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Abstract

We analyze dynamic stationary models of capital structure, in partial and gen-

eral equilibrium, when managers cannot commit to firm-value maximization. The

model permits us to quantify both the private cost to firms of the commitment

problem, and also the aggregate cost of its externality. Our setting encompasses

time-varying economic and firm characteristics, as well as valuation under gener-

alized preferences. The model provides an explanation for the procyclical use of

unprotected debt: the private costs of non-commitment increase in bad times. Like-

wise, expropriation incentives rise when firm valuations are low. Hence, without

commitment, leverage can be countercyclical. This dynamic amplifies the effect

of excess debt on aggregate risk. A range of parameterizations suggests that the

social cost of unprotected debt can be large. We present evidence supportive of the

prediction that firms with unprotected debt increase their borrowing in bad times.

Keywords: capital structure, covenant valuation, general equilib-

rium, social cost of contracting frictions

JEL CLASSIFICATIONS: E21, E32, G12, G32

∗We are grateful to Steven Baker, Andrea Gamba, Thomas Geelen, Zhiguo He and Robert Heinkel
for thoughtful comments. We also thank seminar participants at Cambridge University, the NFA 2018
Annual Meeting, Purdue University, the SFS 2018 Cavalcade, UIUC, the UBC 2018 Winter Finance
Conference, and the WFA 2018 Annual Meeting.
†Corresponding author: University of Illinois, Urbana-Champaign, 1206 S 6th St Champaign IL

61820 USA, tcj@illinois.edu.
‡Purdue University
§University of Illinois, Urbana-Champaign

1

tcj@illinois.edu


1. Introduction

This paper examines the quantitative implications of noncontractible debt-equity conflicts

in partial and general equilibrium. In particular, we compute and contrast the private

and social costs of equity-maximizing leverage policies.

Following the financial crisis of 2007-2009, a broad consensus has emerged that fric-

tions in corporate finance can have first-order effects on the macroeconomy. However,

while there is a vast theoretical literature delineating firm-level effects of financial fric-

tions, progress in incorporating its insights into macroeconomic models has been modest.

Important questions remain about which frictions matter in aggregate, and how much.

To address such questions, corporate frictions need to be examined in a setting that

has several non-trivial properties. First, to be closeable, the model must permit aggrega-

tion over the population of firms. Second, the model must include a realistic preference

specification in order to speak to to issues of welfare. Third, the driving exogenous state

variables need to be rich enough to encompass time-varying business conditions. Fourth,

at the firm-level, the problem should include endogenous financial policies that reflect

the friction being modeled. Fifth, to examine aggregate moments, the model needs to

admit unique stationary equilibria. Last, solutions should have quantitatively reasonable

implications for the dynamic properties of the main real and financial quantities in the

economy.

Our study examines one particular friction in a tractable and transparent framework

that includes all of these features. It has long been well understood that equity holders

have incentives to increase firm debt to the detriment of creditors, and possibly even to the

point of lowering overall firm value. An influential post-crisis paper, Admati, DeMarzo,

Hellwig, and Pfleiderer (2013), highlighted (in the context of banks) the potential social

costs of these incentives.1 Do equity-maximizing policies, in fact, have quantitatively

1Specifically, the paper examines and rebuts numerous arguments advancing the counter-hypothesis
that reducing bank debt below equity-maximizing levels would entail social costs.
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important implications for aggregate risk and welfare? The current work presents (to

our knowledge) the first formal investigation of this subject.

We build on the subsequent work of Admati, DeMarzo, Hellwig, and Pfleiderer (2018)

and DeMarzo and He (2018) who have analyzed dynamic capital structure models in

partial equilibrium, in which managers cannot commit (at time-zero, i.e., when a firm is

first capitalized) to not alter debt levels in the future. These works contain numerous

insights, foremost of which is that, indeed, absent commitment, equity holders will prefer

to take on excessive debt, and will resist debt reductions even when the value creation

from doing so would be substantial. Their settings, however, do not encompass the

elements described above that are necessary to address our topic.

We therefore introduce a new formulation of the commitment problem that increases

tractability on several dimensions. The model yields closed-form optimal policies for

leverage and default and for prices of debt and equity. Our equilibrium concept is intuitive

and yields unique stationary equilibia for a wide range of relevant parameterizations. We

also allow firm and macroeconomic parameters to change over time. Our analysis is

undertaken using generalized preferences, rather than risk-neutrality. This enables us to

quantify, in a fully-specified asset-pricing framework, the valuation consequences of the

lack of commitment in debt policy.

Most importantly, the tractability of our framework permits aggregation across firms,

meaning that we are able to close the model, and thus capture the feedback from corporate

decisions to marginal utility and discount rates, which, in turn, affect the optimal policies.

Solving the general equilibrium allows us to quantify the social cost and the degree of

externality stemming from lack of commitment.

In addition to the unconditional effects of increased debt levels, our solutions also

permit us to offer insight into the implications for debt dynamics. Recent empirical work

(Halling, Yu, and Zechner (2016), Johnson (2018)) documents countercyclical patterns

in target leverage ratios and debt issuance, suggesting that firms have private incentives
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to shift to debt financing in bad times. In the context of our model, countercylicality

induces further welfare costs, which we quantify.

While the general equilibrium analysis is the principal contribution of our work, the

firm-level building blocks also contribute new insights to the line of research studying the

determinants and value consequences of covenants in debt contracts. (See Roberts and

Sufi (2009) for a survey of this research.) Our model offers a theory of how incentives to

achieve commitment vary over time (within a firm) and across firms with different char-

acteristics, and thus when and why covenant strictness may vary. Indeed, the increasing

prevalence of “cov-lite” debt,2 has drawn the attention of global financial regulators,

suggesting again that there may be an important social dimension to the contracting

problem.

Our main results are as follows.

In common with the works above, our model produces greater leverage in the ab-

sence of commitment. Comparison of the equity-maximization decision with firm value-

maximization reveals that the distortion incentives scale inversely with firm valuation

multiples (e.g., Tobin’s Q). The primary dimensions of the trade-off problem (default

costs and tax benefits) scale with firm value, but the marginal expropriation benefit does

not. Intuitively, when the firm’s underlying business is valuable, expropriating wealth

from existing creditors is a low priority for managers. To investigate magnitudes, we

compute the loss of firm value in numerical examples. The surplus that accrues to firms

that can achieve commitment (e.g., through covenants) can be economically large, and

agrees reasonably well with estimates in Matvos (2013) and Green (2018).

Next, we document that this surplus is countercyclical. This parallels our first finding.

Intuitively, again, in good times the marginal benefit of achieving commitment is small.

This observation provides an explanation for the empirically observed procyclical use of

2At the end of 2018, 79% of the $ 1.17 trillion outstanding leveraged loans in the U.S. were classified
by S&P as cov-lite. Cross (2019).
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unprotected debt, which is sometimes thought to be driven by investor irrationality or

agency incentives to “reach for yield.” Here, however, there is simply less reason for firms

to assume additional contracting costs when they issue new debt in good times.

Because expropriation incentives rise when firm valuations are low, it is also the

case that firms without commitment sell relatively more debt in bad times. The first-

order trade-off incentive of higher expected default costs almost always implies that

firms with commitment sharply reduce leverage in bad times. The same applies without

commitment, typically also producing optimal decreases in leverage. But these decreases

are significantly smaller, and optimal policies sometimes actually call for increasing debt

issuance.

Turning to general equilibrium, the overall higher leverage without commitment im-

poses real costs due to higher default rates and output volatility. We show that the

social cost in terms of welfare loss significantly exceeds the private cost borne by owners

of firms. In addition to the level of excess debt, the increased countercyclicality of debt

in the absence of commitment provides a further level of amplification, which can be of

the same magnitude as the level effect.

While recognizing the limitations of drawing precise numerical conclusions from a

model that remains a stylized depiction of the macroeconomy, we show that our results are

qualitatively robust across a range of parameterizations. In particular, the findings with

respect to the degree of externality do not depend strongly on the preference specification.

We thus verify the conjecture in Admati, DeMarzo, Hellwig, and Pfleiderer (2013) that

equity maximization in capital structure may entail significant social consequences.

Finally, we take the model’s new testable implication to the data. Using covenant-

based measures of commitment at the firm level, we present empirical evidence supportive

of the hypothesis that firms with unprotected debt increase their borrowing in bad times,

when economic growth is low or when valuation multiples are small. Back-of-the-envelope

calculations suggest that if all debt were protected, the effect on aggregate leverage
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variability would be non-negligible. Besides contributing to the empirical literature on

debt covenants, the findings support the assertion that the theoretical mechanisms in our

model may have important effects both at the firm and aggregate levels.

1.1 Relation to Literature

Our paper extends the tractable stochastic environment introduced in Johnson (2018).

That work is also concerned with the social cost of corporate debt decisions, and analyzes

a general equilibrium trade-off model versus an alternative formulation embedding moral

hazard. The form of the debt contract in that paper precludes commitment issues,

however. So it does not address the potential real effects studied here.

Commitment problems in debt policy decisions were first formally modeled in Bizer

and DeMarzo (1992) in the context of sequential borrowing. Other work has analyzed

the lack of commitment on debt maturity. For example, Brunnermeier and Oehmke

(2013) show that lack of commitment in maturity structure leads to shorter average

maturity of debt because a firm has an incentive to shorten one creditor’s debt contract

to expropriate other creditors. In response, other creditors will demand short-term debt

contract as well.3

On the leverage dimension, as discussed above, Admati, DeMarzo, Hellwig, and Pflei-

derer (2018) have shown, in a simple two-period setting as well as numerically illustrating

in a dynamic setting, that lack of commitment for future capital structure policies has

profound impact on firms’ leverage dynamics. Without a commitment device, sharehold-

ers always want to increase leverage following good performance, even when new debt is

junior to old debt. Equity-maximizing managers are never willing to reduce leverage no

matter how large the potential increase in overall firm value would be. The mechanism

is that existing creditors would capture all the firm value enhancement that leverage

reduction achieved.

3See also He and Milbradt (2016).
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DeMarzo and He (2018) analytically derive the leverage dynamics of a firm with-

out commitment, with a general cash flow process in continuous time.4 They analyze

a “smooth” equilibrium where leverage changes are gradual (of order dt). They find

that shareholders never actively reduce leverage. They also speak to the effect of no-

commitment on debt maturity structure choice as well as the mutual reinforcement be-

tween a firm’s investment strategy and financing strategy if it faces commitment issues

on both dimensions. Their model thus delivers rich implication about the effect of non-

contractibility on firms’ financing as well real decisions.5

More broadly, the present work belongs to an emerging literature examining the

macroeconomic implications of contracting problems in general equilibrium.6 Impor-

tant contributions include Cooley, Marimon, and Quadrini (2004), who examine the

inability of lenders to enforce repayment from entrepreneurs. Their model implies that

limited contractual enforceability amplifies aggregate shocks through the cyclicality of en-

trepreneurs’ hold-up power. In Levy and Hennessy (2007) countercyclical leverage arises

from the need to maintain high managerial ownership in bad times to solve agency prob-

lems. Lorenzoni (2008) models two-sided limited commitment by lenders (households)

and borrowers (entrepreneurs), in a three-period economy. As in our model, inefficient

liquidation leads to welfare losses. In contrast, Gale and Gottardi (2015) model a social

benefit to debt as default allows efficient firms to benefit by buying bankrupted firms’

assets at fire-sale prices. Their equilibrium features too little, rather than too much debt,

4Our specification is not nested in that of DeMarzo and He (2018) because they do not allow the
possibility of jumps into the default region. See their footnotes 15 and 17. We provide a full comparison
of our (partial equilibrium) findings and theirs in Section 2.3.2.

5It is perhaps worthwhile to distinguish the contracting problem studied in these papers (and ours)
from a separate literature that investigates the implications for financial policy of the principle-agent
problem when managers maximize neither firm nor equity value, but rather their own private value.
This problem is modeled in Morellec (2004). There, the manager’s private value is maximized with
inefficiently low leverage.

