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Abstract

We consider the fundamental problem of hypothesis testing extended by including
the decisions of an adversary which aims at distorting the relevant data process
observed so as to confound the decision maker, thus attaining a certain benefit.
We provide an adversarial risk analysis approach to this problem and illustrate its
usage in a batch acceptance context.
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1 Introduction

Hypothesis testing is one of the fundamental problems in statistical inference, see French
and Ŕıos Insua (2000). Though subject to debate, Berger and Sellke (1987) or Berger
(2003), it has been thoroughly studied from a decision theoretical perspective, both from
the frequentist and Bayesian points of view, following the seminal work of Wald (1950).

In recent years, there has been an increasing interest in issues related with hypothesis
testing problems in which hostile adversaries perturb the data observed by a decision
maker as a way to confound her about the relevant hypothesis so as to attain some
objectives. Examples come from the fields of adversarial signal processing, see Barni
and Pérez-González (2013) for an introduction; adversarial classification, see the pioneer
work in Dalvi et al. (2004); and adversarial machine learning, see e.g. Tygar (2011).
These cover applications like online fraud detection, watermarking or spam detection,
among many others.

Most attempts in this area have focused on game theoretic approaches to hypothesis
testing, with the entailed common knowledge assumptions. These normally involve
assuming that adversaries not only know their own payoffs, preferences, beliefs and
possible actions, but also those of their opponents. For example, Barni and Tondi
(2014) provide a framework focusing on zero-sum game theoretic minimax approaches
to hypothesis testing. This is not satisfactory since losses for various participants will
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be typically asymmetric, and, moreover, the beliefs and preferences of the adversary will
not be readily available, frequently violating the above mentioned common knowledge
assumptions, see Hargreaves-Heap and Varoufakis (1995). Thus, key assumptions of the
customarily proposed solution approaches would not hold.

In this paper, using concepts from Adversarial Risk Analysis (ARA), see Ŕıos Insua
et al. (2009), we provide an alternative novel approach to the Adversarial Hypothesis
Testing (AHT) problem. We consider an agent, called the defender (D, she), who needs
to assess which of several hypotheses holds, based on observations from a source that
might have been perturbed by another agent, which we designate attacker (A, he). We
study the AHT problem from the defender’s perspective. In doing this, the defender
formulates a Bayesian decision making problem but requires to forecast the attacker’s
decision. We make such forecast by simulating from the attacker’s problem, taking into
account our uncertainty over the attacker’s beliefs and preferences.

We begin by introducing what we term the Adversarial Statistical Decision Theory
(ASDT) problem in Section 2, extending the standard Statistical Decision Theory (SDT)
formulation to consider an adversarial variation in which the attacker tries to modify the
dataflow observed by the defender to confound her and, consequently, attain a profit. In
Section 3, we pose the AHT problem formally and provide a conceptual solution focusing
on binary point hypothesis testing, as well as illustrating it with a simple numerical
example and presenting a game theoretic perspective for comparison purposes. Section
4 describes in depth an application in relation with batch acceptance. We conclude with
a discussion of several potential applications and other open issues.

2 Adversarial Statistical Decision Theory

As a motivation, we include first a brief discussion of the standard Bayesian SDT frame-
work. As illustrated in the Influence Diagram (ID) in Figure 1, we consider a decision
maker D who needs to make a decision d based on an observation x which depends on
a state θ taking values in a set Θ. She obtains a loss lD(d, θ) which depends on the
decision she makes and the state actually occurring.

Θ

lDD

X

Figure 1: Sketch of the general SDT problem.

To solve her decision making problem, she could describe her prior beliefs over state θ
through the prior pD(θ) and the dependence of data x on the state θ through the likeli-
hood pD(x | θ). Given such elements, she would seek the decision d∗(x) that minimizes
her expected loss, given x, which is

d∗(x) = arg min
d

∫
lD(d, θ) pD(θ |x) dθ.
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Note that, for optimization purposes, we may ignore the denominator in Bayes formula
and solve the equivalent problem

d∗(x) = arg min
d

∫
lD(d, θ) pD(x | θ) pD(θ) dθ.

This general framework covers most standard statistical problems including point
estimation, set estimation, hypothesis testing, forecasting and decision analysis. All of
the above is reviewed in detail in e.g. French and Ŕıos Insua (2000).

2.1 ASDT: A data manipulating opponent

There are several possible variants of the SDT framework which take into account the
presence of an intelligent adversary. Of them, we shall consider the case in which an
opponent A is able to modify the data observed by the decision maker D in an attempt
to confound her and, consequently, acquire some advantage.

The problem is depicted in Figure 2 through a Bi-Agent Influence Diagram (BAID),
see Koller and Milch (2003), which represents the decisions of both agents, D and A.
White nodes correspond to D; grey nodes, to A; and striped nodes are shared by both
agents. Square nodes refer to decisions, circle nodes to uncertainties and, finally, hexag-
onal nodes to losses. Arrows represent conditional relations, except for dashed arrows
which depict the available information at decision nodes. Depending on the uncertain
true state θ ∈ Θ some original data x is derived, which gets perturbed to y by the at-
tacker’s action a. Then, y is observed by the defender, who makes her decision without
knowing either x or θ.

Θ

lD lAD A

X

Y

Figure 2: BAID for the data manipulation problem.

As an example, a security agent D may be screening incoming emails. She does not know
θ, an indicator of potential security issues associated with the mail. Her observation
could be based on the length of the email, the types of attachments, the presence of
certain words, the sending address, etc. A data manipulating opponent might perturb
that data through subterfuge, e.g. adding or deleting certain words, using an apparently
legal sending address and so on.
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In this framework, A makes his decision a first, then D makes her decision after
observing the manipulated data, and, finally, both agents receive their losses. In general,
we assume that the attacker must allow for some loss corresponding to the resources or
effort spent in manipulating the data. This is reflected by the dependence of his loss on
the action he implements. For example, it costs money to purchase an IP, some time
to appropriately craft the email and it is a crime to forge an email, and all constitute
a real or potential loss. Opportunity costs may all also be taken into account through
this dependence.

The problem the defender needs to solve is described in the ID in Figure 3a. Since
she does not know her opponent’s decision, his decision node (the circled A) appears as
random to her. In a standard decision theoretic approach, D would solve

d∗(y) = arg min
d

∫
lD(d, θ) pD(θ | y) dθ.

We know that

pD(θ | y) =
pD(θ, y)

pD(y)
=

∫∫
pD(y |x, a) pD(x | θ) pD(θ) pD(a) dx da

pD(y)
,

so her optimal decision is obtained by solving the equivalent problem

d∗(y) = arg min
d

∫∫∫
lD(d, θ) pD(y |x, a) pD(x | θ) pD(θ) pD(a) dx dθ da. (1)

Of all the assessments required to evaluate the ID, lD(d, θ), pD(y |x, a), pD(x | θ) and
pD(θ) are standard in Bayesian SDT. The only distinctive one is pD(a) (D’s forecast
over the action a) as it entails strategic thinking.

Θ

lDD A

X

Y

(a) D’s decision analysis

Θ

lAD A

X

Y

(b) A’s decision analysis

Figure 3: Both agents’ IDs for the data manipulation model.

