios by using all firms in NYSE-AMEX-NASDAQ. Once the
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portfolios are formed, their returns are tracked from January/April/July/October of year t

to March/June/September/December of year t. The procedure is repeated at the year t+ 1.

The first portfolio is formed in October 1976, the last one in October 2016.

We report both average equal- and value-weighted portfolio returns across all firms.

Reporting these two sets of average returns allows us to provide a comprehensive picture of

the link between capital age and stock returns in the overall economy. The top rows in Panel

A of Table 6 report the average excess stock returns (E[Re], in excess of the risk-free rate)

and Sharpe ratios of the ten capital age sorted portfolios. This table shows that, consistent

with the model, across the two sets of average returns, the firm’s capital age forecast stock

returns. Firms with currently low capital age earn, on average, subsequently lower returns

than firms with currently high capital age. The difference in returns is economically large

and statistically significant. The average equal-weighted return spread (OMY, the capital

age return spread) is 14.9% per annum, and this value is more than 5.9 standard errors away

from zero. The average value-weighted capital age return spread is 9.5% per annum, and

this value is 2.4 standard errors away from zero. From the fact that the capital age return

spread is smaller in value-weighted returns than in equal-weighted returns, we can infer that

the capital age return spread is particularly strong among small firms, a common finding

in the empirical asset pricing literature. Lastly, we also highlight the fact that the Sharpe

ratio across capital age portfolios is also increasing in firms’ current capital age, a finding

consistent with the model’s prediction.

6.2 Capital age, investment, book-to-market, size and returns

Previous studies document a negative relation between the firm’s investment rate and future

stock returns in the cross section. As reported in Table 5, the capital age and investment

rate are negatively correlated. Thus, part of the link between the firm’s capital age and

future stock returns may reflect the negative correlation between investment and future stock

returns. In this section, we extend the previous analysis to investigate the joint behavior of

capital age, investment, and future stock returns in the cross section.

To this end, we form nine portfolios two-way-sorted on capital age and investment

as follows. At the beginning of January, April, July, and October of each year t, we

unconditionally sort the universe of common stocks into three portfolios based on the firm’s

investment rate and into three portfolios based on the firm’s capital age. The investment

rate and capital age breakpoints for year t are the 20th and 80th percentiles of the cross-

sectional distribution of the corresponding sorting variable at the end of each quarter 6
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months prior to portfolio formation. To compute the breakpoints, we use the sample of

all firms in NYSE-AMEX-NASDAQ, consistent with the construction of the portfolios one-

way-sorted on capital age. Once the portfolios are formed, their returns are tracked from

January/April/July/October of year t to March/June/September/December of year t. The

procedure is repeated at the year t+ 1.

Panel A in Table 7 shows that the two-way sorting procedure generates a reasonable

spread in average excess returns across both the capital age (column OMY) and the

investment rate (row H-L) dimensions. Within investment bins (within rows), firms with low

capital age earn lower returns on average than firms with high capital age. Within capital

age bins (within columns), firms with low investment rates earn higher returns on average

than firms with high investment rates. Thus, the capital age contains some information

about future stock returns that is not contained in the investment rate (and vice versa for

the investment rate).

The investment and, especially, the capital age spreads are stronger in equal-weighted

returns than in value-weighted returns. In equal-weighted returns (across all firms), within

each investment bin, firms with high capital age outperform firms with low capital age by a

value between 8.6% to 11.4% per annum and the spreads are all significantly different from

zero. Similarly, within each capital age bin, firms with low investment rate outperform firms

with high investment rate by a value around 7% per annum and also in this case the spreads

are all significantly different from zero. Taken together, the results show the coexistence of

a capital age and investment return spread in the data, and this coexistence is stronger in

equal-weighted average returns.

Furthermore, we also form two sets of nine portfolios two-way-sorted on capital age

and size, and capital age and book-to-market, respectively. To briefly summarize the

main findings, Panel B of Table 7 shows that the capital age spread remains positive and

significant in every size bin in both equal-weighted and value-weighted portfolios, with the

only exception of value-weighted large size portfolios.

Turning to the two-way-sorted portfolios on capital age and book-to-market (Panel C

of Table 7), in equally-weighted returns the age spread remains positive and significant in

each book-to-market bin; in value-weighted returns, the age spreads are positive across all

book-to-market bins and significant for the middle book-to-market bin.
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6.3 Asset pricing tests

We also investigate the extent to which the variation in the average returns of the capital

age portfolios can be explained by exposure to standard risk factors, as captured by the

unconditional capital asset pricing model (CAPM) or the Fama and French (2015) five-

factor model (FF5). This analysis is important because it provides information about the

class of models that can potentially explain the capital age spread21.

To test the CAPM, we run monthly time-series regressions of the excess returns of each

portfolio on a constant and the excess returns of the market portfolio (market). To test the

Fama-French five-factor model, we augment the previous CAPM regressions with the size

factor (SMB, small minus big), the value factor (HML, high minus low), the profitability

factor (RMW, robust minus weak) and the investment factor (CMA, conservative minus

aggressive). The intercepts from these regressions are the pricing errors (abnormal returns)

Panels B and C of Table 6 report the alphas (i.e., the pricing errors) and betas for the

CAPM and the Fama-French five-factor model regressions on the ten capital age portfolios.

Clearly, the CAPM cannot explain the pattern of average returns of these portfolios. The

CAPM-implied pricing errors are large, with a mean absolute pricing error of 5.1% per

annum using equal-weighted returns and 3.3% per annum in value-weighted returns. The

alpha of the capital age spread portfolio is large and significant, between 18% per annum for

equal-weighted returns and 15% for value-weighted returns.

The previous analysis shows that the CAPM-implied pricing error of the capital age

spread portfolio is larger than the capital age return spread itself. As such, the large CAPM

pricing errors represent a higher hurdle for theoretical models than the capital age spread

itself. This result follows from the fact that the market betas of the portfolios, the relevant

measure of the quantity of risk of each portfolio according to the CAPM, goes in the wrong

direction across the capital age portfolios. The portfolio of firms with currently high capital

age has a lower market beta than the portfolio of firms with currently low capital age, which

is inconsistent with the higher average returns (risk) of the high capital age portfolio.

The Fama-French five-factor model does a better job here than the CAPM for both

equal- and value-weighted returns. The mean absolute pricing error of the Fama-French

model drops significantly relative to the one implied by the CAPM (2.0% vs 5.1% for equal-

weighted returns, 2.2% vs 3.3% for value-weighted returns). However, the Fama-French

model still fails to capture the returns of the capital age spread portfolio of both equal-

21The results using the Hou, Xue, and Zhang (2015) four-factor model (HXZ) are reported in Section A4.2
in the Appendix.
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and value-weighted returns. The average abnormal return (alpha) of the capital age return

spread portfolio is 9.4% and 6.3% per annum, respectively in equal- and value-weighted

returns, and these values are 4.2 and 2.8 standard errors from zero. In untabulated results,

we also include the liquidity factor of Pastor and Stambaugh (2003) on top of FF5 to control

for liquidity–related issues and the results are virtually unchanged22.

The asset pricing tests for the nine portfolios two-way-sorted on capital age on one hand

and investment rate, size, and book-to-market ratio on the other are reported in Table 8.

For the capital age and investment rate sorted portfolios, the risk–adjusted excess returns

(OMY ) across the two factor models are always positive and significant for the equal-

weighted portfolios. The results are weaker when we use value-weighted portfolios. The

risk-adjusted capital age spread is positive and significant only when we use the CAPM. The

reason being that FF5 has an investment–based factor that seems to pick up some of the

variability in capital age sorted portfolios only when we double sort using the investment

rate. Overall, the results in Table 8 show that the capital age spread alpha remains positive

and significantly different from zero at the 5% level in most of the cases.

Taken together, the Fama-French five-factor model captures a larger fraction of the

cross-sectional variation in the average returns of the capital age portfolios than the CAPM,

but this factor model cannot fully explain the variation of the one-way sorted capital age

spread. Not surprisingly, the capital age spread is partially subsumed when we two-way

sort on both capital age and investment rate, which is an important determinant of capital

age. In the next section, we go beyond two-way-sorted portfolios and control for multiple

characteristics simultaneously by running cross–sectional regressions.

6.4 Firm-level return predictability regressions

In this section, we extend the previous analysis to investigate the joint link between capital

age, investment, size, book-to-market and future stock returns in the cross section using

firm-level multivariate regressions that include the firm’s capital age and other controls as

return predictors.

We also investigate the marginal (relative to investment and other predictors)

predictability of capital age using stock return predictability regressions performed at the

firm-level. It is difficult to draw inferences about which sorting variables have unique

22The Fama and French factors are from Kenneth French’s website (http :
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html), while the liquidity factor is
from Lubos Pastor’s website (http : //faculty.chicagobooth.edu/lubos.pastor/research/). We thank Lu
Zhang for kindly providing the Hou, Xue, and Zhang factors.
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information about future returns using a portfolio approach. The portfolio procedure requires

the specification of breakpoints to sort the firms into portfolios and the selection of the

number of portfolios. These choices may influence the overall analysis. Thus, the firm-level

regressions provide a cross-check.