6There is, of course, an extensive literature on the role of financing frictions in business cycles. See
Brunnermeier, Eisenbach, and Sannikov (2013) for a recent survey. Here we are distinguishing models
wherein capital structure policy is an endogenous outcome under incomplete contracts, rather than being
driven by exogenous supply constraints.
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resulting in underinvestment and imposing a welfare cost.

To summarize, this study contributes both new tools and new insights towards the

effort to examine corporate finance problems and macrofinance outcomes within the same

setting. We quantitatively evaluate the implications of debt-equity contracting frictions

in a model that includes endogenous general equilibrium determination of prices and

quantities of debt and equity, time-varying business conditions, and unique stationary

equilibria. Our tractable framework may be suitable more generally to study dynamic

contracting problems in general equilibrium.

2. Model

This section describes a continuous-time economy in which corporate financial policies

may be made in the interests of equity holders. We define the consistency condition

which forms our equilibrium concept. We then present solutions at three levels. First,

we solve the problem in partial equilibrium where output shocks are the sole source of

variation. Second, we extend to the case of time-varying parameter regimes. Finally, we

show how to aggregate the economy and solve for the full general equilibrium. To start,

we describe the setting, which mostly follows Johnson (2018).

2.1 Firms, Debt, and Discount Rates

Each firm in the economy consists of a single project that produces a non-negative stream

of goods. Let Y (i) denote the instantaneous output flow of project i. We assume Y (i)

follows the pure-jump stochastic process

dY
(i)
t

Y
(i)
t

= µ dt+ d

[
Jt∑
j=1

(
eϕ

(i)
j − 1

)]
. (1)
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Here Jt is a regular Poisson process with intensity λ, and the percentage jump size is

ϕ
(i)
j . If a jump occurs at time t, the sign of the jump is a Bernoulli random variable (with

both outcomes having equal probability). The jump sizes ϕ(i) are drawn from gamma

distributions defined over the positive or negative real line, depending on the sign of

the jump. A discontinuous cashflow process with random jump sizes is convenient for

modeling credit risk because jumping below any given bankruptcy threshold is always a

possibility.7

Following Admati, DeMarzo, Hellwig, and Pfleiderer (2018) and DeMarzo and He

(2018), we assume that firms are allowed to issue or repurchase debt at any time at no

cost. Equity finance is also assumed costless. Increases in debt are paid to equity holders;

decreases are funded by equity holders. There is no physical capital in the model, and,

to keep the focus on financial policy, the firm’s stock of (intangible) capital is fixed.8

The form of the debt contract is restricted to being a perpetual note. Extending the

model to allow finite maturity debt is straightforward. However, the firm faces no choice

on maturity, or on any dimension of contract design, and can issue only one class of debt.

Following the usual assumptions in the capital structure literature, we assume the

firm receives a tax deduction for coupon interest paid, and that this deduction is re-

alized continuously as long as the firm is alive. When owners of the firm choose to

abandon, we assume the project’s income stream is permanently reduced by a factor,

α, and that creditors inherit the rights to this stream. As usual in this class of models,

one non-contractibility built into the set-up is that the firm management cannot commit

in advance not to act in the interests of equity holders by defaulting when optimal (for

equity) to do so. (There are no agency frictions affecting managerial decisions.)

To value the firm’s securities, the economy is endowed with a pricing kernel, denoted

7The analysis below goes through completely in the case of mixed jump-diffusive dynamics.
8The model’s qualitative results will not change if we associate a differential unit of physical capital

with each firm that must be raised by net external finance at time-zero. Also, as described below, the
model can include investment at the household level that changes the aggregate stock of projects.
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Λ. Its dynamics (which are to be derived in equilibrium below) are as follows

dΛ

Λ
= η dt+ d

[
Jt∑
j=1

(
(u−γ − 1)1{j,+} + (d−γ − 1)1{j,−}

)]
.

Here γ, η, u, and d are constants to be determined in equilibrium. These numbers deter-

mine the economy’s riskless interest rate as

r = −η − 1
2
λ[(u−γ − 1) + (d−γ − 1)].

Note that the jump-instance process, J , is the same as the one in the firm’s output

specification, (1). The model thus assumes jumps are systematic events. Intuitively,

u > 1 and d < 1 correspond to the aggregate fractional change in output on a jump

event, and γ corresponds to the relative risk aversion of the representative agent.

2.2 Firm Policies and Asset Values

The firm’s financial policy at time-t consists of an amount of debt (the coupon pay-

ment per unit time), Ct, and an abandonment decision, i.e., whether not to default at t.

Because adjustment is costless, the firm will optimize its policy continuously, given the

current state. Because the economy’s innovations are independent and identically dis-

tributed (i.i.d.), the firm’s current state is summarized by the level of output Yt and the

inherited level of debt Ct−. Due to the pure-jump stochastic structure, nothing happens

between output jumps. It follows that default will only occur immediately after a (suffi-

ciently negative) jump, and that, conditional on not defaulting, the firm will continually

re-optimize its debt quantity.

At any point in time, the default policy can be characterized by the largest (least

negative) output jump size such that default is optimal for any subsequent jump below

this level and not otherwise. Let ϕ < 0 denote this critical value. That is, the default
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threshold Y is eϕYt. Because of the costless, continuous optimization (and hence the

Markov nature of the policies) and the i.i.d. innovations, it is natural to conjecture that

ϕ itself will be constant.

In fact, we will show that this type of default policies also entail two convenient

properties. First, they imply that debt quantity and firm value both scale linearly with

output. Second, the policy problem collapses to one dimension: C and ϕ are linked by a

characterization of optimal default. Because of the first property, we refer to policies in

this class as linear. Our analysis will restrict attention to this class.

Linear, homogeneous policies mean that firms are scale-invariant, as in the classic

dynamic capital structure model of Goldstein, Ju, and Leland (2001). More recently, in

a model of agency conflict, Lambrecht and Myers (2017) show that, under power utility,

managers optimally set debt to be linear in the firm’s net worth. In a setting similar

to ours, without adjustment costs and with downward jumps in asset values, Lambrecht

and Tse (2019) analyze the effect of alternate default resolution regimes on a bank whose

equity maximizing managers follow a debt policy that is linear in loan value.9

We now show that, given a policy in the linear class, we can obtain asset prices in

closed-form. We begin with the optimal default condition.

Lemma 1. Let V denote the value of the firm’s project and F the value of its debt. The

optimal default policy is for owners to abandon the firm on a jump of Vt below Ft−.

Assume that, prior to default, V and C are linear in output Y and let v = V/Y

and c = C/Y . Also assume F is linear in C with p = F/C. Then the critical default

threshold is

eϕ = Ft−/Vt = cp/v. (2)

Note: all proofs appear in Appendix A.

9In their setting, the debt is (uninsured) deposits. No commitment issue arises because the market
continually adjusts the deposit rate to reflect default risk. There is thus no way for owners to expropriate
value from existing creditors.
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Besides characterizing the optimal default policy, the lemma is notable in that it

provides an alternative and very convenient interpretation of the parameter ϕ as simply

the log of the market leverage ratio: debt value divided by firm value. We will freely use

this interpretation below, and occasionally just refer to ϕ as “market leverage.”

Next, we use the pricing kernel to compute the value of the firm and the bond,

conditional on ϕ. To economize on notation, define the following quantities

µ̃ = µ+ 1
2
λ[u−γ(u− 1) + d−γ(d− 1)] (3)

˜̀
d = 1

2
λ d−γ (4)

˜̀
u = 1

2
λ u−γ, (5)

and let

H(ϕ) =

∫ ϕ

−∞
ex g−(|x|) dx (6)

D(ϕ) =

∫ 0

ϕ

ex g−(|x|) dx + αH(ϕ) (7)

U =

∫ ∞
0

ex g+(x) dx. (8)

where g± stands for the density functions of positive and negative jumps.

Proposition 1. Given a default boundary, ϕ, assume the denominators in the following

expressions are positive. Then firm value and bond value are linear in output, bond value

is linear in the coupon amount, and

p = 1./[r + ˜̀
d(1−G−(|ϕ|)− α H(ϕ)e−ϕ)] (9)

v = (1− τ)./[r − µ̃− ˜̀
d (D − d)− ˜̀

u (U − u)− τeϕ/p] (10)

where G− is the distribution function of negative jumps and α is the cashflow recovery
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rate following default.

2.3 No-commitment Equilibrium

We now are in a position to describe our formulation of the commitment problem. If man-

agers can commit to future leverage policy, then, at time-zero (when the firm originates)

owners simply choose ϕ to maximize v as given in the proposition above. (Choosing ϕ

fixes p and v, and therefore c, using the optimal abandonment result.) The result is a

version of the Leland (1994) model under costless debt adjustment, with jump dynamics.

This case, which we refer to as “full commitment”,10 serves as the benchmark in the

subsequent analysis.

Now suppose that, instead, after an initial issuance of some amount C̄ = c̄Y0, man-

agers are free to do whatever they want. In particular, they can consider any alternative

linear policy ĉ (together with the associated default policy). Any such policy, if imple-

mented consistently, makes the value of their equity claim (per unit output)

[v − pĉ] + p[ĉ− c̄] = v − pc̄,

where v and p are determined by the new policy. (The second term is the net proceeds

from the purchase/sale of new debt. The first term is the residual equity value post-

issuance.) So suppose ĉ is chosen to maximize that expression. Then owners immediately

face the same choice all over again. Why stick to ĉ any more than c̄? Given their lack

of commitment to any policy, there can be no equilibrium unless their proposed policy is

self-enforcing. This gives rise to the following definition.

Definition 2.1. Given the pricing functions v and p determined by Proposition 1, and

the default policy ϕ implied from Lemma 1 by a given debt amount c, let C be the set of

10This is slightly inaccurate terminology in the sense that managers still do not commit to forgo
inefficient default.
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fixed points of the mapping

c(c̄) = arg max{v(c)− p(c)c̄}

also satisfying v − pc > 0.

Then c∗ is a linear no-commitment equilibrium if and only if c∗ is the solution

to the equity maximization problem:

max
c∈C
{v(c)Yt − p(c)Ct−, 0}

for all values of the state variables (Yt, Ct−).

Belonging to the set of fixed points is a necessary condition for equilibrium, because

otherwise there are immediate and continual incentives to deviate. If there are multiple

fixed points, then any one of them can only be an equilibrium if there are never incentives

for equity holders to switch to another one. As our numerical work will illustrate, we can

find unique equilibria for a range of reasonably parameterized and interesting examples,

and we present sufficient conditions for this to occur. But it is also possible to construct

examples with multiple or zero fixed points.

Implementing a given linear policy involves following a mechanical rule for debt is-

suance or repurchase. However, following that rule does not mean that managers be-

have suboptimally. Following a down-jump, for example, manager’s problem is, first,

whether or not to default, which depends on the level of inherited debt prior to the

jump and the cost of implementing the repurchase policy. In addition, if there are

alternative linear equilibria, managers could deviate to them. Non fixed-point alter-

natives are irrelevant. Likewise, at time-zero when the firm has no inherited debt:

c̄ = C0−/Y0 = 0, implementing a policy c? gives equity the payoff per unit output

v(c?) − p(c?)c̄ (or v(c?)). In general, this value will be less than under the alternative
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policy ĉ = arg max{v(c) − p(c)c̄} = arg max v(c). However, unless ĉ ∈ C, this value is

not attainable, absent commitment. The market will not support the alternative prices.

2.3.1 Equilibrium Properties

What effect does absence of commitment have on firm policies? Intuitively, if a firm

issues debt without imposing restrictions on managers, the debt is unprotected against

actions that can transfer value from creditors to equity holders. In fact, in a two-period

trade-off model it is easy to show that this situation always arises: for any non-zero

amount of initial debt at t = 0, managers will optimally sell more debt at t = 1, even

if nothing else changes. This is the “ratchet effect” described by Admati, DeMarzo,

Hellwig, and Pfleiderer (2018). Equity holders optimally take on more leverage than

value maximization would imply. We can readily prove an analogous result (with the aid

of some simplifying, but not necessary, conditions).