The ARA approach to ASDT determines pD(a) by focusing on the problem that the
attacker solves, represented in Figure 3b. This analysis assumes that he wants to min-
imize his expected loss. Also note that, unlike the defender, the attacker’s actions are
specified before observing the data. For his decision theoretic solution, A solves

a∗ = arg min
a

∫∫∫
lA(d, a, θ) pA(d | y) pA(y |x, a) pA(x | θ) pA(θ) dy dx dθ.
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However, D lacks knowledge about the probabilities and loss function used by A.
Suppose she models her uncertainty about them through random probabilities and losses
F ∼

(
LA(d, a, θ), PA(d | y), PA(y |x, a), PA(x | θ), PA(θ)

)
. Then, she would solve

A∗ = arg min
a

∫∫∫
LA(d, a, θ)PA(d | y)PA(y |x, a)PA(x | θ)PA(θ) dy dx dθ,

to find the optimal random decision A∗, whose distribution is induced by the above ran-
dom probabilities and loss function in F . Thus, the defender has found the distribution
pD(a) = P (A∗ = a) that she needs to calculate her best decision d∗(y). That distribution
properly incorporates all of her uncertainty about the attacker’s situation.

In general, to approximate pD(a), one will typically use simulation, by drawing K
samples

(
LkA(d, a, θ), P k

A(d | y), P k
A(y |x, a), P k

A(x | θ), P k
A(θ)

)
, k = 1, . . . , K from F , find-

ing

A∗k = arg min
a

∫∫∫
LkA(d, a, θ)P k

A(d | y)P k
A(y |x, a)P k

A(x | θ)P k
A(θ) dy dx dθ,

and approximating
p̂D(A ≤ a) ≈ #{A∗k ≤ a}/K.

Within F , four of the elements are relatively easy to model, see Banks et al. (2015):

• PA(θ) could be based on pD(θ), with some uncertainty about it. For example,
should pD(θ) be a discrete distribution, PA(θ) could be modeled as a Dirichlet
distribution with mean pD(θ). Similarly, should pD(θ) be a continuous distribution,
PA(θ) could be modeled as a Dirichlet process with base measure pD(θ).

• This would also be the case for PA(y |x, a) which could be based on pD(y |x, a),
with some uncertainty around it.

• Analogously, PA(x | θ) could be based on pD(x | θ), with additional uncertainty
about it (although in many cases it will be reasonable to assume that they actually
coincide).

• For LA(d, a, θ), one could typically reflect upon the adversary’s interests, formulate
a parametric form for the loss function, and assess a subjective distribution over
its parameters.

On the other hand, PA(d | y) is not easy to assess. It entails strategic thinking since the
defender needs to understand her opponent’s beliefs about what decision she will make
given that she observes y. This could be the beginning of a hierarchy of decision making
problems; see Ŕıos and Ŕıos Insua (2012) for a description of the potentially infinite
regress in a simpler class of problems. We illustrate here just the next stage of the hier-
archy for our case. Note that in expression (1) to be solved by D, the adversary A does
not know the terms in the integral. By assuming uncertainty over them through random
distributions PA

D (y |x, a), PA
D (x | θ), PA

D (θ) and PA
D (a) and a random loss LAD(d, θ), he

would get the corresponding random optimal decision by replacing the corresponding
elements. Again, this requires assessment of PA

D (a) (what the defender believes that the
attacker thinks about her beliefs concerning his action to be implemented) for which
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there is a strategic component, leading to the next stage in the hierarchy. Within the
pertinent iteration in the loop, one could stop at a level in which no more information
is reasonably available. At that stage, one could use a non-informative prior over the
involved probabilities and losses.

We adapt now this ASDT framework to the hypothesis testing context.

3 Adversarial Hypothesis Testing

We shall focus on the problem of testing two simple hypotheses described by Θ = {θ0, θ1}.
As an example, suppose the defender needs to decide whether a batch of e-mails includes
spam or not. She has beliefs about the standard flow of legit and spam messages. The
attacker perturbs such flow by adding, deleting or modifying some of the messages, in
an attempt to confound the defender and obtain some benefit. Both agents get different
rewards depending on whether the batch is accepted or not by the defender and the
batch includes just legit messages or not.

The backbone structure of the AHT problem coincides with that in Figure 2. De-
pending on the uncertain hypothesis θ ∈ Θ, there will be an observation data flow x
which gets perturbed to y by the attacker’s action a. The perturbed data flow y is
observed by the defender, who needs to decide which is the relevant hypothesis. She
makes such decision d without observing neither x nor θ. Depending on d, and the actual
hypothesis θ, both agents receive the corresponding losses. Besides, we assume that the
attacker spends some effort in performing the attack, as reflected by the dependence of
his loss on the attack he implements. Our aim is to support the defender in deciding
which is the appropriate hypothesis.

3.1 Solving the defender’s problem

The problem the defender needs to solve was described in Figure 3a. Now, her decision
space is D = {d0, d1}, with dj representing her support for θj, j = 0, 1. Following
a standard Bayesian decision theoretic approach, assume that we may elicit from the
defender the following judgements:

D1. At node Θ, pD(θ) models her beliefs about the various hypotheses. We designate
such beliefs

pD(θ = θi) = πiD, i = 0, 1,

with πiD ≥ 0 and π0
D + π1

D = 1.

D2. At node X, pD(x | θ) represents her beliefs about how data would depend on the
hypothesis, described by

X | θi ∼ pD(x | θi), i = 0, 1.

D3. At node Y , pD(y |x, a) models her beliefs about how data will be perturbed: it
reflects her notion about what would the observed y be, if x is the actual data and
a is the attacker’s selected action.
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D4. At node A, pD(a) represents her beliefs about which attack a would be undertaken
by the attacker.

D5. At node lD, lD(d, θ) models the defender’s loss function. We use a standard 0-1-cD
loss as in Table 1, where 0 is the best loss (associated with a system functioning
as expected), and 1 is the worst loss (associated with a non-functioning system).
We assume that cD ≤ 1.

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 0 1

d1 cD 0

Table 1: Defender’s loss function.

The defender would then solve

arg min
d∈D

1∑
i=0

lD(d, θi) pD(θi | y).

After simple computations, it follows that the optimal decision for the defender would
be to support θ0 if

pD(θ1 | y) ≤ cD pD(θ0 | y).

We have that

pD(θi | y) =
pD(θi, y)

pD(y)
=
πiD
∫∫

pD(y |x, a) pD(x | θi) pD(a) dx da

pD(y)
, i = 0, 1.

Therefore, the optimal decision for the defender is to support θ0 if

π1
D

∫∫
pD(y |x, a) pD(x | θ1) pD(a) dx da

≤

cD π
0
D

∫∫
pD(y |x, a) pD(x | θ0) pD(a) dx da.

(2)

Among the required assessments D1–D5, as in Section 2.1, the only non-standard
one is D4 referring to pD(a) – the defender’s forecast over the attacks a – as it entails
strategic thinking. We facilitate its estimation by considering the problem that the
attacker should solve.