We run standard Fama and MacBeth (1973) firm-level cross-sectional regressions to

predict stock returns using the lagged firms’ capital age, investment rates (IK), size, book-

to-market (BM) and profitability (ROE) as return predictors23. This regression allows for a

clear economic interpretation of the regression slopes and further validation of the results. We

also include the previous month return in all regressions to control for persistence in equity

returns. All the control variables are divided by their unconditional standard deviation to

facilitate the comparison across regressions.

Table 9 reports the results from cross-sectional predictability regressions performed at

a monthly frequency. The reported coefficient is the average slope from monthly regressions

and the corresponding t-statistic is the average slope divided by its time-series standard

error. The reported R2 is the time–series average of the cross–sectional R2. The results are

consistent with the portfolio-level results. In specification 1, capital age significantly predicts

future returns with a slope coefficient of 0.40, which is more than 6 standard deviations from

zero. It implies that that a one standard deviation increase in (log) capital age leads to a

significant increase of 0.40% in the average monthly equity return. The difference in average

(log) capital age between firms in the top and bottom decile is equivalent to 3.5 standard

deviations. The coefficient in Column 1 implies a difference in expected returns of 1.4% per

month, which is equivalent to an annualized difference of 16.8%, a value close to 15.0%, the

equally–weighted age premium reported in Table 6.

In specifications 2 to 5, capital age predicts stock returns with statistically significant

positive slope coefficient after controlling for investment, size, book-to-market and ROE one

by one. The estimated capital age slope coefficient ranges from 0.26 (specification 6) to 0.42

(in specification 2), and these values are all more than 5 standard errors from zero. It’s

worth noting that in specification 6, the slope of capital age remains positive and significant

after we include all the regressors, albeit its magnitude is 35% smaller than the value in

specification 1. In this case, a one standard deviation increase in capital age leads to a

significant increase of 0.26% in the average monthly equity return, which translates in an

annualized return of 3.1%.

23The results using pooled ordinary least squares (OLS) regressions are reported in Section A4.2 in the
Appendix.
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6.5 The capital age spread and technology frontier shocks

In the previous sections, we show that the capital age spread is not captured by the standard

factor models. In this section, we provide empirical evidence for the link between the capital

age spread and a proxy for the aggregate technology frontier shock which drives firms’

technology adoptions, corroborating the model predictions.

Specifically, we follow Baron and Schmidt (2017) and use the introduction of technology

standards to capture the adoption of new technologies.24 The key macroeconomic variable

that we use is the aggregate number of technology standards released each quarter by both US

and international standard setting organizations (SSOs) in two main groups closely related

to technology adoption: Telecommunication, Audio and Video Engineering (International

classification of standards (ICS) class 33) and Information Technology and Office Machines

(ICS class 35). Consistent with the view in Baron and Schmidt (2017), who show that

the introduction of new technology standards anticipates the adoption of new technologies

and positively correlates with future productivity gains, we take the log difference (i.e.,

the growth rate) in the number of new technology standards to proxy for the aggregate

technology frontier shock.25

In what follows, we show that this technology frontier shock proxy is a source of

systematic risk that captures cross-sectional differences in equity returns.

6.5.1 Capital age spread cyclicality

We analyze the co-movement between the capital age spread (OMY) and two proxies for the

sources of aggregate fluctuations both in the model and in the actual data. Recall that the

model admits two sources of aggregate variations. One is driven by the frontier technology

shock; the other by the aggregate productivity shock, which mainly affects the aggregate

output growth. Thus, empirically we use as proxy the log change in the number of new

technology standards and the log change in real GDP.

Table 10 reports the results of a OLS regression of OMY on the two aggregate variables

described above26. In columns 1 and 2, we analyze the co-movement of OMY with the

24More information can be found at http://www.law.northwestern.edu/research-faculty/

searlecenter/innovationeconomics/data/technologystandards/.
25We obtain stronger results if we follow Baron and Schmidt (2017) and use a citation-weighted measure

that gives more importance to technology standards more widely adopted. However, the citation-weighted
measure uses references for a technology standard over the subsequent 4 years. To avoid a potential look–
ahead bias in our results, we use the raw count of standard releases by US and International SSOs.

26In Table 10, we tease out the effect of the market factor on the reported correlations by using the residual
of a regression of each source of aggregate fluctuations on the market return.
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technology frontier shock. Not surprisingly, the capital age spread in the model is strongly

correlated with movements of the technology frontier. This positive correlation is also found

in the data when we use the log change in the number of new technology standards, our

proxy for technology frontier shocks.

Both the data and the model show a lack of co-movement between the capital age spread

and contemporaneous GDP growth (columns 3 and 4) and the latter variable does not affect

the positive correlation between the capital age spread and the technology frontier shock

(columns 5 and 6)

The results in Table 10 are consistent with the model’s predictions concerning the

contemporaneous correlation between the capital age spread and technology frontiers shocks,

thus highlighting a potentially important role that our proxy has in explaining cross sectional

differences in equity returns. In the next section, we run a battery of tests and show that

out proxy captures information about systematic risk.

6.5.2 The price of risk of technology frontier shocks

In this section, we show that our technology frontier shock is a source of systematic risk

and that exposures to this shock capture the cross-sectional variation of the capital age

portfolios. In analogy to the model, we do so by considering a two-factor asset pricing model

with the stock market factor (Mkt) and the technology frontier shock proxy (Frontier) as the

two factors. Specifically, we use the following stochastic discount factor (investors’ marginal

utility):

Mt = 1− bM ×Mktt − bF × Frontiert, (23)

which states that investors’ marginal utility is driven by two aggregate shocks, Mkt, which

is the market factor in the standard capital asset pricing model (CAPM), and Frontier, the

technology frontier shock. Note that the specification of the stochastic discount factor in

Equation (23) is closely related to that in the model given in Equation (18). We then estimate

the risk factor loadings on the two aggregate shocks (bM and bF ) by the generalized method

of moments (GMM) using the standard asset pricing moment condition E [reitMt] = 0, in

which reit is the excess return on test asset i. To help in the interpretation of the results, this

moment condition can be written as:

E [reit] = αi + bMCov(Mktt, r
e
it) + bFCov(Frontiert, r

e
it), (24)

where we added the term αi (alpha), the pricing error (abnormal return) associated with
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asset i.

We first examine the pricing result across the 10 value-weighted capital age portfolios.

In Panel A of Table 11 we report the alphas (pricing errors) for the 10 age portfolios and

the spread portfolio (OMY ) implied by the two-factor model in Equation (24) (Specification

1). We also calculate the multivariate covariances between the capital age portfolio excess

returns and the Frontier shock. We find that the two-factor model produces a small and

insignificant pricing error for the capital age spread (OMY ) at 2.4% per annum with the t-

stat at 1. In addition, the covariances between the Frontier shock and the capital age spread

is 2.2 with the t-stat at 2.3, implying that the frontier shock proxy generates significant

variation for the risk exposure across the capital age portfolios.

Furthermore, we investigate the extent to which the technology frontier shock

proxy captures information about systematic risk in the economy not captured by other

macroeconomic variables used in the literature, some of which have already been shown to

be correlated with asset prices in the cross section. As such, in addition to the Frontier

shock, we also test the pricing properties of the following macroeconomic variables related

to systematic risk: the log change in real GDP, the log change in utilization adjusted total

factor productivity (TFP), the log consumption-wealth ratio (cay, Lettau and Ludvigson

(2001)) , the Pastor and Stambaugh (2003) aggregate liquidity shock, the log change in the

BAA-AAA spread, the change in macroecomonic uncertainty (Jurado, Ludvigson, and Ng

(2013)), and a proxy for investment-specific technology shocks based on the relative price

of capital goods (Papanikolaou (2011))27. All the data are at a quarterly frequency over

the period that goes from the fourth quarter of 1976 to the fourth quarter of 2014. To

facilitate the comparison, all the macroeconomic factors are demeaned and divided by their

unconditional standard deviations.28

Panel A (Specifications 2 to 8) reports the pricing errors and the multivariate covariances

27We also use the proxy for investment-specific technology shocks based on return spreads between
investment and consumption sectors (IMC) introduced by Papanikolaou (2011) and obtain similar results.

28The data for real GDP and for the BAA and AAA corporate bond yields are from the
Federal Reserve Economic Database (FRED) at the Federal Reserve Bank of St. Louis (https:
//fred.stlouisfed.org). The data on utilization adjusted total factor productivity (TFP) are
from the Federal Reserve Bank of San Francisco (http://www.frbsf.org/economic-research/
indicators-data/total-factor-productivity-tfp/). The data on the consumption-wealth ratio and
macroeconomic uncertainty are from Sydney Ludvigson’s website (https://www.sydneyludvigson.com/
data-and-appendixes/). Macroeconomc uncertainty is the 1-month ahead measure computed as in
Jurado, Ludvigson, and Ng (2015). The aggregate liquidity shock is from Lubos Pastor’s website (http:
//faculty.chicagobooth.edu/lubos.pastor/research/). The aggregate liquidity shock is available at a
monthly frequency, we use a quarterly version by summing up the shocks in each given quarter. The data
on quarterly investment-specific technology shocks are from Garlappi and Song (2016). Different from the
other data, the latter quantity is available only until the last quarter of 2012.
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between the capital age portfolio excess returns and each macroeconomic shock implied by

the two-factor model with the market factor and one macroeconomic shock (replacing the

Frontier shock) one at a time. The alphas (pricing errors) implied by the two factor model

with the macroeconomic shocks are much larger than that of the Frontier shock, ranging

from 9% to 17%. Moreover, the two factor models with these macroeconomic shocks, with

the exception of the log change in real GDP, fail to generate a significantly different risk

exposure between the old capital age and young capital age portfolios.