Corollary 2.1. Assume that α = 0, r > 0, and that the probability density function

of negative jumps, g−(x), satisfies 1
g−

dg−

dx
≤ − τ

1−τ and g−(0) > τ
1−τ

r+˜̀
d

˜̀
d

. Then, with

commitment, a unique optimal capital structure exists, characterized by ϕC. If a unique

no-commitment equilibrium exists, then it is characterized by higher market leverage:

ϕNC > ϕC and lower firm value.

The following result provides sufficient conditions (given explicitly in the appendix)

for the existence and uniqueness of a no-commitment equilibrium.

Corollary 2.2. Assume the conditions of Corollary 2.1 hold, and, in addition assume

the conditions enumerated in the appendix. Then a unique no-commitment equilibrium

exists.

A necessary condition for existence of a fixed-point in the capital structure problem

is that the marginal incentive function dv
dc
− cdp

dc
(viewed as a function of c) must switch
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sign.11 This is different from the settings examined in Admati, DeMarzo, Hellwig, and

Pfleiderer (2018), in which the marginal incentives to issue debt are always non-negative.

Here it can be the case that, when existing debt is high enough, after a differential

reduction −dc the net gain to equity through reduced default risk can be positive. Or,

equivalently, the fraction of the firm value increase that accrues to debt holders (which

is cdp
dc
/dv
dc

) can be less than one. Referring to equations (10)-(9) and setting α = 0, ˜̀
d = 1

to simplify, it is convenient to differentiate p and v with respect to the default threshold,

ϕ (and then
dϕ

dc
> 0 appears in both expressions). Then the two terms work out to be

c
dp

dϕ
= −p v eϕ g−(|ϕ|)

(which uses c = eϕv/p), and

dv

dϕ
= −v2 eϕ

(
g−(|ϕ|)− τ

1− τ
1

p

)
.

Cancelling a common v eϕ, the change in firm value scales like v times the marginal

change in default probability, g−(|ϕ|), whereas the change in the debt price scales like

p times that probability. Typically, v > p, and this is the basis for the observation

that firm value can increases more than the value gain to existing creditors upon a debt

reduction. The remaining term in the second equation τ
1−τ

v
p

is always positive: this is

the contribution of an increase dc to tax shields. But the incentive function is negative if

(v − p) g−(|ϕ|) > τ

1− τ
v

p
.

When c is small, ϕ is very negative and the marginal change in default probability is

negligible. In this case the tax shield term dominates and the inequality goes the other

11This is because the incentive function is zero at any fixed point, and is also a continuous function
of c. The incentive is positive for c = 0. If there is a zero of the function, then they it become negative
for high enough c.
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direction. As c increases and ϕ rises towards zero, the left side can dominate (depending

on the shape of the jump density) leading equity to prefer reduced debt. This may

fail for many parameter configurations, and the model will reproduce the ratchet effect.

However, for the cases we examine in a which a unique linear equilibrium exists, it must be

true that equity holders’ local incentives always lean in the direction of a debt reduction

whenever c > c?, as happens following any down-jump in Y (unless it induces default).

An important question for our subsequent analysis is to understand what factors

drive the incentive for extra leverage when commitment is absent. Some helpful intuition

emerges from examining the first-order condition for firm-value maximization and com-

paring it to the analogous condition under equity maximization. The proof of the first

corollary above shows that the condition can be written

˜̀
d g
−(|ϕ|)− τ

1− τ

[
r + ˜̀

d (1−G−(|ϕ|))
]

= ˜̀
d g
−(|ϕ|) p/v. (11)

Here the left side is just the marginal cost of default losses minus the marginal benefit

of tax shields – the standard trade-off terms. Setting these terms equal to zero is the

optimality condition under firm value maximization, i.e., with full commitment. The

right side is the wedge introduced by the contracting friction. This is the marginal

benefit to equity holders of decreasing the value of debt. It thus seems accurate to label

this an expropriation incentive. Figure 1 shows graphically how this wedge shifts the

optimal market leverage (which is eϕ) to the right.
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Figure 1: First-order conditions

The figure plots the left and right sides of Equation (11). Parameter values are σ = 0.10, µ =
0.03, α = 0, λ = 1, L = 3, τ = 0.30, γ = 4, r = 0.07; d = 0.97, u = 1.03.

The key intuition in terms of how big the distortion is comes from the simple term 1/v

on the right side of the first-order condition. This tells us that, other things equal, the

wedge is small when firm value is large, and large when firm value is small. Essentially,

the value created by optimizing the primary trade-off to capital structure scales up with

the value of the firm. But the expropriation incentive does not. Instead, the marginal

benefit of adding a unit of leverage – taking the quantity of existing debt as given – only

scales with the unit value of debt, which is p. So the intuition to bear in mind is that

the threat of expropriation is likely to be most significant under adverse conditions for

the firm, when the benefits to maximizing marginal enterprise value are low.

2.3.2 Comparison with DeMarzo and He (2018)

Like this paper, DeMarzo and He (2018) (hereafter DH) study the commitment problem

in a continuous-time setting with Leland-type debt and no adjustment costs. They

restrict attention to debt policies characterized by slow adjustment, dC = G dt. The
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first-order condition for equity-maximizing issuance implies that the debt price p must

equal −∂V e

∂C
, where V e is the value of equity (which is V −pC in our notation). Moreover,

if this condition is satisfied, then the issuance policy will always represent a fixed-point in

the sense we defined above, because, given any inherited debt level C̄, the equity payoff

from adjusting to C is V e(C) +p(C)(C− C̄) is maximized at C = C̄. A natural question

is how their fixed-point policy relates to ours. In particular, if both are valid equilibria,

do they lead to economically different conclusions about the impact of commitment on

leverage?

As a first clarifying observation, note that the fixed-point argument above does not

show that discrete debt adjustment policies are suboptimal. Rather, it shows that dis-

cretely adjusting one time, and thereafter following a DH-type policy is not optimal.

However, it does not address continually following a discrete adjustment policy, as in our

linear class, which leads to completely different pricing functions V and p. The structure

of DH’s logic is the same as ours: both arguments rule out incentives to deviate to an-

other policy within the class being examined. Neither their analysis nor ours examines

deviations to a different class.12

In fact, both equilibria can exist and be self-consistent. To confirm this, we generalize

the DH model to our case of non-diffusive cash-flow dynamics.13 In side-by-side compar-

isons using the same parameter configurations, we confirm that neither the DH policy

nor the linear policy dominates the other from the point of view of equity holders.

In terms of economically different implications, a seemingly stark contrast between

the DH policies and ours is that in the DH solution, as in the examples in Admati,

DeMarzo, Hellwig, and Pfleiderer (2018), debt issuance is always positive, whereas our

policies (when an equilibrium exists) feature both issuance and repurchase.14 However

12In that sense, each paper does impose a type of commitment on managers’ debt policies.
13For technical reasons, the solution fails for pure jump dynamics, so we solve the case with both jumps

and Brownian cash-flow shocks. The analogous generalization of our Proposition 1 is also derived. These
computations are in an appendix available upon request.

14The technical conditions leading to a repurchase incentive are discussed above.
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this contrast is less fundamental than it first appears. The DH model does not imply that

non-commitment leads to perpetually increasing leverage. Firms can still have “too much”

debt (even for equity-maximizing managers) when the cash flow process approaches the

default threshold. Although issuance remains positive, it goes to zero rapidly as Y

declines. Leverage (C/Y ) then falls when the issuance rate drops below the cash-flow

growth rate (µ > 0). This results in leverage paths that stay within a stable range.

As a practical matter, the path-dependent nature of the DH model solution would

render it too complex for the main purpose of this paper. A key advantage of our linear

equilibria is that their simplicity permits us to achieve the goal of extending the analysis

of the commitment problem to general equilibrium and time-varying economic conditions.

2.4 Time-Varying Parameters

The model in the previous section presents a stationary capital structure equilibrium in

a fully dynamic multiperiod setting. A natural next question is whether the model can

be extended to encompass time-variation in the firm’s environment? We now show that

it can, and generalize the equilibrium concept accordingly.

We consider a two-regime version of the model, in which the regimes are indexed by

s ∈ 1, 2. In principle, all the parameters of the model σ, µ, λ, α, L, u, d, r are allowed

to vary with s. This encompasses variation in either (or both) of the firm-specific, and

macroeconomic variables. The state index itself follows a Markov switching process with

intensity denoted ω(s). This process is assumed to be independent of the instantaneous

output process Y , implying that Y does not change when a state switch occurs.

Naturally enough, this setting leads us to conjecture that the optimal financial policy

and the claims prices remain linear in output, but with coefficients c(s), v(s) and p(s)

that depend on the state. It is then straightforward to show that the solution for the

optimal default boundary is again given by (2) so that eϕ(s) = c(s)p(s)/v(s).

That threshold determines the firm’s response to an adverse output jump. One sub-
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tlety that then arises is whether it is also ever optimal for owners to abandon upon the

event of a switch from one state to the other. Nothing in the set-up precludes this possi-

bility, and modifying the results below to deal with it is straightforward. For simplicity,

we will present results for the case in which this is not optimal. This imposes a regularity

condition on the model parameters summarized in the following lemma.

Lemma 2. For a given capital structure policy, and implied claims values, define

Condition S to be the following pair of inequalities:

v(2)/v(1) > exp(ϕ(1)), v(1)/v(2) > exp(ϕ(2)).

If these conditions hold, then it is not optimal for owners to abandon the firm upon a

switch between states.

Even though output doesn’t change on a state switch, it will in general be true that

discount rates change. Specifically, letting It denote the Poisson process counting state

switches (whose intensity is ω(s)), the kernel now can be written

dΛ

Λ
= η(s) dt+ d

[
Jt∑
j=1

(
(u(s)−γ − 1)1{j,+} + (d(s)−γ − 1)1{j,−}

)]

+ d

[
It∑
i=1

(
(ξ(1)− 1)1{i,1} + (ξ(2)− 1)1{i,2}

)]
. (12)

where 1{i,2} indicates a switch from state 2 to state 1 , and ξ(2) > 0 is the ratio of marginal

utility in state 1 to that of 2 (and vice versa for 1{i,1} and ξ(1)). If ξ(1) = ξ(2) = 1, the

regime switches can be viewed as idiosyncratic, or unpriced, events.

Now, define the following risk-adjusted intensities

õ(s) = ω(s) ξ(s)
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and, re-define the quantities in (3)-(8) to be their state-dependent counterparts (i.e. using

he distribution and densities, G±(s) and g±(s), of jumps in each state), We then have

the following generalization of Proposition 1.

Proposition 2. Given a pair of values ϕ(s), define the following coefficient matrices

Kp =

[
r(1)+õ(1)+˜̀(1)(1−G−(|ϕ(1)|)−α(1)H(1)e−ϕ(1)) −õ(1)

−õ(2) r(2)+õ(2)+˜̀(2)(1−G−(|ϕ(2)|)−α(2)H(2)e−ϕ(2))

]

Kv =
[
r(1)−µ̃(1)+õ(1)−˜̀

d(1)(D(1)−d(1))−˜̀
u(1)(U(1)−u(1))−τeϕ(1)/p(1) −õ(1)

−õ(2) r(2)−µ̃(2)+õ(2)−˜̀
d(2)(D(2)−d(2))−˜̀

u(2)(U(2)−u(2))−τeϕ(2)/p(2)

]
Assume the preceding matrices are both positive definite. Then firm value and bond value

are linear in output, bond value is linear in the coupon amount, and the bond value p and

firm value v are the solutions to

Kpp = 12 (13)

Kvv = (1− τ)12 (14)

where 12 = [1, 1]′.

Under full commitment, a firm that starts life in state s then chooses the pair ϕ to

maximize v(s).15 Without commitment, we again require an equilibrium policy to satisfy

a consistency condition.

Definition 2.2. Let C be the set of policy vectors ϕ together with associated price

vectors v and p determined by Proposition 2, and coupon vector c determined by the

default condition in Lemma 1, such that, in each state, conditional upon the policy in the

15Note that there are, in general, two full-commitment solutions for otherwise identical firms, depend-
ing on their birth state, because the same pair of default thresholds will not maximize both v(H) and
v(L).

