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Abstract

Designing accelerated life tests presents a number of conceptual and com-
putational challenges. We propose a Bayesian decision-theoretic approach for
selecting an optimal stress-testing schedule, and develop an augmented prob-
ability simulation approach to obtain the optimal design. The notion of a ”dual
utility probability density” enables us to invoke the concept of a conjugate util-
ity function. For accelerated life tests, this allows us to construct an augmented
probability simulation which simultaneously optimizes and calculates the ex-
pected utility. In doing so, we circumvent many of the computational difficul-
ties associated with evaluating pre-posterior expected utilities. To illustrate
our methodology, we consider a single-stage accelerated life test design; our
approach naturally extends to multiple stage designs. Finally, we conclude
with suggestions for further research.
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1 Introduction

Designing accelerated life tests (ALTs) involves testing systems in severe stress en-
vironments relative to a standard use conditions environment. Bayesian methods
are often attractive for analyzing accelerated life test data; see for example, Soyer
(2007). One caveat is the computational challenge of solving for the optimal de-
sign of the accelerated stress levels together with the number of items to be tested
at each level. The challenge is to calculate a pre-posterior expected utility and to
optimize over the set of design choices.

We take a simulation-based approach which simultaneously calculates the pre-
posterior expected utility and stochastically finds the optimal design. Our Bayesian
decision theoretic set up builds on Chaloner and Larntz (1990), Verdinelli, Pol-
son and Singpurwalla (1993), Polson (1993), and Erkanli and Soyer (2000). Our
methodology extends to sequential designs. One theoretically new addition is our
use of conjugate utility structures following the work of Lindley (1976), and the use
of augmented probability simulation (Muller (1999)) to compute optimal designs.
This helps in the construction of both Markov chain Monte Carlo and particle-
based simulation algorithms. We tailor a particle-based algorithm to calculate and
optimize pre-posterior utilities; see also Muller (1999) and Ekin, Polson and Soyer
(2014).

Interest in optimal design of ALTs starts with the original works of Zelen (1959)
and Chernoff (1962). There is a considerable literature on Bayesian ALT designs
dating back to Martz and Waterman (1978) and DeGroot and Goel (1979). The sem-
inal work on optimal Bayesian designs for linear models is discussed by Chaloner
(1984), and this can be used for ALT designs when the underlying lifetime prob-
ability model is normal or a lognormal. For example, Chaloner and Larntz (1990)
find Bayesian designs for Type I censored tests with uncertainty about whether
the underlying life model is lognormal or Weibull when several fractiles of the
lifelength distribution at the use stress are of interest. The optimality criterion is
proportional to the expected asymptotic variance of the fractiles of interest. Menze-
fricke (1992) formulates the optimal design of Type II censored ALTs when the life-
length model is lognormal. Verdinelli, Polson and Singpurwalla (1993) identify de-
signs for a complete ALT that maximizes Shannon information. Zhang and Meeker
(2006) consider large sample results for Bayesian ALT designs as well as simula-
tion based methods. For alternative life models, such as exponential or Weibull,
optimal designs can be obtained by use of either numerical methods such as non-
parametric surface estimation; see Muller and Parmigiani (1995) and Erkanli and
Soyer (2000), who analyze single stage accelerated life test designs, or by special
techniques; see Vopatek (1992) and Soyer and Vopatek (1995).

The remainder of the paper is outlined as follows. Section 2 introduces the ALT
design problem and discusses our conjugate utility functions approach. Section
3 presents the augmented probability simulation method. Section 4 discusses the
implementation of augmented probability for ALT design. We provide both the-
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oretical and applied examples illustrating the augmented probability simulation
model and also introduce a particle-based approach to augmented simulation. Fi-
nally, section 5 concludes with some suggested directions for future research.

2 Bayesian Design of ALTs

The Bayesian determination of an optimal design is based on the paradigm of max-
imizing pre-posterior expected utility; see for example, Lindley (1985). A compre-
hensive review of Bayesian experimental design can be found in Verdinelli (1992)
and Chaloner and Verdinelli (1995).

2.1 The ALT Design Problem

An accelerated test environment is created by increasing the level of one or more
of the stress variables such as temperature, voltage, etc. to values which are higher
than those at normal operating conditions. In our development we assume that the
environment is characterized by a single stress with extensions to multiple stresses
being straightforward; see for example, Escobar and Meeker (1995) and Zhang and
Meeker (2006).