In Panel B, we report the result of the one-step GMM estimation of the SDF in Equation

(23). Not surprisingly, the one-factor model based on the market excess returns (Specification

1) produces a large pricing error with an mean absolute error (m.a.e.) of 3.4% per annum.

Adding the technology frontier shock proxy as a second factor (Specification 2) significantly

decreases the m.a.e. to 1.8%. To examine the marginal effect of the technology frontier

shock proxy for asset prices, we also estimate a three factor model with the market excess

return (Mkt), the technology frontier shock proxy (Frontier), and one macroeconomic shock

(Macro) at a time as follows

Mt = 1− bM ×Mktt − bF × Frontiert − bMacro ×Macrot. (25)

Panel B (Specifications 3 to 9) shows that the risk factor loading on the Frontier shock always

remains significant and its estimated value does not change dramatically across the different

specifications. It is worth noting that only cay is marginally significant among these macro

factors when we also include the technology frontier shock.

At the bottom of Panel B, we also report a rank test for individual factors as suggested

by Gospodinov, Kan, and Robotti (2014). In particular, we test if the matrix E[xt(1, ft)] has

a column rank of one (i.e., full rank), where xt is the matrix of test assets’ returns and ft is

a risk factor. This test allows us to verify if the technology frontier shock proxy is indeed a

useful factor (i.e., its significance is not driven by the fact that this risk factor is independent

of the test asset returns). As we can see, the corresponding p-value is less than 0.05, so we

can reject the null hypothesis that E[xt(1, ft)] has less than full rank and conclude that the

technology frontier shock proxy is correlated with the assets returns.

Panels A and Panel B validate our model’s prediction that capital age predicts expected

returns because it entails an exposure to the technology frontier shock proxy, which is a source

of systematic risk. In Panel C of Table 11, we further explore if this source of risk is also

priced in a broader set of test assets. To this end, we follow Lewellen, Nagel and Shanken

(2010) by including the 17 Fama-French industry portfolios as test assets. In addition, we
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also include the 6 size and book-to-market portfolios and the 10 momentum portfolios, as

in Gospodinov, Kan, and Robotti (2014). We test the same factor models as in Panel B

and find consistent results. The risk factor loading on the technology frontier shock proxy is

statistically significant in the two-factor model (t-stat = 2.7) and is always significant in the

various three-factor model specifications.29 Taken together, the technology frontier shock

proxy captures a source of systematic risk that is priced in the economy, consistent with the

model’s implications.

7 Conclusion

We study how the time–variation of the aggregate technological frontier impacts firms’ asset

prices and real quantities in a dynamic model economy. Our results show that costly

technology adoption combined with a systematic technology frontier shock are important

in shaping the cross section of stock returns. In our setting, technology adopting firms are

less risky than non-adopting firms because costly technology adoption limits the flexibilities

of non-adopting firms in upgrading their old capital to the frontier, causing their continuation

value to be more exposed to the frontier shocks. In the model, old capital age firms and

value firms are non-adopting firms, thus, the model generates sizable capital age and value

spreads.

Furthermore, we provide empirical evidence for the model’s predictions. In particular,

we construct a measure of firms’ capital age and find an annual value-weighted return spread

of 9% between old and young capital firms; in addition, the standard asset pricing factor

models fail to explain the variation of the capital age return spread. Furthermore, we estimate

a proxy for the technology frontier shock by using the introduction of technology standards

in the US and worldwide. We show this aggregate technology frontier shock proxy captures

the cross-sectional variations of the capital age portfolios.

Our work has implications for both macroeconomics and finance. Our findings suggest

that technology adoptions can have a significant impact on asset prices. In addition, our

analysis shows that risk premiums are an important determinant of firms’ adoption decisions.

Given the importance of technological changes in economic growth and business cycles, our

results suggest that incorporating cross-sectional variation in risk premiums in current DSGE

models can be important for an accurate understanding of technology adoption over the

business cycle and of how technology adoption frictions propagate and amplify the effect of

29Note that only the TFP shock remains significant when we include the technology frontier shock.
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shocks in the economy.

References

Abel, A. B. and J. E. Eberly, 2012, Investment, Valuation, and Growth Options, Quarterly

Journal of Finance, 2(1)

Ai, H., M. M. Croce, and K. Li, 2013, Toward a Quantitative General Equilibrium Asset

Pricing Model with Intangible Capital, Review of Financial Studies, 26 (2): 491–530

Albuquerque, R. and N. Wang, 2008, Agency Conflicts, Investment and Asset Pricing,

Journal of Finance, 63(1): 1-40.

Baron, J. and J. Schmidt, 2017, Technological Standardization, Endogenous Productivity

and Transitory Dynamics, Banque de France Working Paper No. 503

Brown, J., S. M. Fazzari, and B. C. Petersen 2009. Financing innovation and growth: Cash

flow, external equity, and the 1990s R&D boom. Journal of Finance 54(1): 151

Brown, J. R. and B. C. Petersen 2011. Cash holdings and r&d smoothing. Journal of

Corporate Finance 17: 694-709

Cooper, R., J. Haltiwanger and L. Power, 1999, Machine Replacement and the Business

Cycles: Lumps and Bumps, The American Economic Review, 89 4, 921-946.

Cummins, J. and G. L. Violante. 2002. Investment-Specific Technological Change in

the U.S. (1947-2000): Measurement and Macroeconomic Consequences, Review of

Economic Dynamics, vol. 5(2), April 2002, pages 243-284.

Dunne, T. 1994. Plant Age and Technology use in U.S. Manufacturing Industries. The

RAND Journal of Economics 25(3): 488-499

Eisfeldt, A., and D. Papanikolaou, 2013. Organization Capital and the Cross-Section of

Expected Returns. Journal of Finance 68(4): 1365-1406

Fama, Eugene F., and Kenneth R. French, 2015, A five-factor asset pricing model, Journal

of Financial Economics 116(1), 1− 22

Fama, E. and J. D. MacBeth 1973. Risk, Return, and Equilibrium: Empirical Tests.

Journal of Political Economy 81(3), 607-636.

35



Garlappi, L., and Song, Z., 2016, Can Investment Shocks Explain the Cross Section of

Equity Returns?, Management Science 63, 3829− 3848

Garleanu, N., Panageas, S, and J. Yu, 2012, Technological growth and asset Pricing, Journal

of Finance 67, 1265− 1292

Gordon, R. J. 1990, The Measurement of Durable Good Prices, NBER Monograph Series,

University of Chicago press.

Gospodinov, N., R. Kan, and C. Robotti, 2014, Misspecification-Robust Inference in

Linear Asset-Pricing Models with Irrelevant Risk Factors, Review of Financial Studies

27(7), 2139− 2170

Greenwood, J., Z. Hercowitz, and P. Krusell. 1997. Long-run implications of investment-

specific technological change. American Economic Review 87 (3): 342–362.

Greenwood, J., and M. Yorukoglu, 1997, Carnegie-Rochester Conference Series on Public

Policy 46: 49-95, Elsevier Science

Hou, K., Xue, C., and L. Zhang, 2015, Digesting Anomalies: An Investment Approach,

Review of Financial Studies 28(3), 650− 705

Hulten, C. R. 1991. The measurement of capital. Fifty years of economic measurement.

In: Berndt, E.R., Triplett, J.E. (Eds.), Studies in Income and Wealth. The National

Bureau of Economic Research, Chicago, pp. 119-158 (The University of Chicago Press

54 (June)).

Imrohoroglu, A., and S. Tuzel, 2014, Firm level productivity, risk and return, Management

Science, 60

Jermann, U., 1998. Asset pricing in production economies, Journal of Monetary Economics,

41, 257–275.

Jorgenson, D. W. 2001, Information Technology and the U.S. Economy, American Economic

Review, vol. 91(1), pages 1-32.

Jovanovic, B., and D. Stolyarov. 2000. Optimal adoption of complementary technologies ,

American Economic Review 90, 15–29.

36



Jurado, K., S. Ludvigson, and S. Ng 2015. Measuring Uncertainty, American Economic

Review 105(3), 1177–1215.

Kogan, L., and D. Papanikolaou. 2014 ”Growth opportunities, technology shocks, and asset

prices.” Journal of Finance , 69, 675-718.

Kung, H. and L. Schmid 2015. Innovation, Growth, and Asset Prices. Journal of Finance

70(3), 1001

Lettau, M. and S. C. Ludvigson 2001. Consumption, Aggregate Wealth, and Expected

Stock Returns. Journal of Finance 56(3), 815–849.

Lewellen, J., S. Nagel, and J. Shanken, 2010, A Skeptical Appraisal of Asset Pricing Tests,

Journal of Financial Economics, 96 (2), 174-194.

Li, K., C. Tsou, and C. Xu, 2018, Learning and the Capital Age Premium, Working paper,

Hong Kong University of Science and Technology.