3.2 Modeling the attacker’s problem

Figure 3b provided the influence diagram of the attacker’s decision making problem,
assuming that he aims at minimising expected loss. For its decision theoretic solution,
being the attacker’s decision space A, the attacker would need:
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A1. At node Θ, pA(θ) models his beliefs about the likelihood of the hypotheses, which
we designate

pA(θ = θi) = πiA, i = 0, 1,

with πiA ≥ 0 and π0
A + π1

A = 1.

A2. At node X, pA(x | θi) reflects his beliefs about the dataflow, for each hypothesis
θi, i = 0, 1.

A3. At node Y , pA(y |x, a) represents his beliefs about what would the effect of his
actions be in transforming the data.

A4. At node D, pA(d | y) reflects his beliefs about the defender’s decision d provided
that she observes y.

A5. At node lA, lA(d, a, θ) models the attacker’s loss function, with form as in Table
2. Typically, it will be l00(a) ≥ l01(a) and l10(a) ≤ l11(a), since it is better for the
attacker when the defender makes mistakes.

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 l00(a) l01(a)

d1 l10(a) l11(a)

Table 2: Attacker’s loss function, given attack a.

An important case is described in Table 3, where 0 ≤ c0A ≤ c1A ≤ 1 to reflect that
the best loss for the attacker (0) is attained when the defender supports θ0, and
she should not, while the worst (1) holds when the defender supports θ0, and she
should. The intermediate cases reflect that it is worse for the attacker that the
defender supports θ1 when the actual hypothesis is θ1 (taking into account the
attacker’s costs and the induction of a feeling of insecurity) than when it is θ0 (no
costs for the attacker and sense of security).

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 1 0

d1 c0A c1A

Table 3: Attacker’s loss function.

8



Should the above assessments be available, the optimal decision a∗ for him would be

a∗ = arg min
a∈A

1∑
j=0

1∑
i=0

∫∫
lA(dj, a, θi) pA(dj | y) pA(θi) pA(y |x, a) pA(x | θi) dy dx.

However, the defender lacks knowledge about assessments A1–A5 for the attacker.
As in Section 2.1, suppose we are capable of modeling her uncertainty through random
probabilities PA and losses LA and finding the optimal random attack

A∗ = arg min
a∈A

1∑
j=0

1∑
i=0

∫∫
LA(dj, a, θi)PA(dj | y)PA(θi)PA(y |x, a)PA(x | θi) dy dx. (3)

Then, we have the required distribution through

pD(a) = P (A∗ = a),

assuming that A is discrete, and, similarly, if it is continuous.

3.3 AHT: A numerical example

We illustrate the previous ideas with a numerical example in which the defender mon-
itors continuous positive observations perturbed by an attacker. The two entertained
hypotheses are θ0 = 2 and θ1 = 1. We display the elements introduced in Section 3 for
the defender’s problem:

D1. As for the priors over the hypotheses, we assume that both are equally likely a
priori, so that π0

D = π1
D = 1/2.

D2. The defender receives data X | θi exponentially distributed E(θi), with uncertainty
about the parameter θi.

D3. The attacker can modify the data according to a strategy which allows for keeping,
doubling or halving x. We call such actions a0, a1 and a-1, respectively. Thus,
if x is the actual value, the defender will observe y = x if the attacker chooses
a0, whereas y = 2x and y = x/2 will be the observed values if the attacker
chooses a1 and a-1, respectively. Then, the distributions pD(y |x, a) are Dirac
measures correspondingly assigning probability 1 to (y = x, a0), (y = 2x, a1) and
(y = x/2, a-1).

D4. As an illustration, we start considering the case in which the defender knows the
probabilities pD(a) with which the attacker chooses among his actions. Suppose,
for the moment, that pD(a0) = 1/2, pD(a1) = 1/6 and pD(a-1) = 1/3.

D5. We consider the loss function in Table 1, with cD = 3/4.

Recall condition (2), leading the defender to adopt decision d0 (accept θ0). In this case,
using D2, D3 and D5, such condition becomes

π1
D

[
θ1 e

−θ1 y pD(a0) + θ1 e
−θ1

y
2 pD(a1) + θ1 e

−θ1 2y pD(a-1)
]

≤

3
4
π0
D

[
θ0 e

−θ0 y pD(a0) + θ0 e
−θ0

y
2 pD(a1) + θ0 e

−θ0 2y pD(a-1)
]
.
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Plugging in the values of θ0 and θ1 and the probabilities in D1, we get

1
2

[
pD(a0) e

−y + pD(a1) e
−y
2 + pD(a-1) e

−2y
]

≤
3
8

[2pD(a0) e
−2y + 2pD(a1) e

−y + 2pD(a-1) e
−4y] .

(4)

Finally, we incorporate the values in D4, so that

1

2

[
1

2
e−y +

1

6
e−

y
2 +

1

3
e−2y

]
≤ 3

8

[
e−2y +

1

3
e−y +

2

3
e−4y

]
,

which gets simplified to checking the inequality

2e−
y
2 + 3e−y − 5e−2y − 6e−4y ≤ 0.

We can show that decision d0 should be made when a value y . 0.37 is observed. How-
ever, note that a slight change of the parameters might produce a completely different
result. For example, with π0

D = 1/3 (and π1
D = 2/3), and all other probabilities and

costs as above, d1 is optimal regardless of the observed y.
Consider now the case in which the defender does not accurately know pD(a) (D4).

We resort to an ARA. Suppose the following assessments are made:

A1. The defender assumes PA(θ1) is drawn uniformly over the interval [1/4, 3/4] (and
PA(θ0) = 1− PA(θ1)).

A2. We model the defender’s knowledge of PA(x | θ), where θ ∈ {θ0, θ1}, as a Gamma
distribution Ga(α, β) with mean θ = α/β and variance σ2 = α/β2 uniformly chosen
over the interval [1/2, 2]. This variance randomness induces that of PA(x | θ).

A3. PA(y |x, a) will be Dirac distributions, coinciding with pD(y |x, a).

A4. We build PA(d | y) based on the likelihood h(y | d, a) of y under different choices of
d and a, mixing them through a random allocation of probabilities to each action.
Suppose the attacker assumes the defender is modeling the data with an exponen-
tial distribution, with the defender assessing the probabilities (ε0, ε1, ε-1) assigned
by the attacker to each strategy through a Dirichlet distribution Dir(1, 1, 1). Then,
PA(d = d1 | y) has the form

g(ε0, ε1, ε-1, y) =

∑1
j=-1 εj h(y | d1, aj)∑1

j=-1 εj h(y | d0, aj) +
∑1

j=-1 εj h(y | d1, aj)

=
ε0 e
−y + ε1 e

−y
2 + ε-1 e

−2y

2 (ε0 e−2y + ε1 e−y + ε-1 e−4y) + ε0 e−y + ε1 e
−y
2 + ε-1 e−2y

.

The distribution of (ε0, ε1, ε-1) induces the randomness of PA(d = d1 | y). Finally,
PA(d = d0 | y) = 1− PA(d = d1 | y).