Let d denote a design, that is, the level of the stress variable characterizing
the accelerated test environment. It is possible that tests will be conducted at K
accelerated levels of the stress variable which are specified in advance.

The Bayesian ALT design problem requires specification of three components:

1. Utility (loss): reflecting the consequences of selecting a specific accelerated
environment d

2. Probability model: life distribution at the accelerated stress level(s)

3. Prior distribution: reflecting a priori beliefs about all unknown quantities
such as the parameters of the probability model.

Components 2 and 3 together constitute the predictive model in the design prob-
lem which is obtained by integrating out the parameters of the probability model
using the prior. As pointed out by one of the reviewers, separation of probabiliy
and utility (components 1 and 2) is a foundational issue which requires caution.
Kadane and Winkler (1988) discuss conditions under which elicitation of probabil-
ities can be separated from utilities and study the implications when such separa-
tion is not possible. We refer the interested reader to their paper.

To fix our notation, let y denote an observable and θ a parameter associated
with the life distribution, p(y|θ). Once a design d is specified and y is observed
from the ALT, uncertainty about θ is revised according to Bayes’ rule. Given a
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specific form for the utility function u(y, θ, d), the design problem requires finding
d∗ = argm

d
ax u(d), where

u(d) = Ey|dEθ|y,d[u(y, θ, d)] = Ey|θ,dEθ|d[u(y, θ, d)],

is the pre-posterior expected utility. Evaluation of u(d) requires the computation
of

u(d) =
∫

u(y, θ, d)p(y, θ|d) dθ dy. (1)

In the context of accelerated life tests, u(y, θ, d) = −V(θ|y, d), the negative of the
posterior variance, is a common choice. The optimal design then minimizes the

pre-posterior variance Ey,θ

(
V(θ|y, d)

)
. The negative of the posterior variance is

used in many fields such as economics and finance, engineering and machine
learning especially in point estimation and control problems where a symmetric
loss/utility is appropriate.

An alternative utility function is based on an information-theoretic criterion,
such as the negative entropy. Here the optimal design is selected via maximiza-
tion of the expected gain of information from experimentation (Lindley, 1956 and
Verdinelli et al.,1993) given by the quantity

argm
d

ax E
(∫

log[p(θ|y, d)]p(θ|y, d)dθ
)

. (2)

This is equivalent to choosing the design that maximizes the expected Kullback-
Leibler divergence between posterior and prior distributions, the so called Lindley’s
measure. It is well known that use of Lindleys measure of information about param-
eter θ as a utility function yields the posterior distribution of θ as the optimal deci-
sion in the problem of reporting a probability distribution from the space of all dis-
tributions; see Bernardo (1979) and Ebrahimi, Soofi and Soyer (2010). Information-
theoretic utility functions are used in many other fields including economics and
engineering.

2.1.1 Time Transformation Function

The objective of an ALT is to make statements of uncertainty about lifetime at the
use environment based on data from accelerated environments. Let di denote the
level of the stress variable at the ith accelerated test environment i = 1, . . . K, and
Ti denote the lifetime of an item tested at environment di. Also let Tu denote the
lifetime at the use environment du such that du < di, i = 1, . . . K. An important
component of ALTs is the time transformation function (acceleration function) that
describes the relationship between the failure characteristic such as the mean or
median life time and the applied level of the stress. Typically such relationship is
based on physics of failure.
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For example, if Ti is lognormally distributed with location parameter µi, then
a power law time transformation function can be written in terms of the median
lifetime at stress environment di as

eµi = αd
β
i , (3)

where α and β are unknown parameters. On the other hand, if Ti follows an ex-
ponential model then the failure rate or mean life time can replace the median
life time in (3). Other commonly used time transformation functions include the
Arrhenius and Eyring laws; see Singpurwalla (2006).

Verdinelli et al. (1993) considered a lognormal model with the power law (3) by
assuming a utility function based on (negative) posterior variance of loglifetime at
the use stress du. For the case of one-point designs (testing at one stress level) they
showed that if β is known then it does not matter at what level one tests. On the
other hand, if α is known then the optimal design is to test at the highest stress.

Erkanli and Soyer (2000) considered an exponential lifetime model where the
failure rate λi at stress di follows a power law relation as in (3). They assumed the
posterior variance of the failure rate at use stress as the utility function and ob-
tained optimal designs by adopting the Monte Carlo based approach of Mueller
and Parmigiani (1995) where the expectation step is replaced by a scatter plot
smoother and the optimization step is replaced by the optimization of the fitted
smoother.