Liao, W. and L. Schmid 2017. Levered Ideas: Risk Premia along the Credit Cycle. Duke

University Working Paper.

Lustig, H., C. Syverson, and S. V. Nieuwerburgh 2011. Technological Change and the

Growing Inequality in Managerial Compensation. Journal of Financial Economics

99(3), 601-627.

Mairesse, J., 1978, New Estimates of Embodied and Disembodied Technical Progress,

Annales de l’ Insee, 30/31: 681-720

Papanikolaou, D. 2011 ”Investment Shocks and Asset Prices.” Journal of Political Economy

, 119(4), 639-685.

Parente S. L., and E. C. Prescott, 1994, Barriers to technology adoption and development,

Journal of Political Economy 102 (2): 298-321

Pastor, L. and P. Veronesi, 2009. Technological revolutions and stock prices. American

Economic Review 99, 1451-1483.

Pastor, L. and R. F. Stambaugh, 2003. Liquidity risk and expected stock returns. Journal

of Political Economy 111(3), 642-685.

37



Rich, J., Jones, J., Mowen, M., and D. Hansen. 2014. Cornerstones of Financial Accounting,

South-Western. Cengage Learning; 3rd edition

Rouwenhorst, G. 1995. Asset pricing implications of equilibrium business cycle models, in

Thomas Cooley, eds. Frontiers of Business Cycle Research. Princeton NJ: Princeton

University Press.

Salvanes, K. J., and R. Tveteras. 2004. Plant exit, vintage capital, and the business cycle.

Journal of Industrial Economics 52 (2): 255-276.

Zhang, L., 2005. The value premium. Journal of Finance 60 (1), 67–103

38



A1 Detrending the model

Because both aggregate productivity and the technology frontier follow random walk

processes and hence non-stationary, we need to detrend the model before we can apply

the value function iteration method to solve the model. Define detrended variables

vt =
Vt

XtNt

(26)

kt =
Kt

Nt

(27)

dt =
Dt

XtNt

. (28)

After some algebra, the firm problem is equivalent to

vt = max
φt

dt + eG− 1
2
λ2η+gN+σNηtEt

[
e−ληηt+1vt+1

]
,

where

dt = eztkt − [fakt + itkt]φt − fo (29)

G = −r + gx +
1

2
σ2
x − σxλe. (30)

φt is an indicator function which equals 1 if the firm adopts the technology frontier (φt = 1)

and 0 otherwise.

The detrended kt follows

kt+1 =

 (1− δ)kte−gN−σNηt if φt = 0

1 if φt = 1
(31)
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After detrending, the firm’s investment rate is given by

it =

 0 if φt = 0

1
kt
egN+σNηt − 1 + δ if φt = 1

(32)

After detrending, there are three state variables in this economy (zt, ηt, kt). The firm value

and policy functions such as optimal adoption (φt) are functions of these three state variables.

A2 Numerical algorithm

We use the value function iteration procedure to solve the detrended firm’s maximization

problem as in Section A1. The value function and the optimal adoption decisions (φt = 0

or 1) are solved on a grid in a discrete state space. We specify one grid of 1, 000 points for

the detrended capital (kt). The grid is equally spaced for log kt. In particular, we include

kt = 1, which represents the detrended capital adopting to the technology frontier, as one of

the grid points to reduce interpolation errors for this important state.

The technology frontier shock ηt is an i.i.d. standard normal shock. We discretize ηt

into 9 grid points using Gauss-Hermite quadrature. The firm-specific productivity (zt) has

continuous support in the theoretical model, but it has to be transformed into discrete state

space for the numerical implementation. Because the firm-specific productivity process zt is

highly persistent, we use the method described in Rouwenhorst (1995) for a quadrature of

the Gaussian shocks. We use 9 grid points for the zt. In all cases, the results are robust to

finer grids as well. Once the discrete state space is available, the conditional expectation can

be carried out simply as a matrix multiplication. The Piecewise Cubic Hermite Interpolating

Polynomial (PCHIP) interpolation is used to obtain the continuation value of a firm that

does not lie directly on the grid points. Finally, we use a simple discrete global search routine

in maximizing the firm’s problem.
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A3 Data definitions

We measure the investment rate as gross investment (δjKi,t + INi,t) divided by the beginning

of the period capital stock (Ki,t). Profitability is income before extraordinary items (item

ibq) divided by the previous quarter book value of equity. The latter quantity is constructed

following Hou, Xue, and Zhang (2015) and it is equal to shareholders’ equity (item seqq) plus

deferred taxes and investment tax credit (item txditcq, if available) minus the book value

of preferred stock (item pstkrq). If shareholders’ equity is not available, we use common

equity (item ceqq) plus the carrying value of the preferred stock (item pstkq). If common

equity is not available, we measure shareholders’ equity as the difference between total assets

(item atq) and total liabilities (item ltq). The book–to–market ratio is the book value of

equity divided by the market capitalization (item prccq times item cshoq) at the end of the

fiscal quarter. Market capitalization is calculated using data from CRSP and it is equal to

the number of shares outstanding (item shrout) multiplied by the share price (item prc).

When size is reported in levels, we express it in 2009 dollars using the personal consumption

expenditure price deflator.

A4 Robustness Analyses

A4.1 Alternative Measure of Capital Age

In this section we use the alternative measure of capital age to show that our results do

not depend on the assumption on how the firm disposes of old capital vintages. Table A1

reports the value–weighted excess returns and CAPM alphas across the 10 capital age sorted

portfolios, while Table A2 reports the value–weighted excess returns and alphas across the

three factor models for the double sorted portfolios. Equal-weighted portfolios are omitted

for economy of space, but available upon request. Overall, the results are consistent with
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the ones obtained using the recursive formulation for a firm’s capital age.

A4.2 Additional Results

In this section we report (i) the risk–adjusted excess returns across single-sorted and double-

sorted portfolios using the Hou, Xue, and Zhang (2015) four-factor model and (ii) the results

from pooled OLS predictability regressions.

To produce risk-adjusted returns using the Hou-Xue-Zhang four-factor model, we

augment the CAPM regressions with their size factor (ME), investment factor (IA) and

profitability factor (ROE). Table A3 shows that the mean absolute pricing error of the Hou-

Xue-Zhang model across age–sorted portfolios is also significantly smaller than the CAPM

one (2.6% versus 5.1% for equal-weighted returns, 1.6% versus 3.3% for value-weighted

returns). The average abnormal return (alpha) of the capital age return spread portfolio

implied by the Hou-Xue-Zhang model is 7.3% and 5.4% per annum, respectively in equal-

and value-weighted returns, and these values are 2.6 and 2.1 standard errors from zero. Table

A4 reports the pricing errors across double–sorted portfolios. Overall, the results are very

similar to the ones produced using the Fama and French (2015) five-factor model.

Table A5 reports the results from pooled OLS predictability regressions. The estimation

here is performed at a quarterly frequency, and includes firm and quarter fixed effects. The

capital age slope coefficients are positive and significant in all specifications. The estimated

values range from 0.17 (specification 6) to 0.64 (specifications 1 and 5) and they are all more

than 3 standard errors away from zero.
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Table 1: Parameter values under benchmark calibration

This table presents the quarterly parameter values of the benchmark model.

Parameter Value Description

Stochastic Process

4gN 0.02 Average log growth of the technology frontier

σN 0.0775 Volatility of log technology frontier

4gx 0.012 Average log growth of aggregate productivity

σx 0.047 Volatility of log aggregate productivity

ρz 0.973 Persistence of firm-specific productivity

z̄ -2.8 Long run average of firm-specific productivity

σz 0.26 Conditional volatility of firm-specific productivity

Technology

δ 0.028 Rate of capital depreciation

fa 0.8 Fixed cost of technology adoption

fo 0.012 Fixed operating cost

Pricing kernel

4r 0.016 The real risk-free rate

λe/σx 5 Risk price of aggregate productivity shock

λη/σN 8 Risk price of the technology frontier shock
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Table 2: Unconditional moments under the benchmark calibration

This table presents the selected moments in the data and the corresponding ones implied by the model

under the benchmark calibration. The reported statistics in the model are averages from 100 simulated

samples, each with 5,000 firms and 120 quarterly observations. We report the cross-simulation averaged

annual moments. The data moments are estimated from a sample from 1976 to 2016.

Moments Data Model

Asset prices

Real risk-free rate (%) 1.6 1.6

Market premium (%) 8.2 7.1

Market Sharpe ratio 0.48 0.45

Average individual stock volatility (%) 48.5 45.1

Value premium (%) 8.7 5.2

Real quantities

Std. dev. Of aggregate profits (%) 14 12

Mean capital age (in quarters) 23 20

Std. dev. Of capital age (in quarters) 12 14

Cross sectional correlation (capital age and BM) 0.19 0.15

Cross sectional correlation (capital age and investment rate) -0.24 -0.19
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Table 3: Capital age sorted portfolios: returns and asset pricing tests

This table reports the excess returns and the asset pricing test results of ten value-weighted portfolios and

ten equal-weighted portfolios sorted on capital age. Panel A reports average excess returns and Sharpe ratios

for capital age portfolios. Column ‘O’ reports the portfolio consisting of firms with the oldest capital and

column ‘Y’ reports the portfolio consisting of firms with the youngest capital. Column ‘OMY’ reports the

return difference of portfolio ‘O’ and portfolio ‘Y’. Panel B reports the risk factor covariances. Panel C

reports the average abnormal returns (alphas) implied by the CAPM together with the average abnormal

returns (alphas) implied by a two factor model where the two factors are the market excess return (Mkt)

and the technology frontier shock (Frontier). The reported statistics in the model are averages from 100

samples of simulated data, each with 5,000 firms and 30 years of quarterly observations. Capital age in the

model is the number of quarters for firms since the last technology adoption. Each portfolio is rebalanced

at quarterly frequency. All estimates of returns are annualized.