A5. The random loss function LA(d, a, θ) is based on Table 3, where C0
A is degenerated

at 0 and C1
A is uniformly distributed over [1/2, 1].
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Taking into account assessments A3 and A5 and expression (3), the attacker’s random
expected losses for the three actions will be:

ΨA(a0) =

∫ [
PA(d0 | y = x)PA(θ0)PA(x | θ0) + C1

A PA(d1 | y = x)PA(θ1)PA(x | θ1)
]

dx

ΨA(a1) =

∫ [
PA(d0 | y = 2x)PA(θ0)PA(x | θ0) + C1

A PA(d1 | y = 2x)PA(θ1)PA(x | θ1)
]

dx

ΨA(a-1) =

∫ [
PA(d0 | y = x

2
)PA(θ0)PA(x | θ0) + C1

A PA(d1 | y = x
2
)PA(θ1)PA(x | θ1)

]
dx

The random models in A1, A2, A4 and A5 induce the randomness in these expected
losses. We estimate the attack probabilities as follows:

Algorithm 1 AHT: Numerical example - Simulating the attacker’s problem.

Data: Considered hypotheses θ0 and θ1; number of iterations K.

1: Set pj = 0, j = -1, 0, 1.

2: For k = 1 to K

3: Generate π1,k
A ∼ U(1/4, 3/4). Compute π0,k

A = 1− π1,k
A .

4: Generate σ2
i,k ∼ U(1/2, 2). Compute αki = θ2i /σ

2
i,k; β

k
i = θi/σ

2
i,k, i = 0, 1.

5: Generate (εk0, ε
k
1, ε

k
-1) ∼ Dir(1, 1, 1) and C1,k

A ∼ U(1/2, 1).

6: ψkA(a0) = π0,k
A

∫
(1− g(εk0, ε

k
1, ε

k
-1, x)) f(x |αk0, βk0 ) dx

+ C1,k
A π1,k

A

∫
g(εk0, ε

k
1, ε

k
-1, x) f(x |αk1, βk1 ) dx.

7: ψkA(a1) = π0,k
A

∫
(1− g(εk0, ε

k
1, ε

k
-1, 2x)) f(x |αk0, βk0 ) dx

+ C1,k
A π1,k

A

∫
g(εk0, ε

k
1, ε

k
-1, 2x) f(x |αk1, βk1 ) dx.

8: ψkA(a-1) = π0,k
A

∫
(1− g(εk0, ε

k
1, ε

k
-1, x/2)) f(x |αk0, βk0 ) dx

+ C1,k
A π1,k

A

∫
g(εk0, ε

k
1, ε

k
-1, x/2) f(x |αk1, βk1 ) dx.

9: Find j∗ = arg min
j∈{-1,0,1}

ψkA(aj).

10: Set pj∗ = pj∗ + 1.

11: End For

12: Set p̂D(aj) = pj/K, j = -1, 0, 1.

An application of the previous scheme with K = 105 leads to estimates p̂D(a0) ≈ 0.04,
p̂D(a1) ≈ 0.85 and p̂D(a-1) ≈ 0.11. Plugging such values in (4), the optimal decision is
d0 when a value y . 0.74 is observed, which differs from the Bayesian solution obtained
earlier.

11



3.4 A game theoretic perspective

In order to provide a broader understanding of the benefits of the ARA approach to the
AHT problem, we present here an alternative game theoretic perspective to it.

First, recall the standard SDT framework illustrated in Figure 1. The ARA approach
required the decision maker to model her prior beliefs pD(θ) and pD(x | θ). However, in
the absence of such priors, she could apply a game theoretic approach by means of the
minimax model

d∗ = arg min
d

max
θ
lD(d, θ).

Unfortunately, this worst case scenario approach would neglect all information that could
be derived from observing data x.

Now, consider the AHT problem posed in Sections 3.1 and 3.2. To avoid ignoring
data y, we assume that priors for pD(θ), pD(x | θ), pD(y |x, a) and pA(θ) are available.
Using a game theoretic approach, we redefine both agent’s loss functions in terms of
their combined decisions. That is, if the defender’s decision is d and the attacker’s is a,
the defender’s (equivalent) loss function is defined as

ΨD(d, a, y) =
1∑
i=0

πiD

∫
lD(d, θi) pD(y |x, a) pD(x | θi) dx;

and the attacker’s as

ΨA(d, a) =
1∑
i=0

πiA lA(d, a, θi).

Under common knowledge assumptions, if a Nash equilibrium (d∗(y), a∗) exists, then it
must satisfy

ΨD(d∗(y), a∗, y) ≤ ΨD(d, a∗, y), ∀d ∈ D; ΨA(d∗(y), a∗) ≤ ΨD(d∗(y), a), ∀a ∈ A.

With an illustrative purpose, we can replicate the numerical example in Section 3.3
making use of this game theoretic approach. The elements involved in the defender’s
problem will actually coincide, and those required for the attacker’s problem will be
based on the assessments made by the defender employing the means of the specified
probability distributions. Thus, π1

A = E [U(1/4, 3/4)] = 1/2 = π0
A, C0

A = 0 and C1
A =

E [U(1/2, 1)] = 3/4. The defender’s loss function is specified then as

ΨD(d0, a0, y) =
e−y

2
, ΨD(d0, a1, y) =

e−
y
2

2
, ΨD(d0, a-1, y) =

e−2y

2
,

ΨD(d1, a0, y) =
3e−2y

4
, ΨD(d1, a1, y) =

3e−y

4
, ΨD(d1, a-1, y) =

3e−4y

4
;

and the attacker’s as

ΨA(d0, a) =
1

2
, ΨD(d1, a) =

3

8
, ∀a ∈ {0, 1, -1}.

We can only find a mixed strategies Nash equilibrium in which the agents choose each
of three actions with probability 1/3. The attacker relies on any of his three possible
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attacks (a0, a1 and a-1) and the defender follows one of the three respectively matching
decision rules: choose d0 if y . 0.41 (s0), choose d0 if y . 0.81 (s1)), and choose d0 if
y . 0.20 (s-1). The defender could also deviate from the mixed strategy and just adopt
one of the decision rules in terms of her risk attitude, where s-1 is the most conservative,
s1 the least and s0 in between.

4 A Batch Acceptance Model

As an example of application of the approach in Section 3, we consider now a model
for batch acceptance. The problem we deal with is deciding whether to accept a batch
of items received over a period of time, some of which could be faulty, thus entailing
potential security and/or performance problems. This type of issues arise in areas such
as screening containers at international ports, filtering batches of electronic messages or
admitting packages of perishable products or electronic components, among others. The
main difference with the general AHT problem in Section 3 is that, in this case, the effect
of the defender’s decision does not depend on the parameters but on the observed data.
We first outline a non-adversarial problem which we then modify to include adversaries.

4.1 Problem setting

The problem we initially face is sketched in Figure 4. Its structure is similar to the SDT
problem depicted in Figure 1, except for two key differences.

X

Θ Λ

M

lDD

Figure 4: ID for the batch acceptance problem without adversaries.

One is minor, since we consider two influencing parameters, which we call θ and λ, and
two pieces of data: the batch size m (observed when making the decision) and the batch
composition (unobserved when making the decision) with x acceptable items and m−x
unacceptable (faulty) items. The second one is major, since the consequences do not
directly depend on the parameters, but will be determined by the data (in particular,
by the presence of faulty items).