22



other state, the policy is a fixed point of the mapping

c(c̄; s) = arg max v(c; c; s)− p(s)c̄,

and, in both states, and v(c)− p(c)c > 0.

Then c∗ is a linear no-commitment equilibrium if and only if c∗ is the solution

to the equity maximization problem:

max
c∈C
{v(c)Yt − p(c)Ct−, 0}

for all values of the state variables (st, Yt, Ct−).

Intuitively, unless a policy has this property, then managers have an incentive to

deviate instantaneously.

Constructively, one can identify such a joint fixed point (if it exists) by building two

loci in the plane defined by ϕ(1) × ϕ(2) as follows. First, for each value of ϕ(1), find

the fixed point ϕ̂(2) of the state-2 equation. This defines a locus (ϕ(1), ϕ̂(2)). Then, for

each value of ϕ(2), find the fixed point ϕ̂(1) of the state-1 equation. This defines a locus

(ϕ̂(1), ϕ(2)). If an intersection of the two loci exists, it satisfies the definition above. We

will show that this construction works and yields a unique solution in numerical examples

in Section 3.

2.5 General Equilibrium

The models developed above will allow us to analyze in the sections below how the firm’s

parameters and its environment map into differing effects of commitment on policies and

claim values. It is also of interest to ask how commitment may affect the economy as a

whole. This section explains how the model can be aggregated to compute the implied

general equilibrium.
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The aggregation is made feasible when it is not necessary to keep track of the dis-

tribution of firm characteristics. Hence we assume that the economy is endowed with

a continuum of productive project-firms, whose measure is denoted M , all of which are

stochastically identical.

Specifically, the output jump counting process, Jt, and the sign of the jump, is as-

sumed common across firms. Thus a jump is a systematic event. However, conditional

on the sign, the individual jump incidences are i.i.d. across firms. Intuitively, firms differ

in their exposure to a systematic event, although the degree is only revealed ex post.

Ignoring entry and exit for the moment, we can then integrate over firms to obtain

the dynamics of aggregate output Y in state s as

dYt = µ(s) Yt dt+ d

∫ M

i

Y
(i)
t

[
Jt∑
j=1

(
eϕ

(i)
j − 1

)]
di

= µ(s) Yt dt+ Yt d

[
Jt∑
j=1

(
Et

[
eϕ

(i)
j |ϕj > 0; s

]
1{j,+} + Et

[
eϕ

(i)
j |ϕj < 0; s

]
1{j,−} − 1

)]
.

(15)

where 1{j,+} and 1{j,−} are indicators for the sign of the jth jump. Applying a law of

large numbers, the stochastic term is

Yt d

[
Jt∑
j=1

(
Φ+(t)1{+} + Φ−(t)1{−} − 1

)]

where Φ±(s) are the exponential integrals over the positive and negative jump size dis-

tributions. Thus aggregate output follows a binomial process. Conditional on the state

and the sign of the jump, the size of aggregate shocks is not random. For up-jumps, we

conclude that the aggregate parameter u(s) is equal to Φ+(s).

On a down-jump event, we have already shown that it will be optimal for owners of

firms to default if they experience a drop of log(Y
(i)
t /Y

(i)
t− ) below ϕ(s). We have assumed
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that for all such firms output is thereafter reduced by the factor α(s), which may be

zero. The effect of exit on output is simply to alter the downward aggregate jump size.

In equation (15) above, we replace the down-jump expectation Et

[
eϕ

(i)
j |ϕ(i)

j < 0; s
]

with

Et

[
eϕ

(i)
j |ϕ < ϕ

(i)
j < 0; s

]
+ αEt

[
eϕ

(i)
j |ϕ(i)

j ≤ ϕ; s
]
.

This is exactly the function defined above as D(ϕ, s). Aggregation yields the condition

d = D. (And also U = u.) General equilibrium thus links the firms’ optimal policies to

the aggregate risk.

The results below will continue to assume that it is not optimal for firms to exit upon

a switch of state in either direction. (Hence the sufficient conditions in Lemma 2 need

to be verified in any given solution.) The assumption is sensible in general equilibrium

since the alternative is the simultaneous default of all firms in the economy.

Turning to entry, we assume that households use their resources to create a flow of

new projects, which increases the mass dM/M at an exogenous rate. The flow of new

projects shows up as an additional term in the growth rate, µ, of aggregate output,

dY/Y .

When new projects are created, they are distributed uniformly across households.

Each household sells its projects to all the others. Each firm then sells its initially

optimal quantity of debt, the value of which passes to the equity holders. These financial

transactions between households and themselves result in no net flow of real goods.

Households’ aggregate income is assumed equal to Yt.
16

Next, we assume there is a representative household characterized by preferences of

the stochastic differential utility class (Duffie and Epstein (1992), Duffie and Skiadas

(1994)), the continuous-time analog of Epstein and Zin (1989) preferences. Specifically,

16A government sector is assumed to collect corporate taxes, net of tax shields, and rebate any surplus
to households.
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agents maximize the lifetime value of the consumption stream C, defined as

Jt = Et

[∫ ∞
t

f(Cu, Ju) du

]
.

where

f(C, J) =
βCρ/ρ

((1− γ) J)1/θ−1
− βθJ.

Here β is the rate of time preference, γ is the coefficient of relative risk aversion, ρ =

1 − 1/ψ, where ψ is the elasticity of intertemporal substitution, and θ ≡ 1−γ
ρ

. (We

assume γ 6= 1, ρ 6= 0.) Absent investment, C = Y . Since Y ’s dynamics have already

been determined, it is straightforward to solve for the value function, which determines

marginal utility, and hence the pricing kernel and the interest rate.

Proposition 3. The household’s value function is J = j(s) Y 1−γ/(1− γ), where j(s) is

the solutions to two coupled algebraic equations given in the appendix. The pricing kernel

takes the form given in (12) with

η(s) = βθ [(1− 1

θ
) j(s)−

1
θ − 1]− γµ

ξ(1) = (j(2)/j(1))1− 1
θ , ξ(2) = (j(1)/j(2))1− 1

θ .

The riskless interest rate is then given by

r(s) = −(η(s) + 1
2
λ(s)((d(s)−γ − 1) + (u(s)−γ − 1)) + ω(s)(ξ(s)− 1)).

The results above show how optimal firm policies feed back into the equilibrium

quantities d, u, ξ, and r. These parameters, in turn, are sufficient to characterize the

macroeconomy from the perspective of the firm’s problem. The natural solution proce-

dure is therefore to simply iterate: starting from initial values of d, u, ξ, and r, obtain

the optimal leverage ϕ, then update d, u, ξ, and r, and repeat. In the numerical exam-
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ples below, the procedure converges rapidly to a unique solution as long as the starting

parameters obey the regularity conditions given in the propositions.

3. The Private Value of Commitment

We now turn to the examination of the model’s implied properties. In particular, this

section focuses on the cost of lack of commitment to the firm. We illustrate the character-

istics that lead to greater or lesser cost, both in the cross-section and in the time-series.

The analysis in this section is set in partial equilibrium; we consider general equilibrium

implications in Section 4.

3.1 Cross-Sectional Implications

To start, we numerically illustrate the difference between committed and non-committed

capital structure for a range of firm parameters for the single-regime case where there

is no time-variation in parameters. The exercise holds the economy-wide parameters

(u, d, r, γ, τ) fixed. Also, for simplicity, all numerical examples throughout the paper will

assume that intensity of output jumps is λ = 1, i.e., roughly one jump is expected per

year.

Recall the model’s assumption is that the logarithm of the downward jumps in output

are drawn from a gamma distribution with mean of σ and standard deviation of Lσ.

The distribution of the upward jumps in output plays no role in determining capital

structure or solving the model. For numerical analysis, we will assume that the (log)

upward jumps are drawn from an exponential distribution satisfying the property that

E[Y ′/Y |up] = 1/E[Y ′/Y |down]. In this sense, the jump distribution is symmetrical.17

With these assumptions, the annual standard deviation of log output changes is roughly

17The right-hand side of this expression turns out to be (1 + σL2)1/L
2 ≡ 1/D. To satisfy our distri-

butional assumption, the corresponding exponential parameter for the up-jumps is 1−D.
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2.5 times σ when L = 3. This also the volatility of asset value in this version of the

model, since asset value is proportional to output.

Our analysis in Section 2 showed that the no-commitment equilibrium produces more

leverage than firm value maximization. Table 1 shows the magnitude of the distortion in

debt policy for a range of firm characteristics. Columns with and without commitment

are labeled C and NC, respectively. The first two columns report the quantity of debt

scaled by output(or “book leverage”). The middle columns report the market value of

debt scaled by the market value of assets. The last two columns show the credit spread

on the debt. The first row shows results for a baseline set of firm parameters. Each of

these parameters is then varied to a higher and lower value in the three subsequent pairs

of rows.

From the first row, we see that firms without commitment take on about 50 percent

more debt than those with commitment. This excess debt increases the default risk and

more than doubles the credit spread on the firm’s debt. Because of the lower price (higher

yield), the increase in debt looks less dramatic in market value terms, but still results in

a leverage increase of 22 percent of the unlevered asset value.

From the two middle rows, we see that in terms of market leverage, the distortion is

much higher when firm growth is low, but is not much changed with the level of output

volatility or of the recovery rate. While the quantity of excess debt increases with σ and

α, the lower price of the debt essentially off-sets the increase.

Table 2 shows the valuation consequences of the excess leverage under no-commitment.

The first two columns report the firm valuation multiplier; the next column gives the dis-

count expressed as a multiple of income; the right-most column expresses the discount

as a percentage of the value under commitment. The firm parameter values in each row

are the same as in the preceding table.

Two main observations from this Table are (1) that the loss of investor surplus can

be economically large; and (2) these theoretical values are plausible relative to empirical
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Table 1: Capital Structure : Committed vs Non-Committed

book leverage (C/Y ) market leverage (F/V ) credit spread (y − r)
C NC C NC C NC

µ = 0.03,
σ = 0.10, 0.95 1.52 0.55 0.77 2.30 4.82
α = 0.25

µ = 0.00 0.53 1.18 0.55 0.93 2.30 9.37
µ = 0.06 4.52 4.96 0.55 0.59 2.30 2.65

σ = 0.05 1.03 1.42 0.62 0.78 1.11 2.61
σ = 0.15 1.01 1.65 0.54 0.76 3.50 6.38

α = 0.0 0.77 1.28 0.48 0.69 2.06 4.38
α = 0.5 1.27 1.85 0.67 0.85 2.73 5.24

The table reports theoretical firm properties under capital structure commitment (columns labelled C)

and no-commitment (NC) using the model of Section 2.2. The baseline firm parameters are shown in the

top row left-hand column. Other values are L = 3, λ = 1, τ = 0.3, r = 0.07, d = 0.97, u = 1.03, γ = 4.

estimates. Matvos (2013) estimates the value of an array of bond covenants in a sample of

syndicated loans. In terms of pricing, he finds that including two covenants (the median

in his sample) reduces the credit spread on the loan by 50 percent, on average, which

accords with our findings in Table 1. His methodology also produces estimates of the

issuing firm’s surplus from including protective covenants, relative to the alternative of

issuing unprotected debt. On average, the surplus is 52 percent of the credit spread. This

can be compared with our valuation units in Table 2 by capitalizing the perpetuity value

of the credit spread. Using the parameters in the first row, protected debt carries an

interest rate of 9.3 percent and the riskless rate is 7.0 percent. So a risky unit perpetuity

has a price discount of 3.53 (1/.07− 1/.093). The firm has a debt quantity of 0.95 times

income. So the price discount is 3.36 times income. One-half this amount (Matvos’s

estimate) is 1.68 times income, which is almost precisely the surplus value shown in the

table (1.67).

Recently, Green (2018) has estimated the valuation of the full covenant packages found
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in high-yield bonds. His point estimate is 2.4% of firm value, which, while economically

large, is smaller than most of the values in the right-hand column of Table 2. His model

(and structural estimation) allow covenants to have real costs, however, which in our

setting they do not.18 While he interprets the cost in terms of inefficient restrictions

(e.g. on asset sales or investments) due to limitations in available covenants, they could

also include direct costs of monitoring and enforcement. Green’s estimates are thus net

benefits, whereas the numbers in the table are gross.