Value Weighted Equal Weighted

Y 3 5 7 O OMY Y 2 5 9 O OMY

Panel A: Portfolio returns and Sharpe ratios

E[Re] 3.83 5.14 7.12 9.12 13.32 9.49 3.80 4.99 7.21 10.51 20.99 17.19

[t] 1.31 1.73 2.37 3.03 4.34 6.21 1.29 1.69 2.42 3.40 5.69 6.28

SR 0.24 0.32 0.44 0.56 0.78 1.10 0.23 0.31 0.44 0.62 1.03 1.15

Panel B: Risk factor covariances

MKT 2.19 2.25 2.30 2.32 2.40 0.25 2.25 2.29 2.35 2.40 2.55 0.68

[t] 6.80 6.83 7.02 7.03 7.15 3.53 6.81 6.87 6.98 7.03 7.17 4.24

Frontier -0.42 -0.24 0.02 0.27 0.74 1.13 -0.44 -0.27 0.02 0.41 1.61 2.25

[t] -6.16 -4.71 0.39 4.70 6.16 6.99 -6.33 -4.86 0.35 5.14 6.95 6.74

Panel C: Pricing errors: CAPM and 2 factor model

Alpha -3.86 -2.73 -0.85 1.15 5.38 9.24 -5.47 -4.41 -2.31 0.87 11.16 16.63

[t] -3.35 -3.23 -1.66 1.91 3.76 3.75 -3.42 -3.53 -3.20 1.43 3.87 3.79

Alpha2F 0.35 -0.01 -0.26 -0.32 0.54 0.20 0.44 0.08 -0.29 -0.29 0.46 0.02

[t] 0.94 -0.06 -0.63 -0.72 1.17 0.39 1.08 0.26 -0.70 -0.63 1.02 0.05
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Table 5: Summary Statistics

This table reports the mean, standard deviation (std), 25% percentile (p25), 50% percentile (p50), 75%
percentile (p75), and number of available observations (obs) for the variables used in the empirical analysis
(Panel A) and their correlations (Panel B). We restrict our sample to companies listed in the three major
stock exchanges (AMEX, NYSE, and NASDAQ). We exclude companies non incorporated in the USA, and
we also exclude financials (SIC codes from 6000 up to 6999), utilities (SIC codes from 4900 up to 4999),
government/administrative institutions (SIC codes greater than 9000), and R&D–intensive sectors (SIC
codes 737, 384, 382, 367, 366, 357, and 283) from our sample. The sample period is 1976q3–2016q3. Section
5 describes the construction of the firm-level capital age measures, while Appendix A3 describes the other
variables. All the data are winsorized at the top and bottom 1% to attenuate the impact of outliers. The
1%, 5%, and 10% significance levels are denoted with *** , ** , and * , respectively.

Panel A: Summary Statistics

mean std p25 p50 p75 obs

Capital Age 22.60 12.49 13.50 20.73 29.32 311,717

Capital Age Alt 20.20 11.49 11.93 18.33 26.01 311,717

Investment Rate 0.05 0.15 0.00 0.03 0.07 311,717

Return on Equity(%) 0.50 11.00 -0.10 2.30 4.40 311,717

Size (2009 dollars, log) 5.14 2.13 3.55 5.05 6.62 311,717

Book-to-Market 0.83 0.70 0.38 0.64 1.07 311,717

Panel B: Correlation

Capital Capital Investment ROE Size Book

Age Age Alt Rate (2009 $) Market

Capital Age 1.00

Capital Age Alt 0.94*** 1.00

Investment Rate -0.24*** -0.20*** 1.00

Return on Equity 0.10*** 0.13*** 0.04*** 1.00

Size (2009 dollars, log) 0.12*** 0.15*** 0.01*** 0.26*** 1.00

Book-to-Market 0.19*** 0.18*** -0.14*** -0.03*** -0.35*** 1.00
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Table 6: Capital Age Sorted Portfolios and Tests of Standard Asset Pricing Factor Models

This table reports average annualized excess returns (E[Re]), Newy-West adjusted t-statistics ([t]), and

Sharpe Ratios (SR), and test results of standard asset pricing factor models (CAPM and Fama-French 5

factors) across ten value and equal weighted age-sorted portfolios in the data including the average abnormal

returns (alphas) and the factor loadings (MKT, SMB, HML, RMW and CMA). Portfolios are rebalanced

at a quarterly frequency starting in October 1976 and ending in October 2016. Column ‘O’ reports the

portfolio consisting of firms with the oldest capital and Column ‘Y’ reports the portfolio consisting of firms

with the youngest capital. Column ‘OMY’ reports the return difference of Portfolio ‘O’ and Portfolio ‘Y’.

Value weighted Equal weighted

Y 3 5 7 O OMY Y 3 5 7 O OMY

Panel A: Raw returns

Portfolio returns and Sharpe ratios Portfolio returns and Sharpe ratios

E[Re] -0.05 6.12 5.62 8.84 9.4 9.45 -2.33 9.33 11.14 12.16 12.62 14.95

[t] -0.01 2.04 2.09 3.72 4.28 2.39 -0.48 2.43 3.18 3.70 3.72 5.88

SR 0.00 0.32 0.33 0.58 0.67 0.45 -0.08 0.43 0.57 0.65 0.68 0.97

Panel B: CAPM

CAPM: MAE = 3.31 CAPM: MAE = 5.08

Alpha -11.06 -1.72 -1.56 2.48 3.98 15.03 -12.25 1.04 3.44 4.73 5.46 17.71

[t] -4.38 -1.12 -1.32 1.79 2.75 4.96 -4.21 0.43 1.60 2.58 2.65 7.82

MKT 1.52 1.08 0.99 0.88 0.75 -0.77 1.37 1.14 1.06 1.02 0.99 -0.38

[t] 26.12 35.03 26.83 25.76 17.44 -9.18 20.72 21.94 21.85 19.82 15.37 -4.83

R2 0.73 0.77 0.80 0.78 0.67 0.31 0.58 0.67 0.70 0.72 0.66 0.13

Panel C: FF5 5-factor model

Fama-French 5: MAE=2.22 Fama-French 5: MAE=1.98

Alpha -6.36 -2.63 -4.34 -1.36 -0.09 6.27 -8.50 -5.22 0.04 1.30 0.94 9.44

[t] -2.75 -1.82 -3.90 -1.34 -0.09 2.76 -2.91 -2.25 0.03 1.06 0.69 4.25

MKT 1.26 1.02 1.05 0.98 0.90 -0.37 1.07 1.03 1.01 1.02 0.99 -0.08

[t] 24.93 33.44 38.11 42.92 43.65 -6.65 17.67 28.25 32.45 34.33 28.45 -1.62

SMB 0.50 037 0.13 0.06 -0.01 -0.51 0.93 0.92 0.85 0.77 0.80 -0.13

[t] 5.66 7.06 3.19 1.54 -0.20 -5.21 8.10 13.65 14.23 14.60 14.02 -1.65

HML 0.11 0.08 0.10 0.05 0.22 0.12 0.25 0.35 0.31 0.34 0.46 0.21

[t] 1.11 0.99 2.16 1.17 4.38 1.23 1.50 3.89 4.01 4.25 5.15 1.70

RMW -0.25 0.26 0.40 0.53 0.23 0.48 -0.58 -0.05 0.10 0.17 0.14 0.72

[t] -1.98 4.29 7.36 9.90 3.72 4.42 -2.99 -0.56 1.12 1.91 1.62 5.49

CMA -1.00 -0.30 0.01 0.16 0.38 1.38 -0.74 -0.22 -0.02 0.13 0.05 0.79

[t] -7.15 -3.24 0.09 2.56 5.18 9.29 -2.29 -1.58 -0.13 1.12 0.41 3.20

R2 0.81 0.81 0.84 0.86 0.78 0.62 0.75 0.85 0.88 0.90 0.87 0.45
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Table 7: Average Returns of Double Sorted Portfolios

This table reports average annualized excess return across 3×3 value- and equal- weighted portfolios double

sorted on investment rate and capital age (Panel A) , market equity and capital age (Panel B), and book-

to-market ratio and capital age (Panel C). Portfolios are rebalanced at a quarterly frequency starting in

October 1976 and ending in October 2016. Column ‘O’ reports the portfolio consisting of firms with the

oldest capital and column ‘Y’ reports the portfolio consisting of firms with the youngest capital. Column

‘OMY’ reports the return difference of Portfolio ‘O’ and Portfolio ‘Y’. All return estimates are annualized.