The problem is specified as follows:

• A decision maker D (the defender) receives a batch with two types of items: 0,
which we associate with acceptable items; and 1, corresponding to faulty ones. She
needs to decide whether to accept (d0) or reject (d1) the batch.
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• The defender observes the size m of the batch, which is related with a parameter λ.
To fix ideas, assume that, over a period of duration 1, the number of items follow a
Poisson distribution M |λ ∼ Po(λ). We consider that the prior over λ is a Gamma
distribution Ga(a, b). After t periods in which, in total, r items have arrived, the
posterior is Λ | t, r ∼ Ga(a + r, b + t). Note that λ will have no impact in the
non-adversarial problem, as the defender observes the actual value of m. However,
it will provide useful information about m in the adversarial version considered in
Section 4.2.

• The probability that an item is acceptable is determined by θ. If we use Z to
designate this (z = 0, an acceptable item; z = 1, otherwise), we then have pD(z =
0 | θ) = θ. The number of acceptable items will have a binomial distribution
X |m, θ ∼ Bin(m, θ). To complete model specification, we assume that we have
prior beliefs about θ modeled through a Beta distribution Be(α, β). Suppose that
after receiving r items, s have been acceptable (and r−s, faulty). Then, we update
to the posterior Θ | r, s ∼ Be(α + s, β + r − s).

As for the loss function lD, we may consider numerous scenarios. We describe two,
although we shall only use the first one in the adversarial problem in Section 4.2.

4.1.1 Scenario A: Winner takes it all

We receive a batch with m items in a given period. In this scenario, just allowing one
faulty item is as bad as allowing several of them, because of the entailed security or
performance problems. The loss structure is displayed in Table 4, where c describes the
(expected) opportunity costs associated with rejecting a batch with all acceptable items.

Batch of m Items

All Acceptable Some Faulty

p = θm p = 1− θm Exp. Loss

D’s
Decision

Accept, d0 0 1 1− θm

Reject, d1 c 0 c θm

Table 4: Defender’s loss function - Scenario A.

The expected losses of both decisions are:

lD(d0) = Eθ [1− θm] = 1− Eθ [θm] , lD(d1) = Eθ [c θm] = cEθ [θm] .

Then, the decision is to accept the batch (d0) if

1− Eθ [θm] ≤ cEθ [θm] ⇐⇒ Eθ [θm] ≥ 1

1 + c
.

Since Eθ [θm] decreases as m increases, there will be a threshold value mA such that if
m > mA, the decision would be to reject the batch (d1). In particular, with the posterior
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Be(α + s, β + r − s) model for θ, we have

Eθ [θm] =
m−1∏
k=0

α + s+ k

α + β + r + k
, (5)

and we easily obtain mA recursively.

4.1.2 Scenario B: Each fault counts

In this second scenario, the loss will depend on the number m−x of faulty items included,
because of the increased security or performance issues. The relevant loss structure is
displayed in Table 5, where the new parameter c′ is the (expected) loss per faulty item
accepted.

Batch of m Items

All Acceptable x Faulty

p = θm p =
(
m
x

)
θx (1− θ)m−x Exp. Loss

D’s
Decision

Accept, d0 0 (m− x) c′ mc′ (1− θ)

Reject, d1 c 0 c θm

Table 5: Defender’s loss function - Scenario B.

The expected losses of both decisions are:

lD(d0) = Eθ [mc′ (1− θ)] = mc′ (1− Eθ [θ]), lD(d1) = Eθ [c θm] = cEθ [θm] .

Then, the decision should be to accept the batch (d0) if

mc′ (1− Eθ [θ]) ≤ cEθ [θm] ⇐⇒ Eθ [θm]

m
≥ c′

c
(1− Eθ [θ]).

As before, since Eθ [θm] decreases as m increases, there will be a threshold value mB

such that if m > mB, the decision would be to reject the batch (d1). In particular, with
the posterior Be(α+ s, β + r− s) model for θ, the decision is to accept the batch if and
only if

Eθ [θm]

m
≥ c′

c

β + r − s
α + β + r

.

Once again, we can make use of expression (5) to find mB recursively.

4.2 Adversarial problem

We deal now with the adversarial version, considering only the loss in Section 4.1.1. As
reflected in the BAID in Figure 5, we face an attacker who may alter the received batch
to confound the defender so as to reach some objectives.
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The original batch X is influenced by parameters λ, which regulates the number m
of items received, and θ, conditioning the quality of items. The attacker knows the size
m of the batch before choosing his attack, possibly modifying the size of the final batch
Y to n, which is observed by the defender before making her decision.

X Y

Θ Λ

MN

lD lAD A

Figure 5: BAID for the adversarial batch acceptance problem.

The defender’s and attacker’s problems are, respectively, displayed in Figures 6a and 6b.

X Y

Θ Λ

MN

lDD A

(a) Defender’s problem

X Y

Θ Λ

MN

lAD A

(b) Attacker’s problem

Figure 6: Adversarial batch acceptance problem.

We gradually study three possible attack strategies S1, S2 and S3, identifying the at-
tacker’s decision variables, how the item arrival process changes, the attacker’s loss
function and the solution. The final number of items in a batch will be n, with x ac-
ceptable items and m − x faulty ones, which we shall call outer faults (O-faults). The
remaining n−m items correspond to faulty items introduced by the attacker, which will
be called A-faults. The attacker’s loss will be smaller (greater benefit) if the defender
accepts an A-fault rather than an O-fault.

4.2.1 S1: A-fault injection

Under this strategy, the attacker injects y1 of his faulty items. The data received by
the defender includes x acceptable items, m− x O-faults and y1 A-faults. The attacker
needs to decide y1, which is random to the defender. As announced in Section 4.1, λ
will be relevant here, since it provides information about m.
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Suppose first that the defender knows the distribution of Y1 |m, which we designate
pD(y1 |m), describing her beliefs about how many faulty items will be included by the
attacker if the original batch size is m. The loss structure for the defender is as in Table
6, where the probability of having a final batch size of n = m+ y1 items, given λ, is

p1(n |λ) =
n∑
i=0

pD(m = i |λ) pD(y1 = n− i |m = i),

reflecting the possible initial sizes of the batch and the included faulty items. The
probability that all those items are acceptable (x = m and y1 = 0) is

q1(n |λ) =
pD(m = n |λ) pD(y1 = 0 |m = n)

p1(n |λ)
θn,

which indicates that the only combination for an acceptable final batch is having n initial
acceptable items (x = m = n) and no faulty items included (y1 = 0).

Final Batch of n Items

All Acceptable Some Faulty

p = q1(n |λ) p = 1− q1(n |λ) Exp. Loss

D’s
Decision

Accept, d0 0 1 1− q1(n |λ)

Reject, d1 c 0 c q1(n |λ)

Table 6: Defender’s loss function - Strategy S1.

The expected losses of decisions d0 (accept) and d1 (reject) are, respectively:

lD(d0) = 1− Eθ [Eλ [q1(n |λ)]] , lD(d1) = cEθ [Eλ [q1(n |λ)]] .