There is a plethora of other failure models and different class of utility functions
that require a use of Monte Carlo methods to obtain optimal designs. Choice of
the class of utility functions may help in reducing dimension in computation of
expected utilities. Lindley (1976) introduced a class of conjugate utility functions
that are helpful in reducing dimension for computing expected utilities.

2.2 Conjugate Utility

For most choices of utility functions, there are two computational difficulties. First,
we need to be able to marginalize over (y, θ) to be able to calculate expected utility
of a specific design d. Second, we need to be able to optimize over d to find d∗ =
argm

d
ax u(d).

Lindley (1976) proposes a class of probability models and utility functions that
are ”conjugate” in the sense that the marginal utility u(d) can be calculated in
closed form. He only considers the case of an unknown parameter θ. We extend
this conjugate conjugate utility structure to incorporate both future data and pa-
rameters. We build on Lindley’s approach to facilitate the computation of u(d) and
show how it can be adapted to marginalize over both (y, θ).

We describe below the concept of a conjugate utility which proves helpful in
both developing an augmented simulation approach, and constructing particle
learning algorithms for optimal sequential design. In the simplest case, suppose
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that our observable y has density conditional on θ as

p(y|θ) = eyθ H(y)G(θ)

where G−1(θ) =
∫

exθ H(x)dx is a suitable normalization constant. Note that the
conditional density p(y|θ) is a member of the exponential family. If the prior dis-
tribution of θ is given by

p(θ|y0, n0) = K(y0, n0)e
y0θG(θ)n0 ,

for suitable hyperparameters (y0, n0), then we can calculate

K−1(y0, n0) =
∫

ey0θG(θ)n0 dθ.

The associated posterior distribution p(θ|y0, n0, y) is conjugate within the same
family as the prior distribution.

A natural class of conjugate utility functions is defined by

u(d, θ) = ey(d)θG(θ)n(d)F(d), (4)

where (y(d), n(d), F(d)) are suitable functions of a decision variable, d. Since our
augmented probability simulation method requires u(d, θ) to be a positive valued
function, F(d) will be restricted to be positive in (4). As a function of θ, the conju-
gate utility function (4) can be thought as a unnormalized density function. Thus,
it is typically a unimodal function. As pointed out by Lindley, this is helpful in
point-estimation problems as well as in other applications such as the inventory
control problems. Properties and roles of functions y(d) and n(d) are studied and
conditions for a bounded utility functions are discussed in Lindley (1976, Section
3). Diaconis and Ylvisaker (1979) showed that mixtures conjugate priors can be
used to approximate any prior. The same reasoning applies to conjugate utility
functions, that is, any utility function u(y, d) can be expressed as a mixture of the
conjugate utility functions given by (4).

With N = n + n0, y = ∑
n
i=1 yi, we can calculate the expected utility

u(d) =
∫

e(y+y(d))θG(θ)N+n(d)K(N, y)F(d)dθ (5)

=
K(N, y)F(d)

K
(

N + n(d), y + y(d)
) . (6)

Availability of the expected utility (6) is attractive from a computational viewpoint.
However optimizing this objective function can still be challenging. One of the
aims of our paper is to show how this can be achieved using augmented probabil-
ity simulation and particle methods.
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3 Augmented Probability Simulation (APS) Model

Evaluation of u(d) via traditional MC techniques involves simulation of (y, θ)(g), g =
1, . . . , G, from the joint model

p(y, θ|d) = p(y|θ, d)p(θ|d)

and estimation of expected utility

û(d) =
1

G

G

∑
g=1

u((y, θ)(g) , d). (7)

Optimizing û(d) over d can be very inefficient as MC errors in estimating û(d) may

overwhelm the optimization effort. Put simply, most of the draws (y, θ)(g) are from
a poor part of the space and provide little information. Performance of the MC
approximation of u(d) by (7) worsens with high dimensional integration. Bielza
et al. (1999) and Mueller (1999) proposed an alternative strategy by treating the
decision variable d as a random variable and recasting the problem as a problem
of drawing samples from an augmented probability model.