Vaue weighted Equal weighted

Age Age

Y M O OMY [t] Y M O OMY [t]

Panel A: Capital age and investment rate sorted portfolios

L 2.8 11.71 10.91 8.11 2.24 4.19 14.67 15.56 11.37 3.57

M 8.23 7.8 8.55 0.32 0.10 4.27 11.34 12.91 8.63 4.19

H 0.19 6.63 7.74 7.54 2.17 -2.61 7.69 8.57 11.18 5.12

H-L -2.6 -5.08 -3.17 -6.8 -6.98 -6.99

[t] -0.77 -2.6 -1.35 -2.61 -4.08 -3.99

Panel B: Capital age and size sorted portfolios

L -2.78 10.01 14.32 17.1 5.42 8.31 18.17 20.63 12.33 4.21

M 0.44 9.88 11.33 10.89 4.79 -2.29 9.74 11.52 13.81 3.41

H 5.52 7.63 8.52 3.01 1.2 4.72 8.77 9.53 4.81 3.6

H-L 8.3 -2.37 -5.8 -3.59 -9.41 -11.11

[t] 2.09 -0.67 -1.49 -0.87 -2.93 -2.98

Panel C: Capital age and book-to-market sorted portfolios

L 1.99 5.27 7.58 5.6 1.19 -7.82 3.34 6.91 14.73 4.57

M 3.5 8.18 9.95 6.46 2.56 3.56 10.99 12.14 8.58 4.56

H 8.84 12.29 13.75 4.92 1.50 12.85 17.73 17.68 4.84 1.70

H-L 6.85 7.01 6.17 20.66 14.4 10.77

[t] 1.27 2.5 1.92 5.45 5.82 3.85
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Table 8: Asset Pricing Tests with Double Sorted Portfolios

This table reports annualized alphas of standard asset pricing factor models (CAPM and Fama-French

5 factors) across 3×3 value and equal weighted portfolios double sorted on capital age on one hand and

investment rate, market equity, and book-to-market ratio on the other. Panel A reports the CAPM risk-

adjusted returns. Panel B reports the FF5 risk-adjusted returns. Portfolios are rebalanced at a quarterly

frequency starting in October 1976 and ending in October 2016. Column ‘O’ reports the portfolio consisting

of firms with the oldest capital and Column ‘Y’ reports the portfolio consisting of firms with the youngest

capital. Column ‘OMY’ reports the return difference of Portfolio ‘O’ and Portfolio ‘Y’.

Vaue weighted Equal weighted

Age Age

Y M O OMY [t] Y M O OMY [t]

Panel A: CAPM

CAPM Alphas CAPM Alphas

Capital age and investment rate sorted portfolios

L -6.89 4.19 4.13 11.02 3.35 -4.68 6.76 8.22 12.9 4.11

M -1.28 1.06 3.18 4.46 1.63 -4.55 3.88 5.91 10.46 5.52

H -10.05 -1.18 0.15 10.2 3.21 -12.44 -0.5 0.89 13.33 6.53

H-L -3.16 -5.37 -3.98 -7.75 -7.27 -7.33

[t] -0.93 -2.73 -1.69 -2.97 -4.19 -4.15

Capital age and size sorted portfolios

L -11.05 3.08 7.92 18.97 6.01 0.2 11.25 14.24 14.04 4.11

M -9.57 1.78 3.86 13.44 6.6 -12.06 1.74 4.1 16.16 8.32

H -3.31 1.05 3.25 6.56 3.17 -4.65 1.45 2.6 7.25 3.76

H-L 7.74 -2.03 -4.68 -4.86 -9.8 -11.64

[t] 1.94 -0.58 -1.24 -1.16 -3.01 -3.08

Capital age and book-to-market sorted portfolios

L -9.66 -2.28 1.79 11.46 2.96 -18.12 -5.36 -0.27 17.84 6.17

M -5.2 1.36 4.28 9.48 4.27 -5.29 3.46 4.96 10.25 5.96

H -0.61 4.82 5.75 6.36 1.98 4.44 10.5 10.76 6.32 2.21

H-L 9.05 7.1 3.95 22.55 15.86 11.03

[t] 1.71 2.53 1.28 6.08 6.27 3.91

Panel B: FF5 5-factor model

Fama-French 5 Alphas Fama-French 5 Alphas

Capital age and investment rate sorted portfolios

L -7.01 1.5 -1.81 5.19 1.73 -1.93 4.01 3.61 5.54 2.01

M 1.54 -2.08 -0.57 -2.11 -0.86 -5.14 -0.2 0.84 5.98 3.46

H -5.28 -3.09 -3.34 1.94 0.78 -9.81 -2.61 -1.91 7.9 4.56

H-L 1.73 -4.59 -1.52 -7.88 -6.62 -5.52

[t] 0.57 -2.41 -0.63 -3.23 -4.56 -3.27

Capital age and size sorted portfolios

L -8.56 1.52 5.57 14.13 4.53 3.94 10.5 12.49 8.55 2.46

M -8.45 -2.66 -2.02 6.44 4.7 -10.99 -2.66 -1.35 9.64 6.77

H 0.29 -2.08 -0.34 -0.62 -0.38 -3.3 -2.36 -2.19 1.12 0.78

H-L 8.85 -3.59 -5.9 -7.24 -12.85 -14.68

[t] 2.92 -1.51 -2.05 -1.93 -5.08 -4.58

Capital age and book-to-market sorted portfolios

L -2.17 -3.6 -2.91 -0.74 -0.25 -13.56 -5.89 -3.91 9.65 4.55

M -5.15 -1.91 0.19 5.34 2.89 -5.14 -0.51 -0.19 4.95 3.36

H -1.7 -0.39 -0.25 1.45 0.47 4.07 6.25 5.69 1.62 0.56

H-L 0.47 3.21 2.66 17.64 12.13 9.6

[t] 0.11 1.68 1.16 6.07 6.25 4.32
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Table 9: Cross-Sectional Regressions

This table reports the results of Fama-MacBeth regressions of individual stock excess returns on their

lagged value and firms’ characteristics. The reported coefficient is the average slope from month-by-month

regressions and the corresponding t-statistic is the average slope divided by its time-series standard error.

The reported R-squared is the time-series average of the cross sectional R-squared. All the control variables

are divided by their unconditional standard deviation. The sample period is from October 1976 to December

2016.

[1] [2] [3] [4] [5] [6]

Lagged return -0.77 -0.78 -0.81 -0.78 -0.81 -0.84

[t] -10.16 -10.89 -10.75 -10.18 -10.77 -11.83

Capital age (log) 0.40 0.42 0.31 0.34 0.37 0.26

[t] 6.76 7.52 5.22 5.44 6.85 5.18

Size (log) -0.27 -0.25

[t] -3.10 -3.08

BM (log) 0.41 0.27

[t] 7.47 5.57

IK -0.20 -0.18

[t] -6.18 -6.57

ROE 0.24 0.33

[t] 3.93 6.91

Observations 483 483 483 483 483 483

R2 0.014 0.024 0.020 0.015 0.023 0.033
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Table 10: Capital age spread’s cyclicalities

This table reports the results of OLS regressions of the capital age spread on the contemporaneous values of

log change in the number of new technology standards (Frontier) and the log change in real GDP (GDP )

both in the model and in the data. The latter two variables are the residual from a regression of each source

of aggregate fluctuation on the market factor. The reported t–statistics are computed using the Newey-West

procedure adjusted for six lags. The sample period is from 1976q4 to 2014q4.

Model Data Model Data Model Data

[1] [2] [3] [4] [5] [6]

Frontier 0.50 0.06 0.50 0.06

[t] 17.09 2.06 17.28 1.97

GDP -0.12 0.00 -0.04 0.31

[t] -1.40 0.00 -0.88 0.24

Const 0.02 0.02 0.02 0.02 0.02 0.02

[t] 13.57 2.41 5.85 2.40 13.98 2.50

R2 0.81 0.02 0.02 0.00 0.81 0.01
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Table 11: Price of Risk of Technology Adoption Shock

This table presents the estimates from a two-step GMM of the parameters of the stochastic discount factor

Mt = 1− bM ×MKTt − bMACRO ×MACROt,

In Panel A and Panel B we use the 10 capital age-sorted portfolios as test portfolios. In Panel C we use

the 6 size and book-to-market Fama-French portfolios, the 17 Fama-French industry portfolios, and the 10

momentum portfolios as test portfolios. For both set of test assets, we report the rank restriction test W

(allowing for conditional heteroskedasticity) and its asymptotic p-value (p-val) of the null that E[xt(1, fit)]

has a column rank of one, where xt is the matrix of test assets and fit is a risk factor. In Panel A we report

the pricing error (αi) and the covariance (Covi) of each portfolio with the different macroeconomic shocks

implied by a two-factor model with MKT and one macroeconomic shock. In Panel B and Panel C we report

the first-stage results of a GMM estimation of a one-factor model using MKT , a two-factor using MKT and

the technology frontier shock proxy, and a three factor model using MKT , the technology frontier shock

proxy and one additional macroeconomic shock, respectively. For each model, we report the estimated risk

factor loadings, their corresponding t-statistics and the model’s mean absolute error. The reported t-statistics

are computed using the Newey-West procedure adjusted for four lags. All portfolios are value-weighted and

the sample period is from the third quarter in 1976 to the fourth quarter in 2014. The macroeconomic

shocks include the proxy for the aggregate frontier shock measured as the growth rate of the number of new

technology standards (Frontier), the log change in real GDP (GDP), the log change in utilization adjusted

total factor productivity (TFP), the log consumption-wealth ratio (cay), the Pastor and Stambaugh (2003)

aggregate liquidity shock (Liquidity), the log change in the BAA-AAA spread, the change in macroecomonic

uncertainty (Jurado, Ludvigson, and Ng (2013)), and a proxy for investment-specific technology shocks based

on the relative price of capital goods (IST, Papanikolaou (2011)).
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Table 11: Price of Risk of Technology Frontier Shock (cont.)