Table 2: Cost of Unprotected Debt

firm value (V/Y ) value loss
C NC difference percent

µ = 0.03,
σ = 0.10, 18.42 16.75 1.67 10.00
α = 0.25

µ = 0.00 10.30 7.75 2.55 32.82
µ = 0.06 87.58 86.64 0.94 1.09

σ = 0.05 20.60 19.12 1.48 7.76
σ = 0.15 17.76 16.21 1.55 9.57

α = 0.0 17.79 16.39 1.40 8.52
α = 0.5 19.62 17.75 1.87 10.51

The table reports theoretical firm properties under capital structure commitment (columns labelled C)

and no-commitment (NC) using the model of Section 2.2. The baseline firm parameters are shown in the

top row left-hand column. Other values are L = 3, λ = 1, τ = 0.3, r = 0.07, d = 0.97, u = 1.03, γ = 4.

In terms of cross-sectional variation, the table also highlights firm characteristics that

make commitment relatively more or less valuable. Most prominently, the model implies

very little surplus from covenants for high-growth firms, and very large surplus for low-

growth firms. The model does not embed a depiction of the contracting technology –

and its cost function – that could lead some firms to optimally pay to achieve protected

debt, while others choose not to do so. However, unless that contracting cost itself is a

18Indeed, Green estimates that a full array of high-yield covenants would have a (small) net negative
impact on the value of an investment-grade firm.
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steeply declining function of firm profit growth, the model does offer the prediction that

covenant usage should be rarer in high-growth firms and more frequent in low-growth

ones.

This prediction also finds some empirical support. See Nash, Netter, and Poulsen

(2003), Demiroglu and James (2010), and Reisel (2014).19 The rationale sometimes

offered in the literature is that covenants may be unsuitable for high-growth firms because

they impose limits on flexibility and may impede growth opportunities. Interestingly, our

model’s result has nothing to do with flexibility or investment. Instead, as described in

Section 2, the expropriation incentive that leads to excess leverage scales inversely with

firm value. Intuitively, managers of very valuable (high-growth) firms have much more

incentive to get the first-order trade-off between tax-shields and default costs right, and

less incentive to worry about transfers from creditors.20

The results here also allows us to deduce the model’s implications about what other

firm characteristics are likely to be associated with covenant use. In particular, it speaks

to the (naive) conjecture that firms with unprotected debt would be expected to have

higher leverage. The model implies that covenant usage is mostly determined by expected

growth rate. Hence, we could reasonably approximate the cross-section as containing low-

growth covenant-using firms (i.e., with commitment) and high-growth firms who forego

covenants (no commitment) Referring to the second and third rows of Table 1, we see that

the first group would optimally choose market leverage ratio 0.55, while the second group

would optimally choose 0.59. The precise numbers are, of course, parameter specific. The

point is that they are quite similar: the model does not predict that unprotected debt

must necessarily be strongly associated with higher leverage.21

19Billett, King, and Mauer (2007) and Bradley and Roberts (2015) report evidence that covenant use
increases with growth opportunities, however.

20This intuition is formalized in the discussion in Section ??.
21That said, it does turn out that the naive prediction is true in our empirical work in Section 5.
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3.2 Dynamic Implications

We now turn to the dynamic model developed in Section 2.3 to understand the model’s

implications for time-series variation in the capital structure distortion due to uncommit-

ted debt policy. We consider two types of applications. First, we consider (idiosyncratic)

variation in the firm’s parameters, holding the economy-wide parameters fixed. We next

consider simultaneous variation in firm and macroeconomic conditions (as, for, example

in Hackbarth, Miao, and Morellec (2006)). All the cases will adopt the assumption that

there is a “good” state that is unconditionally more likely, with a half-life of 10 years,

and a short-lived “bad” state, with a half-life of 10 quarters.

A first finding is that the model implies more countercyclical leverage for firms without

commitment. The basic logic of the trade-off setting implies that when risk increases or

growth decreases, increasing potential default costs lead to less leverage. In Table 3, we

quantify this via the ratio of debt (or leverage) in the bad state to that in the good state.

The first column tells us that, for these parameter values, firms with commitment lower

their debt quantities in bad times by multiples from 0.48 to 0.87. The third column

indicates similar contractions in market leverage, except in one case (the first row) where

lower debt leads to bond prices that are high enough that the market leverage increases.

These policies contrast with the no-commitment cases in the second and fourth columns.

There we see debt quantities and leverage that can sometimes increase in bad times.

In the cases where there is still a decrease, that decrease is markedly smaller than in

the corresponding case with commitment. Again, the intuition behind this result is that

expropriation incentives decrease when the firm value is higher.

Given that capital structure is relatively more distorted without commitment in bad

times, it is not surprising that the surplus loss to firms is also higher in those times.

This is shown in Table 4, where the percentage loss of firm value in the no-commitment

cases is reported in each state. The losses are only mildly larger in the bad state in the
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Table 3: Cyclicality of Capital Structure Policy

debt quantity bad-state/good-state
book leverage market leverage

C NC C NC
switching variables:

µ(i) 0.8689 1.0060 1.0161 1.1559
σ(i) 0.7470 1.0411 0.7483 0.9974
µ(i), σ(i) 0.7077 0.8788 0.8171 0.9891

r, d, u, ξ, and
µ(i) 0.6402 0.9046 0.8590 1.1217
σ(i) 0.6110 0.8983 0.6557 0.9096
µ(i), σ(i) 0.4827 0.8863 0.6531 1.0563

The table compares the optimal debt policies for the 2-regime model with and without capital structure

commitment. The numbers reported are the ratios of debt amounts in the bad state to the amount in

the good state. The first two columns measure debt as coupon expense as a fraction of output (C/Y in

the model). The second two columns measure debt as market value of debt as a fraction of firm value

(F/V ). In the first three rows, the aggregate state does not switch, and is described by the parameters

r = 0.06, d = 0.95, ξ = 1. The firm-specific growth rate and volatility switch, and take on the [good-state,

bad-state] values values µ = [0.06, 0.00] and σ = [0.05, 0.15]. In the bottom three rows the aggregate

state also switches, and is characterized by the pairs r = [0.07, 0.01], d = [.95, .88], ξ = [2.0, 0.5]. All

cases use u = 1/d, α = 0.25, L = 3, λ = 1, γ = 4, and ω = [0.07, 0.28].

first three rows where the states are idiosyncratic. However the next three rows, where

macroeconomic parameters also vary, show a notably larger surplus loss in bad times.

This finding also finds support in the empirical literature. Countercyclical covenant

use is documented by Bradley and Roberts (2015) and Helwege, Huang, and Wang (2017).

Likewise, procyclical issuance of “cov-lite” debt is noted by Becker and Ivashina (2016)

among others. The fact that investors apparently exhibit an increasing appetite for

unprotected debt in expansions is sometimes viewed as evidence of irrational exuberance

or desperation for yield. Our model offers a different perspective. Since the relative

benefits of covenants are smaller in good times, it follows that we should expect fewer

firms to use them.22

22We note again the qualifier that we have no explicit model of variation in contracting costs across
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Table 4: Cyclical Cost of Unprotected Debt

percent reduction in firm value without commitment
good state bad state

switching variables:

µ(i) 4.44 5.26
σ(i) 9.67 11.29
µ(i), σ(i) 2.46 3.24

r, d, u, ξ, and µ(i) 17.85 21.98
σ(i) 15.74 18.82
µ(i), σ(i) 15.86 21.40

The table shows the percentage decrease in firm value without commitment to debt policy for the 2-

regime model. In the first three rows, the aggregate state does not switch, and is described by the

parameters r = 0.06, d = 0.95, ξ = 1. The firm-specific growth rate and volatility switch, and take on the

[good-state, bad-state] values values µ = [0.06, 0.00] and σ = [0.05, 0.15]. In the bottom three rows the

aggregate state also switches, and is characterized by the pairs r = [0.07, 0.01], d = [.95, .88], ξ = [2.0, 0.5].

All cases use u = 1/d, α = 0.25, L = 3, λ = 1, γ = 4, and ω = [0.07, 0.28].

4. The Social Cost of Noncontractability

Our model has described how firms with unprotected debt (without commitment) adopt

financial policies that feature more – and more countercyclical – leverage. An implication

of this is that such policies lead to higher default rates and real losses in bad states of

the world, compared to a world where managers are constrained to act in the interests

of the entire firm. In general equilibrium, these increases in defaults in bad states lead

to higher marginal utility, which feeds back (via the pricing kernel) to managers’ policy

decisions, which reflect the exposure of debt claims to systematic risk.

In this section, we analyze these general equilibrium implications. The equilibrium

version of the model takes into account the above feedback mechanism, as well as effects

that operate through the riskless interest rate.23 The theory permits a precise quantifi-

firms or economic states. If costs of writing and monitoring covenants also go up in bad times, then the
model’s prediction about their adoption could be ambiguous.

23In the general version of the model with household savings, another channel affecting welfare is the
feedback from the cost of capital to investment, which affects the growth rate of output. When the
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cation of welfare effects through its closed-form expression for the value function of the

representative household, as described in Section 2.4.

The model economy is, of course, quite stylized and omits many important channels

through which financial policies could have real effects. For this reason, we do not

undertake a structural estimation or detailed calibration of the parameters. Our interest

is in the incremental welfare cost of moving from an economy with commitment to one

without commitment. We have already computed (in partial equilibrium) the losses

that accrue to individual firms from noncontractability. Here we extend the analysis to

the entire economy, taking into account the externality that excessive debt imposes on

aggregate risk. We present the model’s quantification of these welfare effects and show

how they vary with the parameter assumptions.

Table 5 contrasts the macroeconomic outcomes of two otherwise equal economies, one

having committed debt policies (in the columns labeled C) and one without commitment

(columns NC). The computation uses the 2-regime version of the model in which the

first and second moment of output switch across states. (The parameters are given in

the table caption.) The transition probabilities imply that the economies have “good”

and “bad” states with half-lives of, respectively, 10 years and 2.5 years. Results are

shown for three levels of risk aversion.

The first two columns quantify the increase in unconditional aggregate risk when

there is no commitment. The excess leverage that firms take on results in an increasing

level of default losses, which raises the average output volatility on the order on one

percent. Since agents are risk averse, this excess volatility is a primary channel driving

welfare costs. Households’ welfare, as captured by the value function, quantifies life-

time expectations, and hence also depends on intertemporal discount rates. The second

and third pair of columns exhibit the effect of noncontractability on two components of

elasticity of substitution exceeds one, increased risk lowers investment. Hence the level and cyclicality
effects of lack of commitment harm welfare more than in the cases presented here.
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discount rates. In columns (3)-(4), the riskless interest rate is seen to decline without

commitment. This is due to increased precautionary savings incentives caused by higher

risk. Columns (5)-(6) show that the required compensation for bearing this risk – the

risk premium – also rises without commitment. Finally, the right-most pair of columns

measures the cyclicality of the equilibria via the ratio of marginal utility in the bad state

to that of the good state. This number can be interpreted as “how bad’ the bad times

are. The answer is that they get worse without commitment. When γ = 6 (a moderate

value in the asset pricing literature), for example, bad times are almost 60 percent worse

without commitment.

Table 5: Committed vs Non-Committed Debt :
Economy Properties

output volatility interest rate risk premium cyclicality
C NC C NC C NC C NC

γ = 2 3.65 4.43 7.67 7.13 0.36 0.54 1.16 1.21
γ = 4 3.58 4.47 7.42 6.57 0.82 1.34 1.53 1.77
γ = 6 3.51 4.93 7.15 5.05 1.33 3.19 2.09 3.33

The table shows unconditional moments in 2-state general equilibrium economies with committed (C)

and non-committed (NC) financial policy. Numbers in the first six columns are annual percentages.

