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I would like to congratulate Serhiyenko, Ravishanker and Venkatesan (henceforth,
SRV) for proposing a novel modeling strategy for multivariate count series that arises
in marketing of pharmaceuticals. I also would like to thank the editors for giving me
the opportunity to discuss this interesting paper.

With increasing volume of Web-based data, modeling and analysis of discrete
valued time series have gained more attention; see for example, the volume by Davis,
Holan, Lund and Ravishanker (2015) for recent advances. Analysis of discrete-valued
series poses modeling difficulties and computational challenges. As a result, limited
attention has been given to multivariate discrete valued time series in the literature.
The framework of observation driven and parameter driven models of Cox (1981) is
still applicable for temporal correlation but one also needs to describe dependence of
components of the vector time-series. Some of the recent observation driven models
for multivariate counts include multivariate integer valued autoregressive (INAR)
models of Pedeli and Karlis (2011) and the multivariate Poisson series of Ravishanker,
Serhiyenko, and Willig (2014) who considered a multivariate Poisson observation
model with a hierarchical dynamic setup. Computation of the multivariate Poisson
likelihood requires a significant computational effort in Ravishanker et al. (2014) and
also the model is highly parameterized as a result of sharing common terms. An
alternative approach is to use parameter driven models as considered by Aktekin,
Polson and Soyer (2017). This model is a generalization of the univariate Poisson
dynamic time series considered by Aktekin and Soyer (2011) and Aktekin, Soyer
and Xu (2013). Concept of common random environment is used to incorporate
dependence among multivariate components of the series. Although, the multivariate
models proposed by Aktekin et al. (2017) provide analytical forms for conditional
distributions which allow them to use particle filtering methods, they are limited to
positively correlated series.

An important contribution of the SRV paper is that the proposed ”level corre-



lated” models provide a more flexible correlation structure for components of the
vector of counts. The ability to capture both positive and negative correlations of the
components of the series is an attractive feature of these models. The proposed set
up is nicely motivated by the particular application considered by the authors. More
specifically, SRV considers J—variate (different drugs) vector of counts collected on
n subjects (doctors) over T time periods. The level correlated model (LCM) is given
by
sz’t|)\jit ~ POiS()\jit)

forj=1,....J,i=1,...,n,t =1,...,T with link equation
log(Njir) = vji + Bjio + 25itBji + it

where the J dimensional random effect term vector a;; ~ N(0,3;) induces the cor-
relation structure for components of the count vector Y;;. Furthermore, the state
equation for each component is given by

Vit = Vjt—1 T Wit

where w;; ~ N(0,1/W;). This Markovian structure introduces the temporal correla-
tions in the model.

The authors develop a Bayesian inference for the model via the integrated Laplace
approximation (INLA). They point out that for large n INLA is more efficient than
MCMC methods. The proposed estimation procedure seems to be quite efficient for
low values of J. Although the application involves J = 3, it is important to comment
on performance of INLA for large dimensions. Especially, evaluation of posterior
modes in implementing INLA may pose challenges as J increases.

In certain applications, one may be interested in real time updating of the pa-
rameters as new observations become available. I wonder if INLA is efficient for such
sequential updating for moderate dimensions. This is especially important when one
includes more dynamic parameters such as the fixed effect terms in the model.

SRV point out that the observation equation can be generalized for any other
univariate distribution of counts (UDC)

Yit|®ji ~ UDC(© i)

where ©,;; is the vector parameters associated with the specific UDC. As discussed
in the paper, the cases of negative binomial and zero-inflated Poisson are straightfor-
ward, but there is also referral to Conway-Maxwell (COM) Poisson distribution where
computation of the individual likelihoods may become cumbersome as J increases. |
would like to invite authors to comment on how plausible this extension is and any
experience they may have with this type of models. Also, I would like to draw the
attention of the authors to potential use of conjugate priors, considered by Kadane
et al. (2006), for developing COM Poisson LCMs.
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