The augmented probability model is given by

π(y, θ, d) ∝ u(y, θ, d)p(y, θ|d), (8)

where distribution of d is generally specified as a uniform distribution over the
decision space. The marginal distribution of d, that is, π(d) is proportional to

u(d) =
∫

u(y, θ, d)p(y, θ|d) dθ dy. (9)

Thus, the optimal design can be obtained by simulating samples from the marginal
distribution of d and finding the mode of π(d) ∝ u(d). A Markov chain Monte
Carlo (MCMC) scheme can be used to draw from the augmented distribution
π(y, θ, d). We use a Gibbs sampler in our development. This requires simulating
from the conditional distribution π(y, θ|d) which is a ”tilted” version of the distri-
bution p(y, θ|d). The tilted conditional distribution is obtained as proportional to
(8). The Gibbs sampler requires also simulation from the conditional distribution
π(d|y, θ) ∝ u(y, θ, d).

For dealing with higher dimensions of d where it may not be easy to find the
mode and with flat expected utility surfaces Mueller (1999) proposed to replace
the π(d) with a power type transformation on the expected utility. By drawing J

samples (yj, θj)
J
j=1 for each design d, we can obtain

πJ(y
J , θ J , d) ∝

J

∏
j=1

u(yj, θj, d)p(θj, yj|d), (10)
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where θ J = (θ1, . . . , θJ) and yJ = (y1, . . . , yJ). In this case the implied marginal

distribution πJ(d) ∝ uJ(d); see Muller et al. (2004). This distribution has a number
of useful features to note. First of all, as J gets large πJ(d) will concentrate around
the mode which gives the optimal decision d∗. We can always use MCMC to draw
from the distribution d and for parameter learning.

The optimal design problem requires both evaluation and optimization of the
expected utility function u(d). Our proposed approach performs these two tasks
simultaneously by treating the design variable d as stochastic and simulating d,
together with (y, θ) from the augmented probability model (8). In doing so, the
approach tilts MC draws to regions of high utility values. This avoids inefficiency
of the standard MC approach and reduces MC errors since samples are drawn
more frequently from the augmented space with high utility values. Our proposed
approach for ALT design using the APS differs from Muller (1999) by our use of
conjugate utility functions. This provides conditional conjugacy and allows for
use of Gibbs sampler in simulating the design variable. Also, to the best of our
knowledge, particle based APS for design has not been considered before.

4 APS for ALT Design

To illustrate our proposed methodology, assume that life lengths Ti under stress
environment di are exponentially distributed with failure rate θdi; that is, Ti|θ, di ∼
Exp(θdi). If we test n items under di then distribution of total time on test Yi =
∑

n
j=1 Tij will have a gamma distribution with shape parameter n and scale θdi, that

is,

p(yi|θ, di) =
(θdi)

n

Γ(n)
yn−1

i e−θdiyi . (11)

Here we assume a conjugate gamma prior for θ with parameters a and b. We will
also use a conjugate utility function. In this case,the joint distribution p(y, θi |di)
is a gamma-gamma distribution, and the marginal p(yi |di) is a scaled beta prime
(inverted beta) distribution given by

p(yi |di) =
Γ(a + n)di/b

Γ(n)Γ(a)

(yidi/b)n−1

(1 + yidi/b)a+n
.

The objective now is to select the accelerated environment di > du to learn
about the failure rate θdu at the use stress. We will consider a single point design,
drop the index i, and assume a utility function u(y, d) as

u(y, d) =
1

(d/du)α
e−ky, (12)

where α and k are positive constants with α > 1.
The utility function (12) is specified to reflect the consequences of choosing a

design d and observing a total time on test y from the ALT. For making inferences
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about life lengths at du, it is desirable to test at d closer to du. However, smaller
values of d will imply a lower failure rate and thus, larger total time on test y. The
utility function (12) reflects the trade-off between testing closer to du and testing
for a shorter amount of time. We can reflect the trade-off by appropriate choice of
constants α and k. In (12) α reflects the cost of selecting a design d away from du

whereas k reflects the cost of testing. Without loss of generality we let du = 1 < d.
Figure 1 shows a plot of the utility function u(y, d) for values k = 0.5 and

α = 1.5. As we can see from the plot, u(y, d) goes down with larger amount of
testing as well as with increasing level of acceleration, that is, utility is decreasing
in both y and d.

d

2

4

6

8

y

2

4
u(y,d)

0.2

0.4

0.6

0.8

Utility Function u(y,d)

Figure 1: Plot of u(y, d) for k = 0.5 and α = 1.5.