The economies are characterized by switching first and second moments of output growth whose values

in the two regimes are µ = [0.04, 0.00], and σ = [0.025, 0.075]. The regime switching intensities are

ω = [.07, .28] implying a half life of duration 10 years in state 1 and 2.5 years in state 2. The other

parameters are τ = 0.3, λ = 1, L = 3, α = 0, β = 0.06, ψ = 1.5.

Table 6 shows how these properties translate into social losses for a range of prefer-

ence assumptions. The left-hand column of the table reports the private cost to noncon-

tractability in each of these economies. Here, the computation reports the decline in the

value of firms as a fraction of income, vNC/vC − 1, when comparing economies with and

without commitment.24 In line with the results in Section 3, this loss of private surplus

24For each comparison in the table, we take the unconditional average of the reported quantity across
states s, for both economies. All values in the table are negative.
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is economically very substantial. The calculations in Section 3 held the macroeconomic

parameters constant, whereas here the comparison reflects the differing pricing kernels

in the two economies.

The next column in the table computes the social losses when a single firm loses the

ability to commit. Here we fix the economic parameters at their full-commitment values,

and compute the percentage loss in a claim to firm output Y (i) (i.e., without taxes or

tax shields) due to the added default risk.25 The losses computed this way are similar in

magnitude to the first column

The main result in the table is the third column that computes the full social cost in

general equilibrium. According to Proposition 3, the form of households’ value function

is j(s) Y 1−γ/(1 − γ). So the change in value between two economies can be expressed

in terms of equivalent fractions of permanent income via the change in the certainty

equivalent j(s)
1

1−γ . For all values of the preference parameters, these losses are extremely

large. Taken at face value, the results imply that the cost of noncontractability to these

economies is on the order of 20 percent of income.

The crucial additional insight from this computation is that the general-equilibrium

loss social losses are much larger than the private losses or the partial equilibrium losses

in the first two columns. (Note that the columns are all expressed in comparable units,

i.e., as losses of value as a fraction of income.) This conclusion, which is not strongly

sensitive to the preference parameters, indicates that social incentives to restrict excess

leverage exceed private incentives. Hence that there is a potential policy motivation to

enhance capital structure contractability.

We have emphasized two distortions due to lack of commitment: more default, and

more cyclical default. The right-most columns in the table decompose the welfare cost

into components due to each channel. In the column labeled “debt level” we compute

the value function for an economy with the same degree of cyclicality as in the full-

25For the case on the sixth line, a no-commitment equilibrium does not exist.
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commitment economy, but having the same unconditional value of market leverage as the

no-commitment economy. The numbers verify that raising the debt level is responsible

for the largest part of the welfare losses. However the column labeled “cyclicality” still

shows an economically large residual contribution from the leverage dynamics. Indeed,

for higher levels of risk aversion, the two components are of the same magnitude.

Table 6: Costs of Non-Commitment

private cost social cost
due to:

PEQ GEQ debt level cyclicality

γ = 2 7.57 8.86 12.54 11.44 1.10
γ = 4 11.87 10.00 18.23 13.43 4.80
γ = 6 19.60 10.94 36.74 20.81 16.73

ψ = 1.0 12.70 11.81 17.70 13.20 4.40
ψ = 2.0 11.21 8.96 18.47 13.59 4.88

β = 0.04 8.46 – 14.16 10.22 3.94
β = 0.08 14.08 14.45 20.74 15.87 4.87

The table reports the percentage losses due to non-contractability in financial policy in economies with

time-varying growth and uncertainty. Each comparison reports changes in unconditional average across

regimes. The private cost is the loss in value to owners of firms, expressed as a percentage of firm

output. The social cost in partial equilibrium (PEQ) is the loss in value of a claim to firm output when

a single firm cannot commit to its capital structure. The social cost in partial equilibrium (GEQ) is the

percentage reduction in the representative agent’s value function between economies with and without

commitment, expressed in terms of equivalent loss in aggregate output. The fourth column computes

the welfare loss in an economy that has the same average level of debt as the non-commitment case, but

the cyclicality of the full-commitment case. The fifth column is the difference between the third and

fourth columns. In the first three rows β = 0.06, ψ = 1.5. The middle two rows use β = 0.06, γ = 4.

The bottom two rows use ψ = 1.5, γ = 4. The economies are characterized by switching first and second

moments of output growth whose values in the two regimes are µ = [0.04, 0.00], and σ = [0.025, 0.075].

The regime switching intensities are ω = [.07, .28] implying a half-life of duration 10 years in state 1 and

2.5 years in state 2. The other parameters are τ = 0.3, λ = 1, L = 3, α = 0.

Of course, there are numerous caveats to the magnitudes reported here. The computa-

tion assumes full loss of output from defaulted projects. Raising the recovery parameter
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to, e.g., α = 0.50 substantially reduces both private and social losses. However, our

conclusion regarding the degree of externality (i.e., the relative size of the two costs) is

not affected. The model does not account for any costs of achieving commitment, for

example from monitoring and enforcement. These burdens would lower the private cost

of noncommitment, but leave the social cost unaffected. Also, the model includes no

special social benefits to debt, e.g., through resolving asymmetric information or moral

hazard problems, and thus potentially increasing total investment. However, again, the

comparisons we are drawing is between economies with and without commitment, where

both include the same debt contract. It seems harder to argue that any social benefit to

debt would increase when policy commitment is removed as a possibility. It is true that

the analysis here compares polar extremes: full commitment versus none. In real life,

both protected and unprotected debt exist. Having noted this, it is also true that the

analysis here considers only one dimension of contractability, namely, the firm’s leverage.

In the real world, financial policy is multidimensional. Even debt policy encompasses

numerous dimensions (including maturity, seniority, collateral, etc.) along which man-

agerial choice could diverge from firm value maximization. The degree to which our

estimates overstate losses that are due to partially incomplete contracting along many

dimensions thus requires further analysis.

5. Empirical Evidence

A key prediction from the model is that, in the absence of commitment to capital struc-

ture, firms will exhibit a greater degree of countercyclicality of leverage policy. That is,

they will tend to increase leverage more in bad times (or decrease it less) than they would

under complete contracting. This countercyclicality contributes an extra component to

the general equilibrium effects documented in the previous section, on top of the effect of

unconditionally higher leverage from lack of commitment. We now bring this prediction
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to the data.

We test the idea using cross-sectional variation in debt protection. Before examining

the results, it is important to first address the endogeneity of that protection. We argued

in Section 3 that firms that choose unprotected debt will be the ones for which the

surplus loss from lack of commitment to value-maximizing policies is smaller. In the

context of the model, we also showed that the largest driver of the surplus differential is

firms’ expected growth rate, or, more generally its valuation ratio (e.g. Tobin’s Q). For

the current section to provide valid tests of the model prediction, we need to verify that,

when protection choice is driven by the unconditional surplus gain from commitment,

this does not affect the conditional cyclicality differential across firms with and without

protection.

Indeed, for a range of numerical examples like those in Section 3, this is the case.

For example, contrasting a low-growth firm (µ = [0.03, 0.00] in the two states) with

commitment, to a high-growth one (µ = [0.06, 0.03]) without commitment, the former

optimally reduces its outstanding debt (C) by 21% in the bad state while the latter

reduces only by 15%, in line with our hypothesis.26 While this is not to dismiss all

concerns regarding endogenous debt protection, it does show that, at least within the

theory, the prediction we wish to test is robust to this possibility.

Next, the main empirical challenge is to find a measure for firms’ degree of commit-

ment. A firm with outstanding syndicated loans typically has a set of financial covenants

that restrict the firm’s accounting ratios and financial quantities within a specific range.

A firm with stringent covenants therefore has less scope to adjust its financial policies to

exploit existing creditors, simply because doing so would risk relinquishing control rights

to those creditors. Prior research (e.g., Chava and Roberts (2008)) has demonstrated

that the presence of such covenants and the associated risk of transfer of corporate con-

trol following covenant violation does, in fact, restrict the borrowing firm’s investment,

26Other parameters for this calculation are as given in the caption to Table 3.
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payout and debt financing policies ex ante. In this sense, covenant protection is a natural

proxy for the degree of capital structure commitment.

Following the existing literature, we use two measures for covenant strictness of a loan

contract based on the LPC-Dealscan database. DealScan reports contract details from

syndicated and bilateral loans collected by staff reporters from lead arrangers and SEC

filings starting from 1981. The first measure is simply the (log) number of covenants of

each loan package.27

The second measure, first proposed by Murfin (2012), is the estimated ex ante prob-

ability of covenant violation when the loan contract is initiated. In practice, there is a

wide range of covenant strictness both within and across loan packages. The calculation

assumes that the changes in financial ratios follow a multivariate normal distribution

with mean zero and a variance-covariance matrix that varies across industries and over

time. From this distribution, we then compute the probability that firm’s own ratio will

fall outside the restricted range during the life of the loan.28 We apply this estimation

to our sample, and extend the sample period to the present. Following Murfin (2012),

we exclude loan contracts containing covenants that appear to be violated at the begin-

ning of the contract. However, our results are robust if we assume that the violation

probability for those contracts are 1.0.

For each firm-quarter, we calculate the two measures of protection for all the active

loan contracts that the firm has, and take the maximum of each as our measures of firm

covenant strictness for that particular quarter. The covenant strictness measure requires

more non-missing financial observations resulting in a smaller sample size. (In particular,

it is not computable for any of the loan observations in the 1980s). We note that our

27Loan transactions are reported in both facility-level and package-level in LPC-Dealscan database,
where a package is a collection of facilities. We calculate our covenant strictness measures at package
level, since covenants are only reported at package level. The tests below restrict the sample to firm-
quarters in which there is at least one covenant (so that the log is well defined). But results are not
affected by including loans without covenants and using the raw number (i.e., not the log).

28For details about the construction of this measure, please refer to Murfin (2012).
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measures do not take into account potential covenants in other debt instruments of the

sample firms (e.g., public bond issues) that are not covered in Dealscan. The sample

also does not include any observations of firms that do not have outstanding syndicated

loans. For a detailed description of the selection effects of the LPC-DealScan database,

see Chava and Roberts (2008).

Table 7 presents the summary statistics of the two samples in our study, corresponding

to the periods in which each of the commitment proxies can be computed. Despite losing

roughly 40 percent of the raw covenant observations, the characteristics of the Murfin

firm-quarters are very close to those of the larger sample.

We are interested in the relationship between a firm’s debt policy and its covenant

strictness. We use the quarterly COMPUSTAT database to compute measures of fi-

nancing activities and other control variables.29 For the debt financing measure, we use

changes in total financial debt (dlcq + lttq) scaled by lagged total assets (atq). Welch

(2011) points out that the above ratio is problematic in the sense that it treats non-

financial liabilities as equity instead of debt. He proposes two alternative denominators

for leverage ratios: (i) lagged sum of financial debt and book value of equity (seqq); and

(ii) the lagged sum of financial debt and market value of equity, defined as the product

of common share price and common share outstanding (prccq × cshoq). We use these

two alternative scalings as robustness checks.

Other control variables follow respective measures in the literature (e.g., Covas and

den Haan (2011)). We control for the following firm-level variables: logarithmic total

assets (log(atq)); Tobin’s Q is the sum of market value of equity, capital value of preferred

stock (pstkq), dividend paid on preferred stock (dvpq) and total liabilities (ltq), over total

assets; Cash flow is defined as the sum of income before extraordinary items (ibq) and

depreciation and amortization (dpq) scaled by lagged total assets; Asset tangibility is

29The COMPUSTAT variable codes are given in italics.
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defined as the net value of property (ppentq), plant and equipment over total assets.30

The key prediction of the model is that compared with firms without commitment,

firms that can commit to their capital structures reduce their debt more in bad times.

Following the recent asset pricing literature, literature (e.g., Joslin, Priebsch, and Single-

ton (2014); Giglio, Kelly, and Pruitt (2016)), we use two proxies for the aggregate state,

based on the Chicago Fed National Activity Index (CFNAI), a weighted average of 85

monthly indicators of US economic activity. The first measure is the composite index

of all indicators. Then, as a second measure, we use the sub-index (the Production and

Income series) that focuses on the conditions of the corporate sector. For both indexes,

negative values indicate below-average growth (in standard deviation units); positive

values indicate above-average growth. To facilitate the interpretation of the results, we

define our bad-times variable (recession) as the negative of the three-month moving av-

erage of these two monthly series, so a high value means the economic growth rate is

lower.