Panel A: Alphas and sensitivity to macroeconomics shock (capital age portfolios)

Portfolio Frontier GDP TFP cay Liquidity Credit Uncertainty IST

(1) (2) (3) (4) (5) (6) (7) (8)

1 αi -2.02 -8.61 -8.30 -4.80 -10.15 -10.51 -10.52 -10.05

[t] -1.14 -3.01 -2.38 -1.61 -4.51 -4.54 -4.29 -4.70

Covi -1.43 -0.00 -0.02 -0.07 0.08 -0.15 -0.07 -0.01

[t] -2.02 -0.10 -1.00 -2.55 0.32 -0.28 -0.85 -0.30

3 αi 0.73 -0.52 1.11 3.27 -1.53 -0.14 -0.56 0.82

[t] 0.22 -0.32 0.36 1.19 -1.00 -0.13 -0.32 0.75

Covi 0.16 -0.00 0.00 -0.04 0.04 -0.47 -0.17 -0.01

[t] 0.41 -0.55 -0.27 -1.69 0.30 -1.59 -1.97 -0.82

5 αi -3.11 0.66 -1.01 -2.53 -0.15 -0.36 0.53 -0.01

[t] -1.79 0.44 -0.52 -1.55 -0.17 -0.36 0.45 -0.01

Covi 0.45 0.00 -0.03 0.00 0.17 -0.07 -0.08 0.00

[t] 1.56 0.26 -0.37 -0.20 1.22 -0.53 -1.66 0.38

7 αi 1.18 3.88 -1.24 1.12 3.99 3.89 2.92 3.61

[t] 0.68 2.14 -0.78 0.58 3.38 2.97 2.41 2.60

Covi 0.21 0.00 0.00 0.02 -0.01 0.39 0.03 0.02

[t] 0.64 0.05 0.19 1.71 -0.09 2.51 0.61 1.12

10 αi 0.35 5.42 3.63 4.31 5.22 5.78 5.19 4.28

[t] 0.16 2.40 1.40 1.39 3.55 3.33 3.11 3.06

Covi 0.78 0.00 0.01 0.00 0.15 -0.52 -0.03 0.02

[t] 1.80 0.27 0.62 -0.08 1.18 -1.59 -0.76 0.73

OMY αi 2.37 14.03 11.94 9.11 15.37 16.29 15.71 14.33

[t] 1.03 3.01 2.37 1.84 4.53 4.36 4.28 4.71

Covi 2.22 0.00 0.03 0.07 0.06 -0.28 0.05 0.01

[t] 2.32 0.16 1.19 2.09 0.21 -0.48 0.46 0.46
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Table 11: Price of Risk of Technology Frontier Shock (cont.)

Panel B: GMM estimation with capital age sorted portfolios

MKT Frontier GDP TFP cay Liquidity Credit Uncertainty IST

(1) (2) (3) (4) (5) (6) (7) (8) (9)

bM 0.18 0.20 0.28 0.18 0.35 0.20 0.25 0.31 -0.01

[t] 2.16 1.22 1.04 1.13 2.05 0.52 1.33 1.66 -0.03

bF 1.87 1.83 1.63 1.25 1.87 1.85 1.81 1.75

[t] 2.79 2.44 2.63 2.15 2.79 2.81 2.88 2.76

bMACRO -0.73 -0.74 1.12 0.01 0.18 0.41 0.80

[t] -0.52 -1.07 1.79 0.01 0.37 0.83 1.41

MAE 3.44 1.80 1.71 1.72 1.44 1.8 1.84 1.68 1.75

Rank test for individual factors

W 94.64 17.18 13.52 8.63 19.93 33.23 38.10 31.22 16.00

p-val 0.00 0.05 0.52 0.47 0.02 0.00 0.00 0.00 0.07

Panel C: GMM estimation with a broader set of test assets

MKT Frontier GDP TFP cay Liquidity Credit Uncertainty IST

(1) (2) (3) (4) (5) (6) (7) (8) (9)

bM 0.23 0.22 0.26 0.21 0.32 0.44 0.36 0.38 0.17

[t] 2.72 2.08 2.11 1.71 2.36 1.64 2.80 2.96 1.45

bF 0.91 0.92 0.75 0.96 0.99 0.96 0.86 1.02

[t] 2.68 2.77 1.70 2.51 3.01 2.32 2.11 2.78

bMACRO -0.36 -0.85 0.87 -0.43 0.51 0.58 -0.02

[t] -0.88 -1.80 1.47 -0.81 1.52 1.39 -0.05

MAE 2.44 2.16 2.19 1.6 1.8 1.96 1.76 1.84 2.06

Rank test for individual factors

W 436.87 69.83 135.99 44.36 64.06 137.24 133.97 154.91 79.89

p-val 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00
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Figure 1: Policy functions
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This figure reports the optimal adoption policy, the expected capital age in quarters, the probability of

adoption next year, the annual stock risk premium of a firm, the annualized covariance between stock

returns and aggregate productivity shocks (in percentages), and the annualized covariance between stock

returns and the technology frontier shocks (in percentages) as functions of the detrended capital (k). We set

all shocks at their long run means.
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Figure 2: Aggregate productivity shock, aggregate technology frontier shock covariances,
and average portfolio adoption probability next year
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This figure reports the risk exposures (covariances) of the excess returns of the 10 capital age portfolios, with

respect to the aggregate productivity shock (TFP) in Panel A, and the aggregate technology frontier shock

in Panel B, using data simulated from the model. Panel C reports the average portfolio adoption probability

next year. The reported statistics for the model are obtained as averages from 100 samples of simulated

data, each with 5,000 firms and 120 quarterly observations.
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Internet Appendix for “The risks of old capital age: Asset pricing

implications of technology adoption ”

This appendix reports the tables of additional analysis and robustness checks for Lin,

Palazzo, and Yang (2017), “The risks of old capital age: Asset pricing implications of

technology adoption”.
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Table A1: Capital Age–Sorted Portfolios (Alternative Capital Age Measure)

Portfolios are sorted in deciles calculated using the alternative measure of capital age and are rebalanced

at a quarterly frequency starting in October 1976 and ending in December 2016. We report value weighted

results. Panel A reports the time series average of monthly excess returns across ten age–sorted portfolios

together with the corresponding t-statistics and Sharpe Ratio. Columm O-Y reports the difference between

the top and bottom portfolios. Panel B reports the risk-adjusted returns using the CAPM. For the CAPM

asset pricing model, we report the risk-adjusted return (alpha), the loading on the market factor, the adjusted

R2, and the mean absolute error. The reported returns are annualized versions of their monthly counterpart

and all t-statistics are calculated using the Newey-West autocorrelation and heteroskedasticity-consistent

standard errors with 6 lags.

Young 3 5 7 Old O-Y

Panel A: Portfolio returns and Sharpe ratios

E[Re] 1.60 5.53 7.02 9.13 10.08 8.47

t-stat 0.36 1.84 2.41 4.03 4.94 2.41

SR 0.06 0.26 0.39 0.49 0.74 0.43

Panel B: CAPM alphas

mae = 3.71

α -8.56 -2.49 -0.67 2.67 4.84 13.40

t-stat -3.65 -1.61 -0.55 2.29 3.89 4.50

MKT 1.40 1.11 1.06 0.89 0.72 -0.68

t-stat 24.79 36.57 35.09 25.16 17.96 -7.95

R2 0.71 0.78 0.84 0.79 0.67 0.28
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Table A2: Capital Double Sorted Portfolios (Alternative Capital Age Measure)

Portfolios are independently sorted in three capital age and three investment rate categories (Panel A) using

the 20th and 80th percentiles of the cross-sectional distribution of the corresponding sorting variable at the

end of each quarter 6 months prior to portfolio formation. Panel B reports the results for portfolios sorted

on capital age and size, while Panel C reports the results for portfolios sorted on capital age and book–yo–

market. The size categories are evaluated the month prior to portfolio formation. Portfolios are rebalanced

at a quarterly frequency starting in October 1976 and ending in October 2016. We report value weighted

results. Each panel reports the time series average of monthly excess returns and the risk–adjusted returns

across the nine portfolios together with the difference between the top and bottom capital age categories

(O-Y ) and difference between the top and bottom category of the other sorting variable. The reported

returns are annualized versions of their monthly counterpart and all t-statistics are calculated using the

Newey-West autocorrelation and heteroskedasticity-consistent standard errors with 6 lags.