The utility function u(y, d) is a conjugate utility function in the sense of Lindley
(1976). We can obtain

u1(θ, d) = EY[u(y, d)] =
1

dα

( θd

θd + k

)n
. (13)

Figure 2 shows plots of the utility function u1(θ, d) for two different values of
k when θ and the parameters are fixed as θ = 0.125, n = 3, and α = 1.5. As
previously mentioned, k represents the cost of testing. Figure 2 shows that as k gets
larger the utility goes down and the optimal value of d increases. In other words,
as the testing cost gets larger it is preferred to use a more accelerated environment
to cut down test time.
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Figure 2: Plots of u1(θ, d) for k = 0.5 and k = 1.

The expected utility u(d) can be evaluated as

u(d) = Eθ[u1(d, θ)] =
∫

1

dα

( θd

θd + k

)n ba

Γ(a)
θa−1 e−bθ dθ, (14)

which can be written as

u(d) ∝ dn−α
∫

θa+n−1

(1 + θd/k)n
e−bθ dθ. (15)

The integrand in (15) is proportional to a Kummer distribution [see Armero and
Bayarri (1997)] whose density for a nonnegative random variable X is

f (x|φ, β, δ, γ) = C
xφ−1e−βx

(1 + δx)γ
. (16)

The normalization constant C in (16) is given by

C−1 =
Γ(φ)

δφ
K(φ, φ + 1 − γ, β/δ)

where K(φ, φ + 1 − γ, β/δ), is a Kummer function (or a confluent hypergeometric
function) of second type; see Armero and Bayarri (1997, pp. 248). By setting φ =
a + n, β = b, γ = n, and δ = d/k in our case, we can obtain

u(d) ∝
K(a + n, a + 1, bk/d)

dα+a
. (17)

Due to conjugacy of the utility function (12), it is possible to obtain u(d) in the
analytical form (17). However, maximization of u(d) with respect to d involves
evaluation of the Kummer function K(a + n, a + 1, bk/d) and as a result optimiza-
tion of u(d) is not straightforward. This can pose more computational challenges
in the multiple point design problems where d is multi-dimensional.
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4.1 APS Implementation

Using the conjugate utility (12) and the gamma prior for θ, the augmented proba-
bility model of (10) can be written as

πJ(y
J , θ J , d) ∝

J

∏
j=1

1

dα
e−kyj(θjd)

nyn−1
j e−θjdyj θa−1

j e−θjb. (18)

We assume that d is uniform over (1, dmax). Samples can be drawn from the aug-
mented probability model (18) using MCMC. The conjugacy of the utility function
enables us to use a Gibbs sampler where all full conditional distributions are avail-
able.

For the full conditional of d we have

πJ(d|y
J , θ J) ∝

J

∏
j=1

dn−α e−θjdyj = dJ(n−α)e
−d ∑

J
j=1 θjyj (19)

which is a gamma with parameters J(n − α) + 1 and sJ = ∑
J
j=1 θjyj.

Full conditional of θj’s, for j = 1, . . . , J, is given by

πJ(θj|yj, d) ∝ θn+a−1
j e−θj(b+dyj) (20)

which is a gamma density with parameters (n + a), and (b + dyj). Finally, for
yj, j = 1, . . . , J, we have

πJ(yj|θj, d) ∝ yn−1
j e−yj(k+dθj) (21)

a gamma density with parameters n and (k + dθj). By drawing iteratively from

the full conditionals (19)-(21), we obtain g = 1, . . . , G samples (y
(g)
j |θ

(g)
j , d(g); j =

1, . . . , J) from the augmented probability model (18). The mode of the d(g)’s his-
togram collapses on the optimal design. Implementation of the algorithm requires
specification of J which will affect the convergence of the Gibbs sampler. In most
cases, values as large as J = 5 will be adequate. As suggested by Ekin et al. (2014),
for practical purposes, one can increase the value of J until the samples stabilize.

For illustrating our approach, we chose the utility function (12) with k = 2 and
α = 1.25 and α = 1.75. Note that choice of k = 2 implies a higher cost of testing
than what is considered in Figure 2. We assumed a sample size of n = 2 and used
a gamma prior for θ with shape a = 2 and scale b = 20 implying a mean of 0.1 and
a standard deviation 0.07. In Figure 3, we present the distribution of d with J = 5
for values of α = 1.25 and α = 1.75. As expected, the higher values of α increase
penalty of being away from the use stress and thus the optimal design value shifts
to the left.