The regression specification for our analysis, then, is the following

Yi,t = α + β commitmenti,t−1 + δ recessioni,t + γ commitmenti,t−1 · recessioni,t

+ B controlsi,t−1 + ζi + ξt + εi,t (16)

where the outcome variable is Yi,t is the change in debt from t−1 to t, scaled as described

above.31 The unit observation is a firm-quarter. Previous studies show that unobserved

firm-level time-invariant factors explain a majority of variations in leverage ratios Lem-

mon, Roberts, and Zender (2008). Hence, we include firm fixed effects. We also include

fiscal-year fixed effects. Standard errors are clustered at the firm level and are robust to

30Also following the literature, we exclude financial firms and regulated utilities. We also exclude firm
quarters with Q > 10 or Q < 0.

31Under our model, firms adjust their debt continuously as their own output varies. Since output
will be correlated with the state of economy, we also run versions of the regression that control for
contemporaneous (or lagged) changes in firm sales. Inferences are unaffected and the point estimate of
γ are similar. These specifications are omitted for brevity.
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heteroscedasticity.

The hypothesis of interest is that γ < 0: the difference in debt issuance between firms

with and without commitments is more negative when the aggregate growth rate of the

economy is lower. Table 8 presents the results. The top panel uses the composite CFNAI

recession measure; the bottom panel uses the Production and Income sub-index.

In both panels, with either covenant measure, and using each of the three scalings

for debt changes, the coefficient on the interaction term is negative and statistically

significant at the 5% or 1% level. Consistent with prior literature, covenant restrictions

are unconditionally associated with greater reductions in debt. Consistent with Halling,

Yu, and Zechner (2016), debt issuance is also overall countercyclical, i.e., more positive

in recessions. However, firms with greater debt protection follow the opposite pattern,

reducing debt in bad times.

Caption to Table 8. The table reports results of panel regressions of quarterly debt

changes on measures of debt protection and economic conditions. The first three columns

use the Murfin (2012) measure of covenant strictness. The next three columns use the log

number of covenants. The covenant measures are lagged by one quarter. For each measure,

three standardizations of debt changes are used as the dependent variable, following Welch

(2011). In Panel A, the economic conditions variable (Recession) is the negative of the three-

month moving average of the Chicago Fed National Activity Index (CFNAI). In Panel B, the

variable is constructed likewise from the CFNAI Production and Income sub-series. Control

variables are as defined in the text. Robust standard errors are clustered at firm level and are

shown in parentheses. Asterisks (*,**,***) denote significance at the 10%, 5%, and 1% level,

respectively.

Regarding the economic significance of the interaction effect, consider the change in

implied debt issuance when the economy goes from one standard deviation above trend to

one standard deviation below trend. Using the numbers from Table 7, this corresponds to

an increase of 1.528 in the main recession measure. From the point estimates in column

(1) of Panel A, a firm with well protected debt (strictness one standard deviation above

44



the mean) would be expected to decrease debt by .00086 times assets, whereas a firm

with unprotected debt (strictness one standard deviation below the mean) would increase

debt by .00149 times assets. The difference in responses is 0.235% of assets per quarter

or almost 1% per year. Viewed as an aggregate effect, this magnitude is economically

meaningful. During the recent financial crisis, for example, in roughly two years from

trough to peak back to trough, the economy’s net debt to total book assets moved up and

then down by approximately 4 percentage points,32 while the CFNAI index dropped and

then recovered by approximately four standard deviations. Thus, the effects estimated

in the regression suggest that the contracting friction studied here could potentially play

a significant role in aggregate financial cycles.

As a robustness test, Table 9 repeats the regressions replacing the measure of economic

activity with measures of aggregate firm valuations. These tests directly confront the

model’s implication that expropriation incentives scale inversely with valuation multiples.

Hence here the “recession” or “bad times” measure is the reciprocal of economy-wide

estimates of Tobin’s Q. The top panel computes the value-weighted average of firm-

level Q for each COMPUSTAT firm each quarter. The results again strongly support the

hypothesis of a negative interaction coefficient. The bottom panel uses the “bond-market

Q” measure of Philippon (2009), which uses aggregate bond valuation data to impute Q

from a structural model. This series only goes through 2007, reducing the power of the

test, but also affirming that the findings here are not driven by the subsequent financial

crisis. Using the Murfin proxy for commitment, the sample period only encompasses

1990-2007 and there is very little variation in the Q measure during this time. Still, all

the point estimates are all negative, and two cases attain statistical significance at the

10% level. With the log covenant proxy for commitment, the number of observations

almost doubles. Now, although the point estimates are actually reduced, they are highly

statistically significant.

32The calculation uses the Federal Reserve Z.1 data for the U.S. nonfinancial corporate sector.
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Caption to Table 9. The table reports results of panel regressions of quarterly debt

changes on measures of debt protection and economic conditions. The first three columns use

the Murfin (2012) measure of covenant strictness. The next three columns use the log number

of covenants. The covenant measures are lagged by one quarter. For each measure, three

standardizations of debt changes are used as the dependent variable, following Welch (2011).

In Panel A, the economic conditions variable (Recession) is the inverse of the value-weighted

average of firm-level Tobin’s Q estimate. In Panel B, the variable is the inverse of the “bond

market Q” measure of Philippon (2009). Control variables are as defined in the text. Robust

standard errors are clustered at firm level and are shown in parentheses. Asterisks (*,**,***)

denote significance at the 10%, 5%, and 1% level, respectively.

Summarizing, the results here confirm a novel prediction of our model, and consti-

tute an addition to the empirical literature on covenant use. We document that firms

with less protected debt tend to issue more debt in bad times. This is consistent with

the interpretation that incentives to exploit existing creditors are higher in those times,

resulting in a countercyclical component to the leverage of firms without commitment.

6. Conclusion

This paper contributes to the post-crisis literature that seeks to analyze the real effects

of (corporate, household, and public) financial policies, and to highlight the frictions

that influence those policies. Recent research has identified an underappreciated friction:

the potential inability to commit managers to firm-maximizing, as opposed to equity-

maximizing, debt policies. We extend this line of research and offer new insights into the

dynamics of the problem.

Our setting allows us to quantify the private and social costs of lack of capital struc-

ture commitment under generalized preferences and with time-varying economic and firm

parameters. We show that, both in the cross-section and time-series, expropriation in-

centives rise when firm valuations are low. Hence, without commitment, leverage can
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be countercyclical. This dynamic amplifies the distortionary effect of excess debt on ag-

gregate risk. We present empirical evidence supportive of the prediction that firms with

unprotected debt increase their borrowing in bad times.

An important next step in our understanding of the commitment problem is to de-

scribe (and empirically characterize) the contracting technology that dictates the supply

side of monitoring and enforcement services. In the real world, some firms find it cost-

effective to commit managers to financial policies via stringent covenants, while others do

not – despite the direct savings in interest costs and the (larger) gain in private surplus.

Our model offers a full account of those gains, as well as the potential welfare gains.

Before drawing policy inferences from the analysis, however, we need to also understand

the real resources required to implement commitment.
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Appendix

A. Proofs

This appendix provides the proofs of the results in Section 2. Since Proposition 1 is a

special case of Proposition 2, it suffices to prove the latter. We first establish the two

lemmas on default policy.

Proof of Lemma 1.

The lemma asserts that the optimal default policy for equity holders is to abandon

following a jump to Yt if and only if the value of the firm is below the pre-jump value of

debt, Ft−. To see this, if equity holders do not abandon, then their optimal debt policy

at t is to adjust to the new quantity Ct whose value is Ft. If they do so, they repay the

difference Ft− − Ft > 0 to debt holders, and their claim is now worth Vt − Ft. They will

do this if and only if the debt repayment is less than the value they receive:

Vt − Ft > Ft− − Ft ⇐⇒ Vt > Ft−

as asserted.

From this observation, it follows that we can link the optimal leverage ratio with the

critical default threshold. Default occurs iff Vt ≤ Ft−. So, if equality holds, we have

eϕ ≡ Yt
Yt−

=
Vt
Vt−

=
Ft−
Vt−

=
pc

v
.

Here the middle equality uses the assumption that, prior to default, firm value is linear

in output. The final equality uses the assumptions that, prior to default, C is linear in

Y and F is linear in C.

QED

Proof of Lemma 2. As above, equity holders will not abandon the firm upon a switch of

states (from s = 1 to s = 2, say) if and only if the amount they owe to creditors is less

than the net equity they will have upon payment, or V (2) > F (1). Using the previous

lemma, we can write F (1) = eϕ(1)V (1). The conclusion that default occurs if and only

if v(2)/v(1) < eϕ(1) then follows given the linearity V (s) = v(s)Y because Y is assumed

independent of the state switching process. (The result for switches from 2 to 1 follows
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by symmetry.)

QED

Turning to Proposition 2, we assume the form of the pricing kernel in (12) and we

derive the equations satisfied by the bond and firm value. The proof conjectures and

verifies that linear forms solve these equations.

Proof of Proposition 2.

First consider the debt claim whose value is F and whose coupon amount is C. The

price of a claim to 1/C units of the debt is denoted p. The proposition assumes that we

are given a default policy (pair) ϕ(s) determining the exit jump threshold, and that these

are constants (not functions of Y ). Under this assumption, it is reasonable to conjecture

that, absent default, p is not a function of Y since jumps that do not trigger default leave

the firm exactly as far from the threshold as before (and the jump size distribution is

independent of Y ).

Let T denote the sooner of the firm’s default time or the repayment time of the claim.

(The firm may retire debt at any time by repurchasing at the open market price, and

we may assume that it does so pro rata across outstanding units.) Then on [0, T ), the

price p obeys the canonical equation that requires that its instantaneous payout per unit

time (in this case, 1) times the pricing kernel Λ equals minus the expected change of the

product process pΛ. Using Itô’s lemma for jumping processes to expand the expected

change implies(
η + 1

2
λ[(u−γEt

[
p+

p

]
− 1) + (d−γEt

[
p−

p

]
− 1)]

)
p(s) + ω(s)[ξ(s)p(s′)− p(s)] = −1.

(17)

Here s and s′ represent current and alternative regimes, respectively, and p+

p
and p−

p

denote the fractional changes in p conditional on an up and down jump, respectively.

(The notation supresses the posible dependence of η, λ, α, u, and d on s.) Next, rewrite

the left side using the fact that the expected growth rate of the pricing kernel is minus

the riskless rate:

r(s) = −η(s)− 1
2
λ(s)[(u(s)−γ − 1) + (d(s)−γ − 1)]− ω(s)(ξ(s)− 1) (18)

to get

[−r − 1
2
λd−γ(1− Et

[
p−

p

]
)]p(s) + ω(s)ξ(s)[p(s′)− p(s)] = −1. (19)

56



where we have used the conjecture that outside of default p is not affected by jumps to

put p+

p
= 1. To evaluate the down-jump expected change in p, we integrate over the

jump-size distribution. If the jump in output, Y −

Y
is greater than exp(ϕ), then p−

p
= 1.

For worse jumps, our assumption is that creditors gain the rights to α times the cash flow

stream. This is worth V (αY −) per unit claim, so V (αY −)/C(Y ) to holders of p. Hence

the recovery fraction is p−

p
= V (αY −)/(pC) = V (αY −)/F (Y ) = e−ϕ V (αY −)/V (Y ),

where the last equality uses lemma 1. Using the linearity of V (to be verified below), the

recovery fraction is just αex−ϕ where x is the jump size log(Y −/Y ). All together then,

Et

[
p−

p

]
is, ∫ 0

ϕ

g−(|x|) dx+ αe−ϕ
∫ ϕ

−∞
ex g−(|x|) dx,

or, using the notation defined in the text,

= G−(|ϕ|) + α H(ϕ)e−ϕ.