Then, the rule is to accept the batch (d0) if

Eθ [Eλ [q1(n |λ)]] ≥ 1

1 + c
,

whose evaluation would typically require simulation.
We provide now an ARA procedure to estimate the crucial quantities pD(y1 |m) and,

thus, q1(n |λ). To do so, we consider the attacker’s loss function reflected in Table 7,
which depends on the batch composition and the decision made by the defender, as well
as on the attacker’s decision. We have that x ∈ {0, 1, . . . ,m} and y1 ∈ {0, 1, . . .}, where
x and y1 are the amount of acceptable items and injected A-faults, respectively. The
involved parameters are the expected gain h due to each O-fault, the expected gain g
due to each A-fault and the unitary cost f of injecting A-faults.
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Final Batch Composition

Acceptable O-Fault A-Fault

x m− x y1

D’s
Decision

Accept, d0 0 −h f − g

Reject, d1 0 0 f

Table 7: Attacker’s loss per item - Strategy S1.

Given that the attacker chooses y1, his losses associated to both defender’s decisions are:

lA(d0, y1) = −h (m− x) + (f − g) y1, lA(d1, y1) = f y1.

Knowing the original batch size m, the attacker selects y1 to minimize his expected loss,
which is

ψA(y1 |m) = pA(d0 |m+ y1)

∫ ( m∑
x=0

pA(x |m, θ) lA(d0, y1)

)
pA(θ) dθ

+ (1− pA(d0 |m+ y1)) lA(d1, y1)

= y1 (f − g pA(d0 |m+ y1))

− h pA(d0 |m+ y1)

∫ ( m∑
x=0

pA(x |m, θ) (m− x)

)
pA(θ) dθ,

where pA(d0 |m + y1) reflects the attacker’s beliefs about the defender’s decision being
to accept the batch (d0), given that she perceives the batch size to be n = m+ y1.

Since we lack information about the attacker’s probabilities and loss function, we
model our uncertainty over them through random probabilities and losses (F,G,H,
PA(d0 |n), PA(x |m, θ), PA(θ)), and look for the random optimal attack Y ∗1 (m) defined
through:

arg min
y1


y1 (F −GPA(d0 |m+ y1))

−H PA(d0 |m+ y1)

∫ ( m∑
x=0

PA(x |m, θ) (m− x)

)
PA(θ) dθ

.

Then, we would estimate

p̂D(y1 |m) = P (y∗1(m) = y1) ≈ #{Y ∗1k(m) = y1}/K,

where {Y ∗1k(m)}Kk=1 would be a sample of size K from Y ∗1 (m), obtained by drawing from
the involved components and computing the corresponding optimal amount of injected
faulty items.

Regarding the attacker’s random probabilities and losses, typical assumptions would
be:
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• The gains and costs could be uniformly distributed: F ∼ U(f1, f2), G ∼ U(g1, g2)
and H ∼ U(h1, h2).

• PA(d0 |n) could be modeled through a uniform distribution, although this might
require further recursion, if deeper strategic thinking is considered, as discussed in
Section 2.1.

• Due to its specificity, PA(x |m, θ) could actually be regarded as a Binomial distri-
bution Bin(m, θ), i.e. not a random distribution.

• PA(θ) could be a Dirichlet process with a Beta distribution base Be(α+s, β+r−s)
and concentration parameter ρ.

4.2.2 S2: Item modification

Under this strategy, the attacker modifies y2 of the original items into faults of his. The
data received by the defender includes x− y02 acceptable items, m− x− y12 O-faults and
y2 A-faults, where y02 and y12 verify y02 + y12 = y2 and 0 ≤ y02 ≤ x, 0 ≤ y12 ≤ m− x. The
attacker does not distinguish the type of items he changes and needs to decide y2, which
is random to the defender.

To start with, suppose that the defender knows the distribution pD(y2 |m) of Y2 |m,
describing her beliefs about how many items will be modified by the attacker if the
original batch size is m. The loss structure for the defender is as in Table 6, replacing
q1(n |λ) by q2(n), defined as follows. First, the probability of having a final batch with
n = m items, given λ, is

p2(n |λ) = pD(m = n |λ),

reflecting the only possible initial size of the batch and the included faulty items. Then,
the probability that all those items are acceptable (x = m and y2 = 0) is

q2(n) = pD(y2 = 0 |m = n) θn,

which indicates that the only combination for an acceptable final batch is having n
initial acceptable items (x = m = n) and no faulty items included (y2 = 0). In this
case, knowing λ would be irrelevant for the batch configuration, since the initial and
final batch sizes coincide.

The expected losses of both decisions are, respectively:

lD(d0) = 1− Eθ [q2(n)] , lD(d1) = cEθ [q2(n)] .

These may be simplified to:

lD(d0) = 1− pD(y2 = 0 |m = n)Eθ [θn] , lD(d1) = c pD(y2 = 0 |m = n)Eθ [θn] .

The rule is to accept the batch (d0) if

pD(y2 = 0 |m = n)Eθ [θn] ≥ 1

1 + c
.

We provide now an ARA procedure to estimate Y2 |m and, thus, the crucial quantity
pD(y2 = 0 |m). To do so, we consider the attacker’s loss function reflected in Table 8,
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which depends on the batch composition and the decision made by the defender (and
the attacker’s decision). It holds that x ∈ {0, 1, . . . ,m} and y2 = y02 +y12 ∈ {0, 1, . . . ,m},
where x and y2 are, respectively, the amount of initial acceptable items and modified
items. The new parameter f ′ is the cost of changing one item to make it faulty.

Final Batch Composition

Acceptable O-Fault A-Fault

x− y02 m− x− y12 y2

D’s
Decision

Accept, d0 0 −h f ′ − g

Reject, d1 0 0 f ′

Table 8: Attacker’s loss per item - Strategy S2.

The attacker’s (expected) losses associated with both defender’s decisions, when he
chooses y2, are:

lA(d0, y2) = −h (m− x− E
[
y12
]
) + (f ′ − g) y2, lA(d1, y2) = f ′ y2.

Assuming that the attacker chooses the items randomly, so that E [y12] = y2
m−x
m

, then:

lA(d0, y2) = −h (m− x) (1− y2
m

) + (f ′ − g) y2.

The problem faced by the attacker is to select y2 so as to minimize his expected loss
when the original batch size is m, which is

ψA(y2 |m) = pA(d0 |m)

∫ ( m∑
x=0

pA(x |m, θ) lA(d0, y2)

)
pA(θ) dθ

+ (1− pA(d0 |m)) lA(d1, y2)

= y2 (f ′ − g pA(d0 |m))

− h (1− y2
m

) pA(d0 |m)

∫ ( m∑
x=0

pA(x |m, θ) (m− x)

)
pA(θ) dθ,

(6)

with pA(d0 |m) as in Section 4.2.1.
Since we lack the attacker’s probabilities, as well as the parameters of his loss func-

tion, we assume uncertainty about them and look for the random optimal attack Y ∗2 (m)
defined through:

arg min
y2


y2 (F ′ −GPA(d0 |m))

−H (1− y2
m

)PA(d0 |m)

∫ ( m∑
x=0

PA(x |m, θ) (m− x)

)
PA(θ) dθ

,
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where B would be the distribution over cost b. Then, we would estimate

p̂D(y2 = 0 |m) = P (y∗2(m) = 0) ≈ #{Y ∗2k(m) = 0}/K,

where {Y ∗2k(m)}Kk=1 is a sample from Y ∗2 (m), obtained by drawing from the involved
components and computing the corresponding optimal amount of items modified to
make them faulty. Note that, due to the linearity of the attacker’s loss function (6),
the random optimal attack will always be 0 or m depending on whether it is worth
modifying items. Non-linear loss functions for the attacker would allow different attacks
to take place.