Figure 4 illustrates that as the value of J is increasing, the distribution of d
becomes more peaked around the optimal design d∗.
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Figure 3: Plots of the distribution of d for α = 1.25 (right panel) and α = 1.75 (left
panel).
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Figure 4: Plots of the distribution of d for values of J = 5, 15, 50.

4.1.1 Augmented Simulation for Multiple Point Designs

Another useful feature of augmented probability models and conjugate utility
functions is that they can be extended to multiple point ALT designs. For example,
for a two-point fixed designs where we need to choose d1 and d2 so as to that we
maximize the expected value of utility function u(y1, y2,d1, d2) given by the prod-
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uct

u(y1, y2,d1, d2) =
1

(d1d2)α
e−k(y1+y2). (22)

Here y1 and y2 denote the testing time at stress environments d1 and d2 where we
test n1 and n2 items respectively.

Our augmented probability model is given by

πJ(θ
J , yJ , d) ∝

( J

∏
j=1

u(y1j, y2j,d1, d2)p(y1j, y2j|θj, d1, d2)p(θj)
)

(23)

where yJ = (yJ
1, yJ

2) and d = (d1, d2). This leads to a joint distribution

πJ(θ
J , yJ , d) ∝

J

∏
j=1

1

dα
1dα

2

e−k(y1j+y2j)(θjd1)
n1 yn1−1

1j e−θjd1y1j(θjd2)
n2yn2−1

2j e−θjd2y2jθa−1
j e−θjb.

To implement our simulation, we still use a Gibbs sampler as all full conditionals
are available. Specifically, we have

πJ(di|y
J
i , θ J) ∝

J

∏
j=1

dn1−α
i e−θjdiyij = d

J(n1−α)
i e

−di ∑
J
j=1 θjyij ,

for i = 1, 2. Thus, πJ(di|θ
J , yJ

i ) is a gamma density with parameters J(n1 − α) +

1 and ∑
J
j=1 θjyij. Furthermore, we obtain

πJ(θj|yj, d) ∝ θn1+n2+a−1
j e−θj(b+d1y1j+d2y2j)

which is a gamma density with parameters (n1 + n2 + a) and (b + d1y1j + d2y2j).
For the total time on test variables we have

πJ(yij|θj, di) ∝ y
ni−1
ij e−yij(k+diθj)

which is Gam(ni , k + diθj) for i = 1, 2.
The main computational difficulty is that we have to simulate from the high

dimensional joint distributions (18) and (23). In some cases, MCMC methods can
be inefficient due to high correlation induced by the common design variable, d.
An alternative is to use particle-based methods that can learn static parameters
such as d. We now construct a tailored particle-based APS approach.

4.2 Particle-Based APS

The stochastic simulation problem is to draw G samples (y
(g)
j , θ

(g)
j , d(g))G

g=1, for

j = 1, . . . , J, from the joint distribution πJ(y
J , θ J , d) ∝ ∏

J
j=1 u(yj, θj, d)p(yj, θj|d) as
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defined by (18). The basic idea behind the particle simulation is to resample using
the utility function and then propagate with the weighted distribution.

Carvalho et al. (2010) provide a framework for particle methods when there are
static parameters. Static parameters are handled by using particle methods to draw
from the corresponding conditional sufficient statistics. The key is for j = 1, ..., J,
to construct sufficient statistics so that the conditional posterior simplifies to

πj(d|y
j, θ j) = πj(d|sj), (24)

where yj = (y1, ..., yj) and θ j = (θ1, ..., θj). The sufficient statistics, sj’s, also have
the property that they satisfy a recursion sj = s(sj−1, yj, θj). This can be used to
propagate sufficient statistic particles in an efficient manner. Given Jth stage par-

ticles s
(g)
J , g = 1, ..., G, we can Rao-Blackwellize to obtain πJ(d)

πJ(d) =
1

G

G

∑
g=1

πJ(d|s
(g)
J ). (25)

This suggests that using conjugate utility functions is helpful in order to obtain the
sufficient statistics.

Given particles s
(g)
j , g = 1, ..., G, our particle design algorithm proceeds as a

four-step procedure:

1. Resample s
(g)
j ; g = 1, . . . , G, using weights proportional to u(s

(g)
j ) where

u(s
(g)
j ) ∝

∫

d

∫

θj+1

∫

yj+1

u(yj+1, d)p(yj+1|θj+1, d)p(θj+1)πj(d|s
(g)
j ).