Panel A: Capital Age and Investment Rate Sorted Portfolios

Young Medium Old O-Y t-stat Young Medium Old O-Y t-stat

Excess Returns CAPM α

Low IK 9.99 11.48 10.82 0.83 0.28 1.40 3.96 4.19 2.79 1.01

3 5.39 7.56 8.86 3.47 1.06 -4.10 0.79 3.45 7.55 2.71

High IK 1.40 6.21 8.58 7.18 2.15 -8.59 -1.80 1.19 9.78 3.14

H-L -8.59 -5.27 -2.24 -9.99 -5.75 -3.00

-2.75 -2.62 -0.83 -3.21 -2.84 -1.12

FF5 α HXZ α

Low IK -1.16 0.26 -0.82 0.34 0.13 1.54 0.73 -0.74 -2.29 -0.86

3 -0.70 -2.22 -0.59 0.10 0.05 0.09 -1.76 -0.43 -0.52 -0.21

High IK -3.69 -3.30 -1.19 2.49 0.93 -2.29 -2.20 -0.55 1.74 0.60

H-L -2.53 -3.56 -0.37 -3.83 -2.93 0.19

-0.99 -1.78 -0.14 -1.41 -1.46 0.07
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Panel B: Capital Age and Size Sorted Portfolios

Young Medium Old O-Y t-stat Young Medium Old O-Y t-stat

Excess Returns CAPM α

Small -0.51 9.52 13.26 13.77 4.56 -8.85 2.64 6.72 15.57 5.12

3 0.57 9.52 11.94 11.38 5.00 -9.42 1.31 4.69 14.11 7.11

Big 5.86 7.48 8.77 2.91 1.24 -2.66 0.84 3.52 6.18 3.17

BMS 6.37 -2.04 -4.49 6.19 -1.79 -3.20

1.56 -0.59 -1.14 1.52 -0.52 -0.84

FF5 α HXZ α

Small -6.66 1.10 4.62 11.28 3.72 -2.15 4.37 8.46 10.61 3.39

3 -8.42 -3.03 -1.08 7.34 5.55 -5.77 -1.31 0.00 5.77 3.59

Big 0.26 -2.09 -0.38 -0.64 -0.42 1.55 -1.84 -0.23 -1.78 -1.10

BMS 6.92 -3.18 -5.00 3.70 -6.20 -8.69

2.25 -1.34 -1.76 1.17 -2.76 -3.21

Panel C: Capital Age and Book-to–Market Sorted Portfolios

Young Medium Old O-Y t-stat Young Medium Old O-Y t-stat

Excess Returns CAPM α

Growth 2.77 4.58 8.16 5.39 1.23 -7.98 -2.97 2.31 10.29 2.71

4.16 8.26 9.78 5.63 2.32 -4.29 1.37 4.17 8.45 3.96

Value 9.24 13.28 14.69 5.45 1.54 -0.09 5.75 6.82 6.91 1.98

VMG 6.47 8.70 6.53 7.88 8.71 4.50

1.17 2.97 2.22 1.44 2.98 1.58

FF5 α HXZ α

Growth -0.37 -4.62 -2.27 -0.64 -1.95 2.63 -0.35 3.38 0.75 0.21

-5.09 -1.79 0.17 5.25 2.82 -5.79 0.23 4.74 10.54 5.67

Value -2.58 0.17 1.63 4.21 1.27 -8.24 7.19 6.20 14.44 4.33

VMG -2.21 4.79 3.90 -10.87 7.54 2.83

-0.51 2.44 1.80 -2.30 3.14 1.12
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Table A3: Capital Age Sorted Portfolios and Tests of the Hou-Xue-Zhang factor model

This table reports average annualized excess return and test results using the Hou-Xue-Zhang factor model

across ten value and equal weighted age-sorted portfolios in the data. Portfolios are rebalanced at a quarterly

frequency starting in October 1976 and ending in October 2016. Column ‘O’ reports the portfolio consisting

of firms with the oldest capital and Column ‘Y’ reports the portfolio consisting of firms with the youngest

capital. Column ‘OMY’ reports the return difference of Portfolio ‘O’ and Portfolio ‘Y’.

Value weighted Equal weighted

Y 3 5 7 O OMY Y 3 5 7 O OMY

HXZ test: MAE=1.61 HXZ test: MAE=2.57

Alpha -4.68 -1.20 -3.61 -0.92 0.73 5.41 -4.60 1.45 1.97 2.20 2.71 7.31

[t] -1.80 -0.76 -3.02 -0.67 0.68 2.11 -1.22 0.68 1.12 1.36 1.46 2.61

MKT 1.31 1.02 1.03 0.96 0.86 -0.45 1.09 1.01 0.98 0.98 0.95 -0.14

[t] 23.54 30.76 34.20 36.14 35.97 -7.64 17.37 22.10 24.27 25.52 19.26 -2.58

ME 0.35 0.24 0.03 -0.05 -0.08 -0.42 0.72 0.76 0.71 0.62 0.64 -0.08

[t] 3.01 3.42 0.57 -0.85 -1.20 -4.03 4.71 6.49 6.38 5.62 5.45 -1.13

IA -0.91 -0.26 0.11 0.24 0.63 1.54 -0.50 0.13 0.29 0.47 0.55 1.05

[t] -6.32 -2.99 1.67 3.40 8.08 9.43 -1.82 1.01 2.37 4.02 4.30 4.80

ROE -0.26 0.06 0.20 0.31 0.02 0.29 -0.82 -035 -0.21 -0.17 -0.20 0.62

[t] -2.59 0.98 3.65 6.10 0.40 2.35 -4.07 -3.60 -2.38 -1.87 -1.89 3.56

R2 0.81 0.81 0.82 0.82 0.75 0.58 0.77 0.85 0.87 0.87 0.84 0.42
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Table A4: Asset Pricing Tests with Double Sort Portfolios

This table reports annualized alphas produced using the Hou-Xue-Zhang factor model across 3×3 value and

equal weighted portfolios double sorted on capital age on one hand and investment rate, market equity, and

book-to-market ratio on the other. Portfolios are rebalanced at a quarterly frequency starting in October

1976 and ending in October 2016. Column‘O’ reports the portfolio consisting of firms with the oldest capital

and Column ‘Y’ reports the portfolio consisting of firms with the youngest capital. Column ‘OMY’ reports

the return difference of Portfolio ‘O’ and Portfolio ‘Y’.

Vaue weighted Equal weighted

Age Age

Y M O OMY [t] Y M O OMY [t]

Capital age and investment rate sorted portfolios

L -3.61 1.75 -1.4 2.21 0.73 3.67 7.3 5.74 2.07 0.72

M 2.34 -1.64 -0.4 -2.74 -1.1 -1.67 1.65 2.36 4.03 2.22

H -3.71 -2.11 -2.09 1.62 0.58 -6.25 -0.72 -0.07 6.18 3.25

H-L -0.1 -3.86 -0.69 -9.92 -8.02 -5.81

[t] -0.03 -1.98 -0.29 -4.03 -5.71 -3.49

Capital age and size sorted portfolios

L -4.19 4.99 8.93 13.12 4.04 9.34 14.39 15.65 6.31 1.77

M -5.89 -0.95 -0.9 4.98 3.04 -7.44 -0.52 0.21 7.65 4.74

H 1.42 -1.74 -0.26 -1.68 -0.96 -2.38 -1.49 -1.57 0.8 0.5

H-L 5.61 -6.72 -9.18 -11.72 -15.88 -17.22

[t] 1.8 -3 -3.34 -3.1 -6.36 -5.52

Capital age and book-to-market sorted portfolios

L 0.61 0.56 1.97 1.36 0.37 -15.83 -1.88 1.28 17.11 6.37

M -6.81 0.36 4.82 11.63 6.22 -5.28 1.98 4.36 9.64 6.27

H -6.36 5.26 4.1 10.47 3.38 1.51 11.06 11.28 9.77 3.41

H-L -6.97 4.7 2.13 17.34 12.94 10.00

[t] -1.47 1.97 0.81 5.34 5.97 4.00
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Table A5: Pooled Cross-Sectional Regressions

This table reports the results of cross sectional regressions of individual stock excess returns on their lagged

value and firms’ characteristics using pooled OLS regressions with time fixed effects and standard errors

clustered at the time level. All the control variables are divided by their unconditional standard deviation.

The sample period is from October 1976 to December 2016.

[1] [2] [3] [4] [5] [6]

Lagged return -0.90 -0.78 -0.93 -0.90 -0.90 -0.79

[t] -12.20 -10.94 -12.59 -12.22 -12.20 -11.21

Capital age (log) 0.64 0.21 0.48 0.57 0.64 0.17

[t] 12.06 3.70 9.23 10.72 12.29 3.05

Size (log) -3.50 -3.45

[t] -19.25 -18.37

BM (log) 0.99 0.21

[t] 15.48 3.49

IK -0.13 -0.04

[t] -5.43 -2.00

ROE 0.02 0.28

[t] 0.44 8.94

Observations 941,150 941,150 941,150 941,150 941,150 941,150

R2 0.146 0.151 0.148 0.146 0.146 0.152

Firm Fixed Effect Yes Yes Yes Yes Yes Yes

Time Fixed Effect Yes Yes Yes Yes Yes Yes
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