Typical assumptions about the attacker’s random probabilities and losses would be
similar to those in Section 4.2.1. In particular, B ∼ U(f ′1, f

′
2).

4.2.3 S3: Combination of strategies S1 and S2

Under this strategy, the attacker adds y1 faulty items and converts y2 of the original
items into faults of his. The data received by the defender consists of x− y02 acceptable
items, m−x− y12 O-faults and y1 + y2 A-faults, where y02 and y12 are subject to the same
restrictions from Section 4.2.2. The attacker needs to decide both y1 and y2, which are
random to the defender.

Suppose first that the defender knows the joint distribution of (Y1, Y2) |m, which
we designate pD(y1, y2 |m). The loss structure for the defender is as in Table 6, with
q1(n |λ) replaced by q3(n |λ), defined as follows. First, the probability of having a final
batch of n = m+ y1 items, given λ, is

p3(n |λ) = p1(n |λ),

reflecting the possible initial sizes of the batch and the included faulty items (as in
Strategy S1). Then, the probability that all those items are acceptable (x = m and
y1 = y2 = 0) is

q3(n |λ) =
pD(m = n |λ) pD(y1 = 0, y2 = 0 |m = n)

p3(n |λ)
θn, (7)

which indicates that the only combination for an acceptable final batch is having n initial
acceptable items (x = m = n) and no faulty items included (y1 = y2 = 0). As in Section
4.2.1, λ provides information about m.

The expected losses of decisions d0 (accept) and d1 (reject) are, respectively:

lD(d0) = 1− Eθ [Eλ [q3(n |λ)]] , lD(d1) = cEθ [Eλ [q3(n |λ)]] .

Then, the rule is to accept the batch (d0) if

Eθ [Eλ [q3(n |λ)]] ≥ 1

1 + c
, (8)

which would require simulation to be ascertained as in Section 4.2.1 .
We provide now an ARA procedure to estimate the crucial quantities pD(y1, y2 |m)

and, thus, q3(n |λ). To do so, we consider the attacker’s loss function in Table 9, which
depends on the batch composition and the decision made by the defender (and the
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attacker’s decision). It holds that x ∈ {0, 1, . . . ,m}, y1 ∈ {0, 1, . . .} and y2 = y02 + y12 ∈
{0, 1, . . . ,m}, where x, y1 and y2 are the amount of original acceptable items, injected
A-faults and modified items, respectively.

Final Batch Composition

Acceptable O-Fault
A-Fault

Injected Modified

x− y02 m− x− y12 y1 y2

D’s
Decision

Accept, d0 0 −h f − g f ′ − g

Reject, d1 0 0 f f ′

Table 9: Attacker’s loss per item - Strategy S3.

As in Section 4.2.2, we assume the attacker chooses the items randomly, so that E [y12] =
y2

m−x
m

. Then, the attacker’s (expected) losses associated with both defender’s decisions
when the attacker chooses (y1, y2) are:

lA(d0, y2) = −h (m− x) (1− y2
m

) + (f − g) y1 + (f ′ − g) y2, lA(d1, y2) = f y1 + f ′ y2.

The attacker chooses (y1, y2) to minimize his expected loss when the original size of the
batch is m, which is

ψA(y1, y2 |m) = pA(d0 |m+ y1)

∫ ( m∑
x=0

pA(x |m, θ) lA(d0, y1, y2)

)
pA(θ) dθ

+ (1− pA(d0 |m+ y1)) lA(d1, y1, y2)

= y1 (f − g pA(d0 |m+ y1)) + y2 (f ′ − g pA(d0 |m+ y1))

− h (1− y2
m

) pA(d0 |m+ y1)

∫ ( m∑
x=0

pA(x |m, θ) (m− x)

)
pA(θ) dθ,

with pA(d0 |m+ y1) as in Section 4.2.1.
Since we lack the attacker’s probabilities and parameters of his loss function, we

assume uncertainty about them and look for the random optimal attack (Y ∗1 , Y
∗
2 )(m)

defined through:

arg min
y1,y2


y1 (F −GPA(d0 |m+ y1)) + y2 (F ′ −GPA(d0 |m+ y1))

−H (1− y2
m

)PA(d0 |m+ y1)

∫ ( m∑
x=0

PA(x |m, θ) (m− x)

)
PA(θ) dθ

.

Then, we would estimate

p̂D(y1, y2 |m) = P (y∗1(m) = y1, y
∗
2(m) = y2) ≈ #{Y ∗1k(m) = y1, Y

∗
2k(m) = y2}/K,
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where {(Y ∗1k, Y ∗2k)(m)}Kk=1 is a sample of size K from (Y ∗1 , Y
∗
2 )(m), obtained by drawing

from the involved components and computing the optimal amounts of injected faulty
items and items changed to make them faulty.

Finally, we would make assumptions similar to those in Sections 4.2.1 and 4.2.2,
concerning the attacker’s random probabilities and losses.

4.3 Batch acceptance: A numerical example

As an illustration of the batch acceptance model, this section provides a numerical
example of the analysis in Section 4.2 considering strategy S3. Concerning the defender’s
problem, following assumptions in Section 4.1, the elements involved are:

• The rate λ of original incoming items. The prior over λ will be a Ga(5, 1) distri-
bution; i.e. we expect the average size of the original batch to be of 5 items.

• The probability θ that an item is acceptable. The prior over θ will be a Be(9, 1)
distribution; i.e. we expect the average probability of an item’s acceptability to be
0.9.

• The (expected) opportunity costs c associated with rejecting a batch with all ac-
ceptable items. We will assume that c = 0.9.

With regard to the attacker’s problem, in accordance with assumptions included in
Section 4.2, suppose the following assessments are made:

• The gains and costs will be uniformly distributed as: F ∼ U(0.25, 0.5), F ′ ∼
U(0.3, 0.6), G ∼ U(0.8, 1) and H ∼ U(0, 0.25). Two relevant assumptions are being
made: first, on average, injecting A-faults involves less effort for the attacker than
modifying items to A-faults as he has broader control over the process; second,
the expected gain due to A-faults is greater than that due to O-faults as he may
better design them to fulfill his objectives.