2. Propagate (y
(g)
j+1, θ

(g)
j+1) using πj+1(y

(g)
j+1, θ

(g)
j+1|s

(g)
j ).

3. Calculate sufficient statistic s
(g)
j+1 = s(s

(g)
j , y

(g)
j+1, θ

(g)
j+1).

4. Update d using πj+1(d|sj+1).

If j = J estimate πJ(d) =
1
G ∑

G
g=1 πJ(d|s

(g)
J ) and obtain optimal decision

d∗ =
1

G

N

∑
g=1

E(d|s
(g)
J ).

14



4.2.1 Example for Particle-Based Design

To illustrate our particle-based approach, we consider the augmented probability
model (18) with the conjugate utility function (12).

Step 1 of the particle algorithm requires evaluation of the resampling weights

u(s
(g)
j ) which are marginal expected utilities at stage j. We can write u(sj) as

u(sj) ∝

∫

d

∫

θj+1

u1(θj+1, d)p(θj+1)πj(d|sj). (26)

It follows from (19) that πj(d|sj) is a gamma density with shape parameter j(n −

α) + 1 and scale parameter sj = ∑
j
t θtyt. Since the prior for θj+1 is also gamma with

parameters a and b, we can write

u(sj) ∝

∫

d
dn−α πj(d|sj)

∫

θj+1

θa+n−1
j+1

(1 + θj+1d/k)n
e−bθj+1

and note that πj+1(θj+1|d) is a Kummer distribution as in (16) with parameters
(a + n, a + 1, bk/d). Thus,

u(sj) ∝

∫

d

∫

θj+1

πj+1(θj+1|d)πj(d|sj). (27)

and the resampling weights are given by

u(sj) ∝

∫

d

K(a + n, a + 1, bk/d)

dα+a
πj(d|sj). (28)

The integration in (28) can not be performed analytically, but we can evaluate (28)
by noting that u(sj) ∝ πj(sj). In obtaining πj(d|sj), the posterior distribution of
d, πj(sj) is the marginal likelihood term in Bayes’ law. This term can be evaluated
numerically since all densities in the numerator and denominator of the Bayes’ law
are of known forms.

For the propogation of next particles, (θ
(g)
j+1, y

(g)
j+1) we need to generate from the

conditional posterior, πj+1(yj+1, θj+1|s
(g)
j ), which can be written as

πj+1(θj+1, yj+1|s
(g)
j ) =

∫

d
πj+1(yj+1|θj+1, d)πj+1(θj+1|d)πj(d|s

(g)
j ).

Since both πj+1(yj+1|θj+1, d) and πj(d|s
(g)
j ) are gamma densities and πj+1(θj+1|d)

is a Kummer density, given the resampled particles s
(g)
j we can propogate (θ

(g)
j+1, y

(g)
j+1).

Thus, starting with a prior set of particles s
(g)
0 we only need carry over particles of

sufficient statistics from one stage to the next in the augmented probability simu-
lation.

Particle methods are particularly useful for sequential designs as they can be
updated in an online fashion as opposed to MCMC simulation which has to be a
run for the entire system. In the context of Bayesian designs see Amzal et al. (2006),
Gramacy and Polson (2011) and by Azadi et al. (2014).
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5 Discussion

Designing ALT’s requires one to maximize expected utility. We propose an aug-
mented probability simulation approach. One advantage of our method over tra-
ditional ones is that our proposed approach enables us to sample more frequently
from high utility regions of the augmented design and uncertainty space. From
a theoretical perspective, we exploit the use of class of conjugate utility functions
as given in Lindley (1976). This provides simplification in implementation of the
MCMC and particle-based methods. The key property that conjugate utilities and
prior distributions possess is that they allow us to obtain conditional sufficient
statistics. We show how this provides further computational efficiency for calcu-
lating the optimal design. We provide an extension of our approach to multiple
point fixed designs. There are many areas for future research, in particular fully
sequential settings where particle filtering methods; see see Johannes and Polson
(2009), can be used for obtaining optimal designs. Furthermore, alternative sam-
pling methods such as nested sampling can be incorporated into APS as recently
proposed by Ekin, Polson and Soyer (2016).
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