Hence, (19) becomes

[
r + 1

2
λd−γ(1− [G−(|ϕ|) + α H(ϕ)e−ϕ])

]
p(s)− ω(s)ξ(s)[p(s′)− p(s)] = 1. (20)

This is equivalent to the system (13).

If the system has a strictly positive solution, this verifies that p is not a function of

C and therefore F = pC. Similarly the solution is not a function of Y , verifying that

conjecture.

Next, consider the valuation of the whole firm. Again, we are taking as given the

default policy ϕ. By Lemma 1, this gives us eϕ = F/V prior to default. And by the

result just shown that F = pC, it follow that taking the default threshold as given is

equivalent to taking the debt amount as a known function of V : C = V eϕ/p.

The after-tax cashflow stream to the firm prior to default is (1−τ)Y +τC. Proceeding

as above, we equate this quantity times Λ to minus the drift of V Λ, which yields

−ηV −µY ∂V
∂Y
− 1

2
λ[(u−γEt

[
V +
]
−V )+(d−γEt

[
V −
]
−V )]−ω[ξV ′−V ] = (1−τ)Y +τC.

(21)

(This expression supresses the dependence on the current state s and denotes the value

of V in the other state as V ′.) We now look for a linear solution V = v(s)Y . In that
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case, cancelling a factor Y , the right side can be written

v
(
−η − µ− 1

2
λ[(u−γU − 1) + (d−γD − 1)]

)
− ω[ξv′ − v]

where we have defined U(s) and D(s) as E[Y +/Y ] and E[Y −/Y ], respectively. Using

C = V eϕ/p, the left side is now

(1− τ) + τv eϕ/p.

Next, plugging in the expression for r in (18) and µ̃ in (3), the right side becomes

v
(
+r − µ̃− 1

2
λ[u−γ(U − u) + d−γ(D − d)]

)
− ωξ[v′ − v].

Bringing the eϕ term to the right side, the above expression is equivalent to the system

(14) in the text. If the coefficent matrix is postive definite, then there is a unique positive

solution to the system, verifying the linearity conjecture.

Last, we note the expressions for U and D are:

U =

∫ 0

ϕ

ex g+(|x|) dx,

D =

∫ 0

ϕ

ex g−(|x|) dx+ αe−ϕ
∫ ϕ

−∞
ex g−(|x|) dx

which coincide with the definitions in (8) and (7).

QED

Turning to general equilibrium, the notation Y now denotes aggregate output, whose

dynamics are derived in the text.

Proof of Proposition 3.

Given the aggregator function f(C, J), the Bellman equation for J tells us that E[dJ ]+

f(C, J) dt = 0. Under the conjectured form for J = J(s, Y ), we have E[dJ ]/J =

(1− γ)
[
µ(s) + 1

2
λ[(u(s)1−γ − 1) + (d(s)1−γ − 1)]

]
+ ω(s)(

j(s′)

j(s)
− 1)
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Dividing f(C, J) by J and using Y = C, we get the two terms33

βθj(s)−
1
θ − βθ.

Adding these to the E[dJ ]/J terms and multiplying by j gives:

βθj(s)1− 1
θ−βθj(s)+(1−γ)

[
µj(s) + 1

2
λ[(u(s)1−γ − 1) + (d(s)1−γ − 1)]j(s)

]
+ω(s)(j(s′)−j(s)) = 0.

This is the algebraic system referred to in the proposition, whose solution gives the

constants j(1), j(2).

Given solutions for J and C, Duffie and Skiadas (1994) show that the pricing kernel

under stochastic differential utility is

Λt = e
∫ t
0 fJ (Cu,Ju) du fC(Ct, Jt).

Here, using C = Y and the solution for J , we get fC(C, J) = β j(s)1− 1
θ Y −γ, and

fJ(C, J) = βθ

[
(1− 1

θ
) j(s)−

1
θ − 1

]
.

The propostion then just evaluates the dynamics dΛ/Λ from these expressions.

The integral term contributes an fJ term to the drift. To this we add dfC/fC , which

is

−γµY dt+ d

{
Jt∑
j=1

(
(u−γ − 1)1{j,+} + (d−γ − 1)1{j,−}

)}

+d

{
It∑
i=1

(
(

[
j(s′)

j(s)

]1− 1
θ

− 1)1{i,s′} + (

[
j(s′)

j(s)

]1− 1
θ

− 1)1{i,s}

)}
.

The expression for η in the proposition is fJ plus the drift contribution from the previous

expression. The ratios in the last term, which represent the fractional changes of fC on

a change in state, are are the quantities denoted ξ(s). The expression for riskless rate is

minus the expected change of dΛ/Λ.

QED

Returning to the single-regime case, we next prove Corollary 2.1.

33Recall f(C, J) ≡ βCρ/ρ
((1−γ) J)1/θ−1 − βθJ.

59



Proof. The corollary considers the case α = 0. So, using the expressions in Proposition

1, take the derivative of v with respect to ϕ, and set it equal to the derivative of c̄ p.

Bringing all multiplicative factors to the right side, and letting y = 1/p, left side is simply

(1− τ)˜̀
d g
−(|ϕ|)− τy.

This represents the net marginal cost of debt: the first term corresponds to the marginal

default cost and the second to minus the marginal tax benefit. Under committment, the

firm looks for a zero of this function to find the optimal ϕ. To ensure one exists, and is

unique, we impose conditions sufficent for the function to be monotonically increasing,

and negative at ϕ = −∞ and positive at ϕ = 0. Here y = r + ˜̀
d (1 − G−). So

differentiating again, monotonicity is equivalent to the first condition assumed in the

statement of the corollary: 1
g−(x)

dg−(x)
dx
≤ − τ

1−τ . For the limit at infinity, g− goes to zero,

and y goes to r so the expression’s limit is −τr which is negative if r is positive. At

ϕ = 0, G− is zero, so positivity is equivalent the second assumption g−(0) > τ
1−τ

r+˜̀
d

˜̀
d

.

(In the numerical work, we assume G− is a gamma distribution with mean σ and vari-

ance L2σ2, with L ≥ 1. For this parameterization, the assumed conditions are satisfied

when Lσ < 1−τ
τ
.)

Next we turn to the right side of the first order condition. After some rearrangement,

this is

(1− τ)c̄ ˜̀
d g
−(|ϕ|) (p/v)2 e−ϕ

which is positive for any c̄ > 0. Thus, if there is a c̄ that satisfies the condition of a

no-commitment equilibrium, the left side must intersect the right side and do so at a

positive value of both. Since the left side has been shown to be monotonically increasing,

it follows that the intersection is to the right of the firm-value maximizing point, which is

the zero of the left side. A higher (less negative) value of ϕ corresponds to higher market

leverage because of the optimal default condition that equates eϕ to F/V = cp/v.

We also note that, if c̄ is an equilibrium solution, then we may use the latter condition,

c̄ = eϕ v/p to substitute it out in the right-side expression above to obtain simply

(1− τ) ˜̀
d g
−(|ϕ|) p/v.

This is the expression referred to in the text as the expropriation incentive.
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It remains to prove Corollary 2.2.

Proof. To prove the existence and uniqueness of the no-commitment equilibrium, we

need to find a unique fixed point c̄∗ such that c(c̄∗) = c∗. Consider the marginal incentive

function M(c, c) = dv
dc
− cdp

dc
. If we evaluate the function at c = c, it is the marginal

incentives to alter debt when we start off with debt c = c. If there is a unique c∗ such

that m(c∗) = M(c∗(c∗), c∗) = 0, then the unique no-commitment equilibrium exists.

If c is large enough, the objective function v − cp is always negative. Denote ch as

the highest c with nonnegative equity value. The domain of the fixed point c∗ is (0, ch).

Here are four conditions we must establish to get the unique NC equilibrium.

(i) m(c) > 0 when c→ 0,

(ii) m(c′) is negative for some high value c′ < ch,

(iii) m(c) is monotonically decreasing in c,

(iv) Suppose c∗ is the fixed point. Then the Second Order Condition dM(c(c∗),c∗)
dc(c∗)

< 0

holds .

In the following discussion, we list all the assumptions needed to establish each con-

dition.

Condition (i)

Given the assumptions in Corollary 2.1, we have condition (i). Intuitively, when the

firm starts off with c = c = 0, the marginal incentive being positive means it has the

incentive to increase debt.

Condition (ii)

Assumptions needed to establish condition (ii) are the following:

1. dc
dϕ
> 0 when c ∈ (0, ch).

2. There exists a high value c′ < ch , with its corresponding ϕ, p, v to be ϕ′, p′, v′, such

that

(
v′

p′
− 1)(−p′2l̃dg−(|ϕ′|)) +

τ

1− τ
v′ < 0

Since dc
dϕ

> 0, the marginal incentive function m(c′) = dv′

dc′
− c′ dp

′

dc′
can be rewritten

as m(ϕ′) = M(ϕ′, eϕ
′ v′

p′
) = dv′

dϕ′
− eϕ

′ v′

p′
dp′

dϕ′
= eϕ

′ v′

p′

[
(v
′

p′
− 1) dp

′

dϕ′
+ τ

1−τ v
′
]

= eϕ
′ v′

p′

[
(v
′

p′
−
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1)(−p′2l̃dg−(|ϕ′|)) + τ
1−τ v

′
]
< 0. The economic intuition of condition (ii) is that for

some high value c′ < ch, the firm has the incentive to reduce its debt. From (i) (ii) and

continuity of m(c) we conclude there exists a c∗ where m(c∗) = 0.

Condition (iii)

Assumptions needed to establish condition (iii) are the following:

1. dc
dϕ
> 0 when c ∈ (0, ch).

2. l̃dg
−(|ϕ|)[1− v

p
eϕ] + τ

1−τ e
ϕ v
p2 > 0.

3. v > p.

4. −dg−(|ϕ|)
dϕ

< −2pl̃d g
−(|ϕ|)2.

5. ( τ
1−τ − pl̃dg

−(|ϕ|)) < 0.

With dc
dϕ

> 0, c ∈ (0, ch) we can redefine the marginal incentive function m(ϕ) =

M(ϕ, eϕ v
p
) = dv

dϕ
− eϕ v

p
dp
dϕ

= eϕ v
p

[
(v
p
− 1) dp

dϕ
+ τ

1−τ v

]
. Suppose v > 0, p > 0, the sign of dm

dϕ

is the same as

d

[
(v
p
− 1) dp

dϕ
+ τ

1−τ v

]
dϕ

=

[
− v

p2

dp

dϕ
+

1

p

dv

dϕ

]
︸ ︷︷ ︸

>0

dp

dϕ︸︷︷︸
<0

+ (
v

p
− 1)︸ ︷︷ ︸
>0

d2p

dϕ2︸︷︷︸
<0

+
τ

1− τ
dv

dϕ︸︷︷︸
<0

< 0,

where [
− v

p2

dp

dϕ
+

1

p

dv

dϕ

]
= l̃dg

−(|ϕ|)v[1− v

p
eϕ] +

τ

1− τ
eϕ
v2

p2
,

d2p

dϕ2
= −p2l̃d

dg−(|ϕ|)
dϕ

+ 2p3l̃2dg
−(|ϕ|)2,

dv

dϕ
= eϕ

v2

p
(

τ

1− τ
− pl̃dg−(|ϕ|)).

Monotonicity of m(c) ensures the uniqueness of the fixed point c∗.

Condition (iv)
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Condition (iv) is the sufficient condition for c∗ to be the optimal solution to maximize

the equity value v − cp. It can be derived from condition (iii). From condition (iii) we

know, for any c ∈ (0, c′), we have

dm

dϕ
=
d2v

dϕ2
− c(ϕ)

d2p

dϕ2
− dc
dϕ

dp

dϕ︸ ︷︷ ︸
>0

< 0.

Since c∗ is also in (0, c′), and − dc
dϕ

dp
dϕ

is positive, we can conclude that

dM(c(c∗), c∗)

dc(c∗)
=

d2v

dϕ∗2
− c(ϕ∗) d

2p

dϕ∗2
<
dm

dϕ∗
< 0.
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