• PA(d0 |n) will be modeled through a uniform distribution dependent on the final
batch size n. To avoid further recursion, we assume that the attacker relates
it to the defender’s non-adversarial version of the problem in Section 4.1. He
could consider her accepting the batch with probability Eθ [θn] in terms of its
original expected acceptability. Additionally, he could weigh that probability by
0.5, admitting that the defender might presume him to be manipulating every
other batch. In this manner, we estimate

E [PA(d0 |n)] =
Eθ [θn]

2
=

1

2

n−1∏
k=0

9 + k

10 + k
=

9

18 + 2n
,

making use of the defender’s prior over θ and expression (5). In order to allow
some uncertainty, and assuming that PA(d0 |n) > PA(d0 |n + 1) for any value of
n, we finally adopt

PA(d0 |n) ∼ U
(

9

19 + 2n
,
10 + n

9 + n

9

19 + 2n

)
.
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• Due to its specificity, PA(x |m, θ) will be considered to coincide with the Bin(m, θ)
distribution determined by the defender.

• PA(θ) will be a Dirichlet process with a Beta distribution base Be(9, 1) and con-
centration parameter ρ = 100.

As a result of the previous assessments, we may estimate the attack probabilities for
each original batch size m as follows:

Algorithm 2 Batch S3: Numerical example - Simulating the attacker’s problem

Data: Original batch size m; number of iterations K; upper bound for the amount of
injected items Y 1.

1: Set p(y1, y2) = 0, y1 = 0, . . . , Y 1, y2 = 0,m.

2: For k = 1 to K

3: Generate fk ∼ U(0.25, 0.50).

4: Generate f ′k ∼ U(0.30, 0.60).

5: Generate gk ∼ U(0.80, 1.00).

6: Generate hk ∼ U(0.00, 0.25).

7: Generate distribution pkA(θ) ∼ DirP(Be(9, 1), 100).

8: For y1 = 0 to Y 1

9: Generate π0,k
A (y1) ∼ U

(
9

19 + 2m+ 2y1
,
10 +m+ y1
9 +m+ y1

9

19 + 2m+ 2y1

)
.

10: ψkA(y1, 0) = y1

(
fk − gk π0,k

A (y1)
)

− hk π0,k
A (y1)

∫ ( m∑
x=0

(
m
x

)
θx (1− θ)m−x (m− x)

)
pkA(θ) dθ.

11: ψkA(y1,m) = y1

(
fk − gk π0,k

A (y1)
)

+m
(
f ′k − gk π

0,k
A (y1)

)
.

12: End For

13: Find (y∗1, y
∗
2) = arg min

y1∈{0,...,Y 1}, y2∈{0,m}
ψkA(y1, y2).

14: Set p(y∗1, y
∗
2) = p(y

∗
1, y
∗
2) + 1.

15: End For

16: Set p̂D(y∗1, y
∗
2) = p(y∗1, y

∗
2)/K, y1 = 0, . . . , Y 1, y2 = 0,m.

Table 10 reflects an application of the previous scheme with K = 500 (sufficient for
illustrative purposes as the process is computationally intensive due to the need to
sample from the Dirichlet process) and Y 1 = 5 leading to the estimates of p̂D(y1, y2 |m)
in Table 10 with an original batch size of m = 0, 1, . . . , 8.
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Original Batch Size - m

0 1 2 3 4 5 6 7 8

Attack
-

(y1, y2)

(0, 0) 0.392 0.340 0.558 0.720 0.834 0.914 0.976 0.994 1.000

(1, 0) 0.300 0.190 0.150 0.140 0.106 0.070 0.020 0.006 0.000

(2, 0) 0.200 0.142 0.110 0.040 0.030 0.012 0.004 0.000 0.000

(3, 0) 0.082 0.052 0.026 0.006 0.004 0.000 0.000 0.000 0.000

(4, 0) 0.020 0.016 0.004 0.000 0.000 0.000 0.000 0.000 0.000

(5, 0) 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0,m) - 0.218 0.134 0.090 0.026 0.004 0.000 0.000 0.000

(1,m) - 0.030 0.016 0.004 0.000 0.000 0.000 0.000 0.000

(2,m) - 0.010 0.002 0.000 0.000 0.000 0.000 0.000 0.000

(3,m) - 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4,m) - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(5,m) - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 10: Defender’s assessment of p̂D(y1, y2 |m) using ARA.

Plugging such values in (7), we may compute the expected probability that all items
are acceptable when the observed size of the final batch is n = 0, 1, . . . , 8. In Table
11, we provide those values and the defender’s decision according to acceptance rule in
expression (8), being the cutting value 1/(1 + c) = 0.526.

Final Batch Size - n

0 1 2 3 4 5 6 7 8

Eθ [Eλ [q3(n |λ)]] 1.000 0.485 0.554 0.541 0.521 0.514 0.503 0.515 0.514

Accept, d0 Yes No Yes Yes No No No No No

Table 11: Defender’s decision given a final batch of n items.

The following general remarks may be extrapolated from Tables 10 and 11:

• When an empty batch is received (n = 0), the model behaves correctly and accepts
the batch as we know that there are no faulty items.

• For smaller original batch sizes, the attacker is greater compelled to both inject
and/or modify items as it is more likely that all original items are acceptable. This
might cause the defender not to accept batches with a really small final size (in
our case, n = 1).
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• For bigger original sizes of the batch, the attacker is discouraged to intervene and
thus avoid costs as it is more likely that some original items are already faulty.
This might cause the defender to accept batches with a medium final size (in our
case, n = 2, 3).

• When a sufficiently large batch is received (in our case, starting with n = 4), the
defender will not accept the batch as she will expect the original batch to include
faulty items.

5 Discussion

We have provided an ARA framework to deal with the AHT problem. In this way,
symmetric losses and strong common knowledge assumptions typical of non-cooperative
game theory in adversarial signal processing, adversarial classification and adversarial
machine learning are avoided. We have assumed that we were supporting an agent who
essentially needs to ascertain which of several hypotheses holds, based on observations
from a source that may be perturbed by another agent with some purpose. In doing
this, the agent has to forecast the action of the adversary and then find her optimal
alternatives. We focused on testing two simple hypothesis but the framework may be
extended to other types of hypothesis tests.

Multiple attacker cases in the AHT problem are also of interest. An ARA perspec-
tive would support the defender versus all of them. In this case, we would need to
differentiate possibilities in which attackers are completely independent or partially or
totally coordinated or are such that their attacks influence somehow each other. It could
also be the case that there are several defenders, possibly cooperating but with different
observations of the data flow.

An illustrative application in relation with batch acceptance has been studied. We
have assumed that the defender observes the size of the batch, but this might not be the
case (e.g. when screening containers at international ports). When the defender has no
information about the batch size other than her previous experience, we could think of a
multi-stage version of the model proposed in Section 4. New strategies for the attacker
such as the injection of (apparently) acceptable items to confound the defender could
then be considered. It could also be the case that besides the batch size, the defender
observes additional features of the items and this information would be incorporated to
the testing problem. Other loss functions could be explored as well, including that in
Section 4.1.2.

Finally, further applications may be found in the context of, for example, adversarial
signal processing, such as in Electronic Warfare (EW) where pulse/signal environment
is generally very complex with many different radars transmitting simultaneously. Time
interval between two pulses emitted by a threat radar is defined as a Pulse Repetition
Interval (PRI). PRI tracking is an important problem in naval EW applications because
knowledge of the PRI is used to defend ships against radar-guided missiles. The signals
received may be jammed by hostile radars and this results in missing pulses due to
reduced sensitivity of the receiver, see Hock and Soyer (2006) for an introduction.
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